aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/ports/raspberrypi/common-hal/pwmio/PWMOut.c
blob: 3ef4fb57f33819d4ef9d04d928291804113a1fd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2021 Scott Shawcroft for Adafruit Industries
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdint.h>

#include "shared/runtime/interrupt_char.h"
#include "py/runtime.h"
#include "common-hal/pwmio/PWMOut.h"
#include "shared-bindings/pwmio/PWMOut.h"
#include "shared-bindings/microcontroller/Processor.h"

#include "supervisor/shared/translate.h"

#include "src/rp2040/hardware_regs/include/hardware/platform_defs.h"
#include "src/rp2_common/hardware_clocks/include/hardware/clocks.h"
#include "src/rp2_common/hardware_gpio/include/hardware/gpio.h"
#include "src/rp2_common/hardware_pwm/include/hardware/pwm.h"

uint32_t target_slice_frequencies[NUM_PWM_SLICES];
uint32_t slice_variable_frequency;

#define AB_CHANNELS_PER_SLICE 2
static uint32_t channel_use;
static uint32_t never_reset_channel;

// Per the RP2040 datasheet:
//
// "A CC value of 0 will produce a 0% output, i.e. the output signal
// is always low. A CC value of TOP + 1 (i.e. equal to the period, in
// non-phase-correct mode) will produce a 100% output. For example, if
// TOP is programmed to 254, the counter will have a period of 255
// cycles, and CC values in the range of 0 to 255 inclusive will
// produce duty cycles in the range 0% to 100% inclusive."
//
// So 65534 should be the maximum top value, and we'll set CC to be TOP+1 as appropriate.
#define MAX_TOP 65534

static uint32_t _mask(uint8_t slice, uint8_t ab_channel) {
    return 1 << (slice * AB_CHANNELS_PER_SLICE + ab_channel);
}

bool pwmio_claim_slice_ab_channels(uint8_t slice) {
    uint32_t channel_use_mask_a = _mask(slice, 0);
    uint32_t channel_use_mask_b = _mask(slice, 1);

    if ((channel_use & channel_use_mask_a) != 0) {
        return false;
    }
    if ((channel_use & channel_use_mask_b) != 0) {
        return false;
    }

    channel_use |= channel_use_mask_a;
    channel_use |= channel_use_mask_b;
    return true;
}

void pwmio_release_slice_ab_channels(uint8_t slice) {
    uint32_t channel_mask = _mask(slice, 0);
    channel_use &= ~channel_mask;
    channel_mask = _mask(slice, 1);
    channel_use &= ~channel_mask;
}

void pwmout_never_reset(uint8_t slice, uint8_t ab_channel) {
    never_reset_channel |= _mask(slice, ab_channel);
}

void pwmout_reset_ok(uint8_t slice, uint8_t ab_channel) {
    never_reset_channel &= ~_mask(slice, ab_channel);
}

void common_hal_pwmio_pwmout_never_reset(pwmio_pwmout_obj_t *self) {
    pwmout_never_reset(self->slice, self->ab_channel);

    never_reset_pin_number(self->pin->number);
}

void common_hal_pwmio_pwmout_reset_ok(pwmio_pwmout_obj_t *self) {
    pwmout_reset_ok(self->slice, self->ab_channel);
}

void pwmout_reset(void) {
    // Reset all slices
    for (size_t slice = 0; slice < NUM_PWM_SLICES; slice++) {
        bool reset = true;
        for (size_t ab_channel = 0; ab_channel < AB_CHANNELS_PER_SLICE; ab_channel++) {
            uint32_t channel_use_mask = _mask(slice, ab_channel);
            if ((never_reset_channel & channel_use_mask) != 0) {
                reset = false;
                continue;
            }
            channel_use &= ~channel_use_mask;
        }
        if (!reset) {
            continue;
        }
        pwm_set_enabled(slice, false);
        target_slice_frequencies[slice] = 0;
        slice_variable_frequency &= ~(1 << slice);
    }
}

pwmout_result_t pwmout_allocate(uint8_t slice, uint8_t ab_channel, bool variable_frequency, uint32_t frequency) {
    uint32_t channel_use_mask = _mask(slice, ab_channel);

