aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/extmod/ulab/code/numpy/fft
diff options
context:
space:
mode:
authorRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
committerRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
commit4fd287655a72b9aea14cdac715ad5b90ed082ed2 (patch)
tree65d393bc0e699dd12d05b29ba568e04cea666207 /circuitpython/extmod/ulab/code/numpy/fft
parent0150f70ce9c39e9e6dd878766c0620c85e47bed0 (diff)
add circuitpython code
Diffstat (limited to 'circuitpython/extmod/ulab/code/numpy/fft')
-rw-r--r--circuitpython/extmod/ulab/code/numpy/fft/fft.c102
-rw-r--r--circuitpython/extmod/ulab/code/numpy/fft/fft.h30
-rw-r--r--circuitpython/extmod/ulab/code/numpy/fft/fft_tools.c287
-rw-r--r--circuitpython/extmod/ulab/code/numpy/fft/fft_tools.h28
4 files changed, 447 insertions, 0 deletions
diff --git a/circuitpython/extmod/ulab/code/numpy/fft/fft.c b/circuitpython/extmod/ulab/code/numpy/fft/fft.c
new file mode 100644
index 0000000..27cb79c
--- /dev/null
+++ b/circuitpython/extmod/ulab/code/numpy/fft/fft.c
@@ -0,0 +1,102 @@
+/*
+ * This file is part of the micropython-ulab project,
+ *
+ * https://github.com/v923z/micropython-ulab
+ *
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2019-2021 Zoltán Vörös
+ * 2020 Scott Shawcroft for Adafruit Industries
+ * 2020 Taku Fukada
+*/
+
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "py/runtime.h"
+#include "py/builtin.h"
+#include "py/binary.h"
+#include "py/obj.h"
+#include "py/objarray.h"
+
+#include "../carray/carray_tools.h"
+#include "fft.h"
+
+//| """Frequency-domain functions"""
+//|
+//| import ulab.numpy
+
+
+//| def fft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]:
+//| """
+//| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2
+//| :param ulab.numpy.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
+//| :return tuple (r, c): The real and complex parts of the FFT
+//|
+//| Perform a Fast Fourier Transform from the time domain into the frequency domain
+//|
+//| See also ~ulab.extras.spectrum, which computes the magnitude of the fft,
+//| rather than separately returning its real and imaginary parts."""
+//| ...
+//|
+#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
+static mp_obj_t fft_fft(mp_obj_t arg) {
+ return fft_fft_ifft_spectrogram(arg, FFT_FFT);
+}
+
+MP_DEFINE_CONST_FUN_OBJ_1(fft_fft_obj, fft_fft);
+#else
+static mp_obj_t fft_fft(size_t n_args, const mp_obj_t *args) {
+ if(n_args == 2) {
+ return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_FFT);
+ } else {
+ return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_FFT);
+ }
+}
+
+MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj, 1, 2, fft_fft);
+#endif
+
+//| def ifft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]:
+//| """
+//| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2
+//| :param ulab.numpy.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
+//| :return tuple (r, c): The real and complex parts of the inverse FFT
+//|
+//| Perform an Inverse Fast Fourier Transform from the frequeny domain into the time domain"""
+//| ...
+//|
+
+#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
+static mp_obj_t fft_ifft(mp_obj_t arg) {
+ return fft_fft_ifft_spectrogram(arg, FFT_IFFT);
+}
+
+MP_DEFINE_CONST_FUN_OBJ_1(fft_ifft_obj, fft_ifft);
+#else
+static mp_obj_t fft_ifft(size_t n_args, const mp_obj_t *args) {
+ NOT_IMPLEMENTED_FOR_COMPLEX()
+ if(n_args == 2) {
+ return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_IFFT);
+ } else {
+ return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_IFFT);
+ }
+}
+
+MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj, 1, 2, fft_ifft);
+#endif
+
+STATIC const mp_rom_map_elem_t ulab_fft_globals_table[] = {
+ { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_fft) },
+ { MP_OBJ_NEW_QSTR(MP_QSTR_fft), (mp_obj_t)&fft_fft_obj },
+ { MP_OBJ_NEW_QSTR(MP_QSTR_ifft), (mp_obj_t)&fft_ifft_obj },
+};
+
+STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_fft_globals, ulab_fft_globals_table);
