diff options
author | Raghuram Subramani <raghus2247@gmail.com> | 2022-06-19 19:47:51 +0530 |
---|---|---|
committer | Raghuram Subramani <raghus2247@gmail.com> | 2022-06-19 19:47:51 +0530 |
commit | 4fd287655a72b9aea14cdac715ad5b90ed082ed2 (patch) | |
tree | 65d393bc0e699dd12d05b29ba568e04cea666207 /circuitpython/ports/raspberrypi/common-hal/pwmio/PWMOut.c | |
parent | 0150f70ce9c39e9e6dd878766c0620c85e47bed0 (diff) |
add circuitpython code
Diffstat (limited to 'circuitpython/ports/raspberrypi/common-hal/pwmio/PWMOut.c')
-rw-r--r-- | circuitpython/ports/raspberrypi/common-hal/pwmio/PWMOut.c | 307 |
1 files changed, 307 insertions, 0 deletions
diff --git a/circuitpython/ports/raspberrypi/common-hal/pwmio/PWMOut.c b/circuitpython/ports/raspberrypi/common-hal/pwmio/PWMOut.c new file mode 100644 index 0000000..3ef4fb5 --- /dev/null +++ b/circuitpython/ports/raspberrypi/common-hal/pwmio/PWMOut.c @@ -0,0 +1,307 @@ +/* + * This file is part of the MicroPython project, http://micropython.org/ + * + * The MIT License (MIT) + * + * Copyright (c) 2021 Scott Shawcroft for Adafruit Industries + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include <stdint.h> + +#include "shared/runtime/interrupt_char.h" +#include "py/runtime.h" +#include "common-hal/pwmio/PWMOut.h" +#include "shared-bindings/pwmio/PWMOut.h" +#include "shared-bindings/microcontroller/Processor.h" + +#include "supervisor/shared/translate.h" + +#include "src/rp2040/hardware_regs/include/hardware/platform_defs.h" +#include "src/rp2_common/hardware_clocks/include/hardware/clocks.h" +#include "src/rp2_common/hardware_gpio/include/hardware/gpio.h" +#include "src/rp2_common/hardware_pwm/include/hardware/pwm.h" + +uint32_t target_slice_frequencies[NUM_PWM_SLICES]; +uint32_t slice_variable_frequency; + +#define AB_CHANNELS_PER_SLICE 2 +static uint32_t channel_use; +static uint32_t never_reset_channel; + +// Per the RP2040 datasheet: +// +// "A CC value of 0 will produce a 0% output, i.e. the output signal +// is always low. A CC value of TOP + 1 (i.e. equal to the period, in +// non-phase-correct mode) will produce a 100% output. For example, if +// TOP is programmed to 254, the counter will have a period of 255 +// cycles, and CC values in the range of 0 to 255 inclusive will +// produce duty cycles in the range 0% to 100% inclusive." +// +// So 65534 should be the maximum top value, and we'll set CC to be TOP+1 as appropriate. +#define MAX_TOP 65534 + +static uint32_t _mask(uint8_t slice, uint8_t ab_channel) { + return 1 << (slice * AB_CHANNELS_PER_SLICE + ab_channel); +} + +bool pwmio_claim_slice_ab_channels(uint8_t slice) { + uint32_t channel_use_mask_a = _mask(slice, 0); + uint32_t channel_use_mask_b = _mask(slice, 1); + + if ((channel_use & channel_use_mask_a) != 0) { + return false; + } + if ((channel_use & channel_use_mask_b) != 0) { + return false; + } + + channel_use |= channel_use_mask_a; + channel_use |= channel_use_mask_b; + return true; +} + +void pwmio_release_slice_ab_channels(uint8_t slice) { + uint32_t channel_mask = _mask(slice, 0); + channel_use &= ~channel_mask; + channel_mask = _mask(slice, 1); + channel_use &= ~channel_mask; +} + +void pwmout_never_reset(uint8_t slice, uint8_t ab_channel) { + never_reset_channel |= _mask(slice, ab_channel); +} + +void pwmout_reset_ok(uint8_t slice, uint8_t ab_channel) { + never_reset_channel &= ~_mask(slice, ab_channel); +} + +void common_hal_pwmio_pwmout_never_reset(pwmio_pwmout_obj_t *self) { + pwmout_never_reset(self->slice, self->ab_channel); + + never_reset_pin_number(self->pin->number); +} + +void