    // Check the channel first.
    if ((channel_use & channel_use_mask) != 0) {
        return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE;
    }
    // Now check if the slice is in use and if we can share with it.
    if (target_slice_frequencies[slice] > 0) {
        // If we want to change frequency then we can't share.
        if (variable_frequency) {
            return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE;
        }
        // If the other user wants a variable frequency then we can't share either.
        if ((slice_variable_frequency & (1 << slice)) != 0) {
            return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE;
        }
        // If we're both fixed frequency but we don't match target frequencies then we can't share.
        if (target_slice_frequencies[slice] != frequency) {
            return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE;
        }
    }

    channel_use |= channel_use_mask;
    if (variable_frequency) {
        slice_variable_frequency |= 1 << slice;
    }

    return PWMOUT_OK;
}

pwmout_result_t common_hal_pwmio_pwmout_construct(pwmio_pwmout_obj_t *self,
    const mcu_pin_obj_t *pin,
    uint16_t duty,
    uint32_t frequency,
    bool variable_frequency) {
    self->pin = pin;
    self->variable_frequency = variable_frequency;
    self->duty_cycle = duty;

    claim_pin(pin);

    if (frequency == 0 || frequency > (common_hal_mcu_processor_get_frequency() / 2)) {
        return PWMOUT_INVALID_FREQUENCY;
    }

    uint8_t slice = pwm_gpio_to_slice_num(pin->number);
    uint8_t ab_channel = pwm_gpio_to_channel(pin->number);

    int r = pwmout_allocate(slice, ab_channel, variable_frequency, frequency);
    if (r != PWMOUT_OK) {
        return r;
    }

    self->slice = slice;
    self->ab_channel = ab_channel;

    if (target_slice_frequencies[slice] != frequency) {
        // Reset the counter and compare values.
        pwm_hw->slice[slice].ctr = PWM_CH0_CTR_RESET;
        common_hal_pwmio_pwmout_set_duty_cycle(self, duty);
        common_hal_pwmio_pwmout_set_frequency(self, frequency);
        pwm_set_enabled(slice, true);
    } else {
        common_hal_pwmio_pwmout_set_frequency(self, frequency);
        common_hal_pwmio_pwmout_set_duty_cycle(self, duty);
    }

    // Connect to the pad last to avoid any glitches from changing settings.
    gpio_set_function(pin->number, GPIO_FUNC_PWM);

    return PWMOUT_OK;
}

bool common_hal_pwmio_pwmout_deinited(pwmio_pwmout_obj_t *self) {
    return self->pin == NULL;
}

void pwmout_free(uint8_t slice, uint8_t ab_channel) {
    uint32_t channel_mask = _mask(slice, ab_channel);
    channel_use &= ~channel_mask;
    never_reset_channel &= ~channel_mask;
    uint32_t slice_mask = ((1 << AB_CHANNELS_PER_SLICE) - 1) << (slice * AB_CHANNELS_PER_SLICE);
    if ((channel_use & slice_mask) == 0) {
        target_slice_frequencies[slice] = 0;
        slice_variable_frequency &= ~(1 << slice);
        pwm_set_enabled(slice, false);
    }
}

void common_hal_pwmio_pwmout_deinit(pwmio_pwmout_obj_t *self) {
    if (common_hal_pwmio_pwmout_deinited(self)) {
        return;
    }
    pwmout_free(self->slice, self->ab_channel);
    reset_pin_number(self->pin->number);
    self->pin = NULL;
}