+
+const mp_obj_module_t ulab_fft_module = {
+ .base = { &mp_type_module },
+ .globals = (mp_obj_dict_t*)&mp_module_ulab_fft_globals,
+};
+MP_REGISTER_MODULE(MP_QSTR_ulab_dot_fft, ulab_fft_module, MODULE_ULAB_ENABLED && CIRCUITPY_ULAB);
diff --git a/circuitpython/extmod/ulab/code/numpy/fft/fft.h b/circuitpython/extmod/ulab/code/numpy/fft/fft.h
new file mode 100644
index 0000000..1e50a8d
--- /dev/null
+++ b/circuitpython/extmod/ulab/code/numpy/fft/fft.h
@@ -0,0 +1,30 @@
+
+/*
+ * This file is part of the micropython-ulab project,
+ *
+ * https://github.com/v923z/micropython-ulab
+ *
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2019-2021 Zoltán Vörös
+*/
+
+#ifndef _FFT_
+#define _FFT_
+
+#include "../../ulab.h"
+#include "../../ulab_tools.h"
+#include "../../ndarray.h"
+#include "fft_tools.h"
+
+extern const mp_obj_module_t ulab_fft_module;
+
+#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
+MP_DECLARE_CONST_FUN_OBJ_3(fft_fft_obj);
+MP_DECLARE_CONST_FUN_OBJ_3(fft_ifft_obj);
+#else
+MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj);
+MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj);
+#endif
+
+#endif
diff --git a/circuitpython/extmod/ulab/code/numpy/fft/fft_tools.c b/circuitpython/extmod/ulab/code/numpy/fft/fft_tools.c
new file mode 100644
index 0000000..8a55927
--- /dev/null
+++ b/circuitpython/extmod/ulab/code/numpy/fft/fft_tools.c
@@ -0,0 +1,287 @@
+/*
+ * This file is part of the micropython-ulab project,
+ *
+ * https://github.com/v923z/micropython-ulab
+ *
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2019-2021 Zoltán Vörös
+*/
+
+#include <math.h>
+#include <string.h>
+#include "py/runtime.h"
+
+#include "../../ndarray.h"
+#include "../../ulab_tools.h"
+#include "../carray/carray_tools.h"
+#include "fft_tools.h"
+
+#ifndef MP_PI
+#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
+#endif
+#ifndef MP_E
+#define MP_E MICROPY_FLOAT_CONST(2.71828182845904523536)
+#endif
+
+/* Kernel implementation for the case, when ulab has no complex support
+
+ * The following function takes two arrays, namely, the real and imaginary
+ * parts of a complex array, and calculates the Fourier transform in place.
+ *
+ * The function is basically a modification of four1 from Numerical Recipes,
+ * has no dependencies beyond micropython itself (for the definition of mp_float_t),
+ * and can be used independent of ulab.
+ */
+
+#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
+/* Kernel implementation for the complex case. Data are contained in data as
+
+ data[0], data[1], data[2], data[3], .... , data[2n - 2], data[2n-1]
+ real[0], imag[0], real[1], imag[1], .... , real[n-1], imag[n-1]
+
+ In general
+ real[i] = data[2i]
+ imag[i] = data[2i+1]
+
+*/
+void fft_kernel_complex(mp_float_t *data, size_t n, int isign) {
+ size_t j, m, mmax, istep;
+ mp_float_t tempr, tempi;
+ mp_float_t wtemp, wr, wpr, wpi, wi, theta;
+
+ j = 0;
+ for(size_t i = 0; i < n; i++) {
+ if (j > i) {
+ SWAP(mp_float_t, data[2*i], data[2*j]);
+ SWAP(mp_float_t, data[2*i+1], data[2*j+1]);
+ }
+ m = n >> 1;
+ while (j >= m && m > 0) {
+ j -= m;
+ m >>= 1;
+ }
+ j += m;
+ }
+
+ mmax = 1;
+ while (n > mmax) {
+ istep = mmax << 1;
+ theta = MICROPY_FLOAT_CONST(-2.0)*isign*MP_PI/istep;
+ wtemp = MICROPY_FLOAT_C_FUN(sin)(MICROPY_FLOAT_CONST(0.5) * theta);
+ wpr = MICROPY_FLOAT_CONST(-2.0) * wtemp * wtemp;
+ wpi = MICROPY_FLOAT_C_FUN(sin)(theta);
+ wr = MICROPY_FLOAT_CONST(1.0);
+ wi = MICROPY_FLOAT_CONST(0.0);
+ for(m = 0; m < mmax; m++) {
+ for(size_t i = m; i < n; i += istep) {
+ j = i + mmax;
+ tempr = wr * data[2*j] - wi * data[2*j+1];
+ tempi = wr * data[2*j+1] + wi * data[2*j];
+ data[2*j] = data[2*i] - tempr;
+ data[2*j+1] = data[2*i+1] - tempi;
+ data[2*i] += tempr;
+ data[2*i+1] += tempi;
+ }
+ wtemp = wr;
+ wr = wr*wpr - wi*wpi + wr;
+ wi = wi*wpr + wtemp*wpi + wi;
+ }
+ mmax = istep;
+ }
+}
+
+/*
+ * The following function is a helper interface to the python side.