common_hal_pwmio_pwmout_reset_ok(pwmio_pwmout_obj_t *self) { + pwmout_reset_ok(self->slice, self->ab_channel); +} + +void pwmout_reset(void) { + // Reset all slices + for (size_t slice = 0; slice < NUM_PWM_SLICES; slice++) { + bool reset = true; + for (size_t ab_channel = 0; ab_channel < AB_CHANNELS_PER_SLICE; ab_channel++) { + uint32_t channel_use_mask = _mask(slice, ab_channel); + if ((never_reset_channel & channel_use_mask) != 0) { + reset = false; + continue; + } + channel_use &= ~channel_use_mask; + } + if (!reset) { + continue; + } + pwm_set_enabled(slice, false); + target_slice_frequencies[slice] = 0; + slice_variable_frequency &= ~(1 << slice); + } +} + +pwmout_result_t pwmout_allocate(uint8_t slice, uint8_t ab_channel, bool variable_frequency, uint32_t frequency) { + uint32_t channel_use_mask = _mask(slice, ab_channel); + + // Check the channel first. + if ((channel_use & channel_use_mask) != 0) { + return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE; + } + // Now check if the slice is in use and if we can share with it. + if (target_slice_frequencies[slice] > 0) { + // If we want to change frequency then we can't share. + if (variable_frequency) { + return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE; + } + // If the other user wants a variable frequency then we can't share either. + if ((slice_variable_frequency & (1 << slice)) != 0) { + return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE; + } + // If we're both fixed frequency but we don't match target frequencies then we can't share. + if (target_slice_frequencies[slice] != frequency) { + return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE; + } + } + + channel_use |= channel_use_mask; + if (variable_frequency) { + slice_variable_frequency |= 1 << slice; + } + + return PWMOUT_OK; +} + +pwmout_result_t common_hal_pwmio_pwmout_construct(pwmio_pwmout_obj_t *self, + const mcu_pin_obj_t *pin, + uint16_t duty, + uint32_t frequency, + bool variable_frequency) { + self->pin = pin; + self->variable_frequency = variable_frequency; + self->duty_cycle = duty; + + claim_pin(pin); + + if (frequency == 0 || frequency > (common_hal_mcu_processor_get_frequency() / 2)) { + return PWMOUT_INVALID_FREQUENCY; + } + + uint8_t slice = pwm_gpio_to_slice_num(pin->number); + uint8_t ab_channel = pwm_gpio_to_channel(pin->number); + + int r = pwmout_allocate(slice, ab_channel, variable_frequency, frequency); + if (r != PWMOUT_OK) { + return r; + } + + self->slice = slice; + self->ab_channel = ab_channel; + + if (target_slice_frequencies[slice] != frequency) { + // Reset the counter and compare values. + pwm_hw->slice[slice].ctr = PWM_CH0_CTR_RESET; + common_hal_pwmio_pwmout_set_duty_cycle(self, duty); + common_hal_pwmio_pwmout_set_frequency(self, frequency); + pwm_set_enabled(slice, true); + } else { + common_hal_pwmio_pwmout_set_frequency(self, frequency); + common_hal_pwmio_pwmout_set_duty_cycle(self, duty); + } + + // Connect to the pad last to avoid any glitches from changing settings. + gpio_set_function(pin->number, GPIO_FUNC_PWM); + + return PWMOUT_OK; +} + +bool common_hal_pwmio_pwmout_deinited(pwmio_pwmout_obj_t *self) { + return self->pin == NULL; +} + +void pwmout_free(uint8_t slice, uint8_t ab_channel) { + uint32_t channel_mask = _mask(slice, ab_channel); + channel_use &= ~channel_mask; + never_reset_channel &= ~channel_mask; + uint32_t slice_mask = ((1 << AB_CHANNELS_PER_SLICE) - 1) << (slice * AB_CHANNELS_PER_SLICE); + if ((channel_use & slice_mask) == 0) { + target_slice_frequencies[slice] = 0; + slice_variable_frequency &= ~(1 << slice); + pwm_set_enabled(slice, false); + } +} + +void common_hal_pwmio_pwmout_deinit(pwmio_pwmout_obj_t *self) { + if (common_hal_pwmio_pwmout_deinited(self)) { + return; + } + pwmout_free(self->slice, self->ab_channel); + reset_pin_number(self->pin->number); + self->pin = NULL; +} + +extern void common_hal_pwmio_pwmout_set_duty_cycle(pwmio_pwmout_obj_t *self, uint16_t duty) { + self->duty_cycle = duty; + // Do arithmetic in 32 bits to prevent overflow. + uint16_t compare_count; + if (duty == 65535) { + // Ensure that 100% duty cycle is 100% full on and not rounded down, + // but do MIN() to keep value in range, just in case. + compare_count = MIN(UINT16_MAX, (uint32_t)self->top + 1); + } else { + compare_count = ((uint32_t)duty * self->top + MAX_TOP / 2) / MAX_TOP; + } + // compare_count is the CC register value, which should be TOP+1 for 100% duty cycle. + pwm_set_chan_level(self->slice, self->ab_channel, compare_count); + // Wait for wrap so that we know our new cc value has been applied. Clear + // the internal interrupt and then wait for it to be set. Worst case, we + // wait a full cycle. + pwm_hw->intr = 1 << self->slice; + while ((pwm_hw->en & (1 << self->slice)) != 0 && + (pwm_hw->intr & (1 << self->slice)) == 0 && + !mp_hal_is_interrupted()) { + } +} + +uint16_t common_hal_pwmio_pwmout_get_duty_cycle(pwmio_pwmout_obj_t *self) { + return self->duty_cycle; +} + +void pwmio_pwmout_set_top(pwmio_pwmout_obj_t *self, uint16_t top) { + self->actual_frequency = common_hal_mcu_processor_get_frequency() / top; + self->top = top; + pwm_set_clkdiv_int_frac(self->slice, 1, 0); + pwm_set_wrap(self->slice, self->top); +} + +void common_hal_pwmio_pwmout_set_frequency(pwmio_pwmout_obj_t *self, uint32_t frequency) { + if (frequency == 0 || frequency > (common_hal_mcu_processor_get_frequency() / 2)) { + mp_raise_ValueError(translate("Invalid PWM frequency")); + } + + target_slice_frequencies[self->slice] = frequency; + + // For low frequencies use the divider to give us full resolution duty_cycle. + if (frequency <= (common_hal_mcu_processor_get_frequency() / (1 << 16))) { + // Compute the divisor. It's an 8 bit integer and 4 bit fraction. Therefore, + // we compute everything * 16 for the fractional part. + // This is 1 << 12 because 4 bits are the * 16. + uint64_t frequency16 = ((uint64_t)clock_get_hz(clk_sys)) / (1 << 12); + uint64_t div16 = frequency16 / frequency; + // Round the divisor to try and get closest to the target frequency. We could + // also always round up and use TOP to get us closer. We may not need that though. + if (frequency16 % frequency >= frequency / 2) { + div16 += 1; + } + if (div16 >= (1 << 12)) { + div16 = (1 << 12) - 1; + } + self->actual_frequency = (frequency16 + (div16 / 2)) / div16; + self->top = MAX_TOP; + pwm_set_clkdiv_int_frac(self->slice, div16 / 16, div16 % 16); + pwm_set_wrap(self->slice, self->top); + } else { + uint32_t top = common_hal_mcu_processor_get_frequency() / frequency; + self->actual_frequency = common_hal_mcu_processor_get_frequency() / top; + self->top = MIN(MAX_TOP, top); + pwm_set_clkdiv_int_frac(self->slice, 1, 0); + // Set TOP register. For 100% duty cycle, CC must be set to TOP+1. + pwm_set_wrap(self->slice, self->top); + } + common_hal_pwmio_pwmout_set_duty_cycle(self, self->duty_cycle); +} + +uint32_t common_hal_pwmio_pwmout_get_frequency(pwmio_pwmout_obj_t *self) { + return self->actual_frequency; +} + +bool common_hal_pwmio_pwmout_get_variable_frequency(pwmio_pwmout_obj_t *self) { + return self->variable_frequency; +} + +const mcu_pin_obj_t *common_hal_pwmio_pwmout_get_pin(pwmio_pwmout_obj_t *self) { + return self->pin; +} |