extern void common_hal_pwmio_pwmout_set_duty_cycle(pwmio_pwmout_obj_t *self, uint16_t duty) {
    self->duty_cycle = duty;
    // Do arithmetic in 32 bits to prevent overflow.
    uint16_t compare_count;
    if (duty == 65535) {
        // Ensure that 100% duty cycle is 100% full on and not rounded down,
        // but do MIN() to keep value in range, just in case.
        compare_count = MIN(UINT16_MAX, (uint32_t)self->top + 1);
    } else {
        compare_count = ((uint32_t)duty * self->top + MAX_TOP / 2) / MAX_TOP;
    }
    // compare_count is the CC register value, which should be TOP+1 for 100% duty cycle.
    pwm_set_chan_level(self->slice, self->ab_channel, compare_count);
    // Wait for wrap so that we know our new cc value has been applied. Clear
    // the internal interrupt and then wait for it to be set. Worst case, we
    // wait a full cycle.
    pwm_hw->intr = 1 << self->slice;
    while ((pwm_hw->en & (1 << self->slice)) != 0 &&
           (pwm_hw->intr & (1 << self->slice)) == 0 &&
           !mp_hal_is_interrupted()) {
    }
}

uint16_t common_hal_pwmio_pwmout_get_duty_cycle(pwmio_pwmout_obj_t *self) {
    return self->duty_cycle;
}

void pwmio_pwmout_set_top(pwmio_pwmout_obj_t *self, uint16_t top) {
    self->actual_frequency = common_hal_mcu_processor_get_frequency() / top;
    self->top = top;
    pwm_set_clkdiv_int_frac(self->slice, 1, 0);
    pwm_set_wrap(self->slice, self->top);
}

void common_hal_pwmio_pwmout_set_frequency(pwmio_pwmout_obj_t *self, uint32_t frequency) {
    if (frequency == 0 || frequency > (common_hal_mcu_processor_get_frequency() / 2)) {
        mp_raise_ValueError(translate("Invalid PWM frequency"));
    }

    target_slice_frequencies[self->slice] = frequency;

    // For low frequencies use the divider to give us full resolution duty_cycle.
    if (frequency <= (common_hal_mcu_processor_get_frequency() / (1 << 16))) {
        // Compute the divisor. It's an 8 bit integer and 4 bit fraction. Therefore,
        // we compute everything * 16 for the fractional part.
        // This is 1 << 12 because 4 bits are the * 16.
        uint64_t frequency16 = ((uint64_t)clock_get_hz(clk_sys)) / (1 << 12);
        uint64_t div16 = frequency16 / frequency;
        // Round the divisor to try and get closest to the target frequency. We could
        // also always round up and use TOP to get us closer. We may not need that though.
        if (frequency16 % frequency >= frequency / 2) {
            div16 += 1;
        }
        if (div16 >= (1 << 12)) {
            div16 = (1 << 12) - 1;
        }
        self->actual_frequency = (frequency16 + (div16 / 2)) / div16;
        self->top = MAX_TOP;
        pwm_set_clkdiv_int_frac(self->slice, div16 / 16, div16 % 16);
        pwm_set_wrap(self->slice, self->top);
    } else {
        uint32_t top = common_hal_mcu_processor_get_frequency() / frequency;
        self->actual_frequency = common_hal_mcu_processor_get_frequency() / top;
        self->top = MIN(MAX_TOP, top);
        pwm_set_clkdiv_int_frac(self->slice, 1, 0);
        // Set TOP register. For 100% duty cycle, CC must be set to TOP+1.
        pwm_set_wrap(self->slice, self->top);
    }
    common_hal_pwmio_pwmout_set_duty_cycle(self, self->duty_cycle);
}

uint32_t common_hal_pwmio_pwmout_get_frequency(pwmio_pwmout_obj_t *self) {
    return self->actual_frequency;
}

bool common_hal_pwmio_pwmout_get_variable_frequency(pwmio_pwmout_obj_t *self) {
    return self->variable_frequency;
}

const mcu_pin_obj_t *common_hal_pwmio_pwmout_get_pin(pwmio_pwmout_obj_t *self) {
    return self->pin;
}