+ * It has been factored out from fft.c, so that the same argument parsing
+ * routine can be called from scipy.signal.spectrogram.
+ */
+mp_obj_t fft_fft_ifft_spectrogram(mp_obj_t data_in, uint8_t type) {
+ if(!mp_obj_is_type(data_in, &ulab_ndarray_type)) {
+ mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only"));
+ }
+ ndarray_obj_t *in = MP_OBJ_TO_PTR(data_in);
+ #if ULAB_MAX_DIMS > 1
+ if(in->ndim != 1) {
+ mp_raise_TypeError(translate("FFT is implemented for linear arrays only"));
+ }
+ #endif
+ size_t len = in->len;
+ // Check if input is of length of power of 2
+ if((len & (len-1)) != 0) {
+ mp_raise_ValueError(translate("input array length must be power of 2"));
+ }
+
+ ndarray_obj_t *out = ndarray_new_linear_array(len, NDARRAY_COMPLEX);
+ mp_float_t *data = (mp_float_t *)out->array;
+ uint8_t *array = (uint8_t *)in->array;
+
+ if(in->dtype == NDARRAY_COMPLEX) {
+ uint8_t sz = 2 * sizeof(mp_float_t);
+ uint8_t *data_ = (uint8_t *)out->array;
+ for(size_t i = 0; i < len; i++) {
+ memcpy(data_, array, sz);
+ array += in->strides[ULAB_MAX_DIMS - 1];
+ }
+ } else {
+ mp_float_t (*func)(void *) = ndarray_get_float_function(in->dtype);
+ for(size_t i = 0; i < len; i++) {
+ // real part; the imaginary part is 0, no need to assign
+ *data = func(array);
+ data += 2;
+ array += in->strides[ULAB_MAX_DIMS - 1];
+ }
+ }
+ data -= 2 * len;
+
+ if((type == FFT_FFT) || (type == FFT_SPECTROGRAM)) {
+ fft_kernel_complex(data, len, 1);
+ if(type == FFT_SPECTROGRAM) {
+ ndarray_obj_t *spectrum = ndarray_new_linear_array(len, NDARRAY_FLOAT);
+ mp_float_t *sarray = (mp_float_t *)spectrum->array;
+ for(size_t i = 0; i < len; i++) {
+ *sarray++ = MICROPY_FLOAT_C_FUN(sqrt)(data[0] * data[0] + data[1] * data[1]);
+ data += 2;
+ }
+ m_del(mp_float_t, data, 2 * len);
+ return MP_OBJ_FROM_PTR(spectrum);
+ }
+ } else { // inverse transform
+ fft_kernel_complex(data, len, -1);
+ // TODO: numpy accepts the norm keyword argument
+ for(size_t i = 0; i < len; i++) {
+ *data++ /= len;
+ }
+ }
+ return MP_OBJ_FROM_PTR(out);
+}
+#else /* ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE */
+void fft_kernel(mp_float_t *real, mp_float_t *imag, size_t n, int isign) {
+ size_t j, m, mmax, istep;
+ mp_float_t tempr, tempi;
+ mp_float_t wtemp, wr, wpr, wpi, wi, theta;
+
+ j = 0;
+ for(size_t i = 0; i < n; i++) {
+ if (j > i) {
+ SWAP(mp_float_t, real[i], real[j]);
+ SWAP(mp_float_t, imag[i], imag[j]);
+ }
+ m = n >> 1;
+ while (j >= m && m > 0) {
+ j -= m;
+ m >>= 1;
+ }
+ j += m;
+ }
+
+ mmax = 1;
+ while (n > mmax) {
+ istep = mmax << 1;
+ theta = MICROPY_FLOAT_CONST(-2.0)*isign*MP_PI/istep;
+ wtemp = MICROPY_FLOAT_C_FUN(sin)(MICROPY_FLOAT_CONST(0.5) * theta);
+ wpr = MICROPY_FLOAT_CONST(-2.0) * wtemp * wtemp;
+ wpi = MICROPY_FLOAT_C_FUN(sin)(theta);
+ wr = MICROPY_FLOAT_CONST(1.0);
+ wi = MICROPY_FLOAT_CONST(0.0);
+ for(m = 0; m < mmax; m++) {
+ for(size_t i = m; i < n; i += istep) {
+ j = i + mmax;
+ tempr = wr * real[j] - wi * imag[j];
+ tempi = wr * imag[j] + wi * real[j];
+ real[j] = real[i] - tempr;
+ imag[j] = imag[i] - tempi;
+ real[i] += tempr;
+ imag[i] += tempi;
+ }
+ wtemp = wr;
+ wr = wr*wpr - wi*wpi + wr;
+ wi = wi*wpr + wtemp*wpi + wi;
+ }
+ mmax = istep;
+ }
+}
+
+mp_obj_t fft_fft_ifft_spectrogram(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im, uint8_t type) {
+ if(!mp_obj_is_type(arg_re, &ulab_ndarray_type)) {
+ mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only"));
+ }
+ if(n_args == 2) {
+ if(!mp_obj_is_type(arg_im, &ulab_ndarray_type)) {
+ mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only"));
+ }
+ }
+ ndarray_obj_t *re = MP_OBJ_TO_PTR(arg_re);
+ #if ULAB_MAX_DIMS > 1
+ if(re->ndim != 1) {
+ COMPLEX_DTYPE_NOT_IMPLEMENTED(re->dtype)
+ mp_raise_TypeError(translate("FFT is implemented for linear arrays only"));
+ }
+ #endif
+ size_t len = re->len;
+ // Check if input is of length of power of 2
+ if((len & (len-1)) != 0) {
+ mp_raise_ValueError(translate("input array length must be power of 2"));
+ }
+
+ ndarray_obj_t *out_re = ndarray_new_linear_array(len, NDARRAY_FLOAT);
+ mp_float_t *data_re = (mp_float_t *)out_re->array;
+
+ uint8_t *array = (uint8_t *)re->array;
+ mp_float_t (*func)(void *) = ndarray_get_float_function(re->dtype);
+
+ for(size_t i=0; i < len; i++) {
+ *data_re++ = func(array);
+ array += re->strides[ULAB_MAX_DIMS - 1];
+ }
+ data_re -= len;
+ ndarray_obj_t *out_im = ndarray_new_linear_array(len, NDARRAY_FLOAT);
+ mp_float_t *data_im = (mp_float_t *)out_im->array;
+
+ if(n_args == 2) {
+ ndarray_obj_t *im = MP_OBJ_TO_PTR(arg_im);
+ #if ULAB_MAX_DIMS > 1
+ if(im->ndim != 1) {
+ COMPLEX_DTYPE_NOT_IMPLEMENTED(im->dtype)
+ mp_raise_TypeError(translate("FFT is implemented for linear arrays only"));
+ }
+ #endif
+ if (re->len != im->len) {
+ mp_raise_ValueError(translate("real and imaginary parts must be of equal length"));
+ }
+ array = (uint8_t *)im->array;
+ func = ndarray_get_float_function(im->dtype);
+ for(size_t i=0; i < len; i++) {
+ *data_im++ = func(array);
+ array += im->strides[ULAB_MAX_DIMS - 1];
+ }
+ data_im -= len;
+ }
+
+ if((type == FFT_FFT) || (type == FFT_SPECTROGRAM)) {
+ fft_kernel(data_re, data_im, len, 1);
+ if(type == FFT_SPECTROGRAM) {
+ for(size_t i=0; i < len; i++) {
+ *data_re = MICROPY_FLOAT_C_FUN(sqrt)(*data_re * *data_re + *data_im * *data_im);
+ data_re++;
+ data_im++;
+ }
+ }
+ } else { // inverse transform
+ fft_kernel(data_re, data_im, len, -1);
+ // TODO: numpy accepts the norm keyword argument
+ for(size_t i=0; i < len; i++) {
+ *data_re++ /= len;
+ *data_im++ /= len;
+ }
+ }
+ if(type == FFT_SPECTROGRAM) {
+ return MP_OBJ_TO_PTR(out_re);
+ } else {
+ mp_obj_t tuple[2];
+ tuple[0] = out_re;
+ tuple[1] = out_im;
+ return mp_obj_new_tuple(2, tuple);
+ }
+}
+#endif /* ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE */
diff --git a/circuitpython/extmod/ulab/code/numpy/fft/fft_tools.h b/circuitpython/extmod/ulab/code/numpy/fft/fft_tools.h
new file mode 100644
index 0000000..9444232
--- /dev/null
+++ b/circuitpython/extmod/ulab/code/numpy/fft/fft_tools.h
@@ -0,0 +1,28 @@
+/*
+ * This file is part of the micropython-ulab project,
+ *
+ * https://github.com/v923z/micropython-ulab
+ *
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2019-2021 Zoltán Vörös
+*/
+
+#ifndef _FFT_TOOLS_
+#define _FFT_TOOLS_
+
+enum FFT_TYPE {
+ FFT_FFT,
+ FFT_IFFT,
+ FFT_SPECTROGRAM,
+};
+
+#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
+void fft_kernel(mp_float_t *, size_t , int );
+mp_obj_t fft_fft_ifft_spectrogram(mp_obj_t , uint8_t );
+#else
+void fft_kernel(mp_float_t *, mp_float_t *, size_t , int );
+mp_obj_t fft_fft_ifft_spectrogram(size_t , mp_obj_t , mp_obj_t , uint8_t );
+#endif /* ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE */
+
+#endif /* _FFT_TOOLS_ */