diff options
Diffstat (limited to 'circuitpython/extmod/ulab/code/numpy/fft/fft_tools.c')
-rw-r--r-- | circuitpython/extmod/ulab/code/numpy/fft/fft_tools.c | 287 |
1 files changed, 287 insertions, 0 deletions
diff --git a/circuitpython/extmod/ulab/code/numpy/fft/fft_tools.c b/circuitpython/extmod/ulab/code/numpy/fft/fft_tools.c new file mode 100644 index 0000000..8a55927 --- /dev/null +++ b/circuitpython/extmod/ulab/code/numpy/fft/fft_tools.c @@ -0,0 +1,287 @@ +/* + * This file is part of the micropython-ulab project, + * + * https://github.com/v923z/micropython-ulab + * + * The MIT License (MIT) + * + * Copyright (c) 2019-2021 Zoltán Vörös +*/ + +#include <math.h> +#include <string.h> +#include "py/runtime.h" + +#include "../../ndarray.h" +#include "../../ulab_tools.h" +#include "../carray/carray_tools.h" +#include "fft_tools.h" + +#ifndef MP_PI +#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846) +#endif +#ifndef MP_E +#define MP_E MICROPY_FLOAT_CONST(2.71828182845904523536) +#endif + +/* Kernel implementation for the case, when ulab has no complex support + + * The following function takes two arrays, namely, the real and imaginary + * parts of a complex array, and calculates the Fourier transform in place. + * + * The function is basically a modification of four1 from Numerical Recipes, + * has no dependencies beyond micropython itself (for the definition of mp_float_t), + * and can be used independent of ulab. + */ + +#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE +/* Kernel implementation for the complex case. Data are contained in data as + + data[0], data[1], data[2], data[3], .... , data[2n - 2], data[2n-1] + real[0], imag[0], real[1], imag[1], .... , real[n-1], imag[n-1] + + In general + real[i] = data[2i] + imag[i] = data[2i+1] + +*/ +void fft_kernel_complex(mp_float_t *data, size_t n, int isign) { + size_t j, m, mmax, istep; + mp_float_t tempr, tempi; + mp_float_t wtemp, wr, wpr, wpi, wi, theta; + + j = 0; + for(size_t i = 0; i < n; i++) { + if (j > i) { + SWAP(mp_float_t, data[2*i], data[2*j]); + SWAP(mp_float_t, data[2*i+1], data[2*j+1]); + } + m = n >> 1; + while (j >= m && m > 0) { + j -= m; + m >>= 1; + } + j += m; + } + + mmax = 1; + while (n > mmax) { + istep = mmax << 1; + theta = MICROPY_FLOAT_CONST(-2.0)*isign*MP_PI/istep; + wtemp = MICROPY_FLOAT_C_FUN(sin)(MICROPY_FLOAT_CONST(0.5) * theta); + wpr = MICROPY_FLOAT_CONST(-2.0) * wtemp * wtemp; + wpi = MICROPY_FLOAT_C_FUN(sin)(theta); + wr = MICROPY_FLOAT_CONST(1.0); + wi = MICROPY_FLOAT_CONST(0.0); + for(m = 0; m < mmax; m++) { + for(size_t i = m; i < n; i += istep) { + j = i + mmax; + tempr = wr * data[2*j] - wi * data[2*j+1]; + tempi = wr * data[2*j+1] + wi * data[2*j]; + data[2*j] = data[2*i] - tempr; + data[2*j+1] = data[2*i+1] - tempi; + data[2*i] += tempr; + data[2*i+1] += tempi; + } + wtemp = wr; + wr = wr*wpr - wi*wpi + wr; + wi = wi*wpr + wtemp*wpi + wi; + } + mmax = istep; + } +} + +/* + * The following function is a helper interface to the python side. + * It has been factored out from fft.c, so that the same argument parsing + * routine can be called from scipy.signal.spectrogram. + */ +mp_obj_t fft_fft_ifft_spectrogram(mp_obj_t data_in, uint8_t type) { + if(!mp_obj_is_type(data_in, &ulab_ndarray_type)) { + mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only")); + } + ndarray_obj_t *in = MP_OBJ_TO_PTR(data_in); + #if ULAB_MAX_DIMS > 1 + if(in->ndim != 1) { + mp_raise_TypeError(translate("FFT is implemented for linear arrays only")); + } + #endif + size_t len = in->len; + // Check if input is of length of power of 2 + if((len & (len-1)) != 0) { + mp_raise_ValueError(translate("input array length must be power of 2")); + } + + ndarray_obj_t *out = ndarray_new_linear_array(len, NDARRAY_COMPLEX); + mp_float_t *data = (mp_float_t *)out->array; + uint8_t *array = (uint8_t *)in->array; + + if(in->dtype == NDARRAY_COMPLEX) { + uint8_t sz = 2 * sizeof(mp_float_t); + uint8_t *data_ = (uint8_t *)out->array; + for(size_t i = 0; i < len; i++) { + memcpy(data_, array, sz); + array += in->strides[ULAB_MAX_DIMS - 1]; + } + } else { + mp_float_t (*func)(void *) = ndarray_get_float_function(in->dtype); + for(size_t i = 0; i < len; i++) { + // real part; the imaginary part is 0, no need to assign + *data = func(array); + data += 2; + array += in->strides[ULAB_MAX_DIMS - 1]; + } + } + data -= 2 * len; + + if((type == FFT_FFT) || (type == FFT_SPECTROGRAM)) { + fft_kernel_complex(data, len, 1); + if(type == FFT_SPECTROGRAM) { + ndarray_obj_t *spectrum = ndarray_new_linear_array(len, NDARRAY_FLOAT); + mp_float_t *sarray = (mp_float_t *)spectrum->array; + for(size_t i = 0; i < len; i++) { + *sarray++ = MICROPY_FLOAT_C_FUN(sqrt)(data[0] * data[0] + data[1] * data[1]); + data += 2; + } + m_del(mp_float_t, data, 2 * len); + return MP_OBJ_FROM_PTR(spectrum); + } + } else { // inverse transform + fft_kernel_complex(data, len, -1); + // TODO: numpy accepts the norm keyword argument + for(size_t i = 0; i < len; i++) { + *data++ /= len; + } + } + return MP_OBJ_FROM_PTR(out); +} +#else /* ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE */ +void fft_kernel(mp_float_t *real, mp_float_t *imag, size_t n, int isign) { + size_t j, m, mmax, istep; + mp_float_t tempr, tempi; + mp_float_t wtemp, wr, wpr, wpi, wi, theta; + + j = 0; + for(size_t i = 0; i < n; i++) { + if (j > i) { + SWAP(mp_float_t, real[i], real[j]); + SWAP(mp_float_t, imag[i], imag[j]); + } + m = n >> 1; + while (j >= m && m > 0) { + j -= m; + m >>= 1; + } + j += m; + } + + mmax = 1; + while (n > mmax) { + istep = mmax << 1; + theta = MICROPY_FLOAT_CONST(-2.0)*isign*MP_PI/istep; + wtemp = MICROPY_FLOAT_C_FUN(sin)(MICROPY_FLOAT_CONST(0.5) * theta); + wpr = MICROPY_FLOAT_CONST(-2.0) * wtemp * wtemp; + wpi = MICROPY_FLOAT_C_FUN(sin)(theta); + wr = MICROPY_FLOAT_CONST(1.0); + wi = MICROPY_FLOAT_CONST(0.0); + for(m = 0; m < mmax; m++) { + for(size_t i = m; i < n; i += istep) { + j = i + mmax; + tempr = wr * real[j] - wi * imag[j]; + tempi = wr * imag[j] + wi * real[j]; + real[j] = real[i] - tempr; + imag[j] = imag[i] - tempi; + real[i] += tempr; + imag[i] += tempi; + } + wtemp = wr; + wr = wr*wpr - wi*wpi + wr; + wi = wi*wpr + wtemp*wpi + wi; + } + mmax = istep; + } +} + +mp_obj_t fft_fft_ifft_spectrogram(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im, uint8_t type) { + if(!mp_obj_is_type(arg_re, &ulab_ndarray_type)) { + mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only")); + } + if(n_args == 2) { + if(!mp_obj_is_type(arg_im, &ulab_ndarray_type)) { + mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only")); + } + } + ndarray_obj_t *re = MP_OBJ_TO_PTR(arg_re); + #if ULAB_MAX_DIMS > 1 + if(re->ndim != 1) { + COMPLEX_DTYPE_NOT_IMPLEMENTED(re->dtype) + mp_raise_TypeError(translate("FFT is implemented for linear arrays only")); + } + #endif + size_t len = re->len; + // Check if input is of length of power of 2 + if((len & (len-1)) != 0) { + mp_raise_ValueError(translate("input array length must be power of 2")); + } + + ndarray_obj_t *out_re = ndarray_new_linear_array(len, NDARRAY_FLOAT); + mp_float_t *data_re = (mp_float_t *)out_re->array; + + uint8_t *array = (uint8_t *)re->array; + mp_float_t (*func)(void *) = ndarray_get_float_function(re->dtype); + + for(size_t i=0; i < len; i++) { + *data_re++ = func(array); + array += re->strides[ULAB_MAX_DIMS - 1]; + } + data_re -= len; + ndarray_obj_t *out_im = ndarray_new_linear_array(len, NDARRAY_FLOAT); + mp_float_t *data_im = (mp_float_t *)out_im->array; + + if(n_args == 2) { + ndarray_obj_t *im = MP_OBJ_TO_PTR(arg_im); + #if ULAB_MAX_DIMS > 1 + if(im->ndim != 1) { + COMPLEX_DTYPE_NOT_IMPLEMENTED(im->dtype) + mp_raise_TypeError(translate("FFT is implemented for linear arrays only")); + } + #endif + if (re->len != im->len) { + mp_raise_ValueError(translate("real and imaginary parts must be of equal length")); + } + array = (uint8_t *)im->array; + func = ndarray_get_float_function(im->dtype); + for(size_t i=0; i < len; i++) { + *data_im++ = func(array); + array += im->strides[ULAB_MAX_DIMS - 1]; + } + data_im -= len; + } + + if((type == FFT_FFT) || (type == FFT_SPECTROGRAM)) { + fft_kernel(data_re, data_im, len, 1); + if(type == FFT_SPECTROGRAM) { + for(size_t i=0; i < len; i++) { + *data_re = MICROPY_FLOAT_C_FUN(sqrt)(*data_re * *data_re + *data_im * *data_im); + data_re++; + data_im++; + } + } + } else { // inverse transform + fft_kernel(data_re, data_im, len, -1); + // TODO: numpy accepts the norm keyword argument + for(size_t i=0; i < len; i++) { + *data_re++ /= len; + *data_im++ /= len; + } + } + if(type == FFT_SPECTROGRAM) { + return MP_OBJ_TO_PTR(out_re); + } else { + mp_obj_t tuple[2]; + tuple[0] = out_re; + tuple[1] = out_im; + return mp_obj_new_tuple(2, tuple); + } +} +#endif /* ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE */ |