aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/ports/raspberrypi/audio_dma.c
blob: 7fef1a52e00bc7edc5cc7d16570f6fc2d52ba059 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2021 Scott Shawcroft for Adafruit Industries
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "audio_dma.h"

#include "shared-bindings/audiocore/RawSample.h"
#include "shared-bindings/audiocore/WaveFile.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "bindings/rp2pio/StateMachine.h"
#include "supervisor/background_callback.h"

#include "py/mpstate.h"
#include "py/runtime.h"

#include "src/rp2_common/hardware_irq/include/hardware/irq.h"

#if CIRCUITPY_AUDIOPWMIO || CIRCUITPY_AUDIOBUSIO

void audio_dma_reset(void) {
    for (size_t channel = 0; channel < NUM_DMA_CHANNELS; channel++) {
        if (MP_STATE_PORT(playing_audio)[channel] == NULL) {
            continue;
        }

        audio_dma_stop(MP_STATE_PORT(playing_audio)[channel]);
    }
}


STATIC size_t audio_dma_convert_samples(audio_dma_t *dma, uint8_t *input, uint32_t input_length, uint8_t *output, uint32_t output_length) {
    #pragma GCC diagnostic push
    #pragma GCC diagnostic ignored "-Wcast-align"

    uint32_t output_length_used = input_length / dma->sample_spacing;

    if (output_length_used > output_length) {
        mp_raise_RuntimeError(translate("Internal audio buffer too small"));
    }

    uint32_t out_i = 0;
    if (dma->sample_resolution <= 8 && dma->output_resolution > 8) {
        // reading bytes, writing 16-bit words, so output buffer will be bigger.

        output_length_used = output_length * 2;
        if (output_length_used > output_length) {
            mp_raise_RuntimeError(translate("Internal audio buffer too small"));
        }

        size_t shift = dma->output_resolution - dma->sample_resolution;

        for (uint32_t i = 0; i < input_length; i += dma->sample_spacing) {
            if (dma->signed_to_unsigned) {
                ((uint16_t *)output)[out_i] = ((uint16_t)((int8_t *)input)[i] + 0x80) << shift;
            } else if (dma->unsigned_to_signed) {
                ((int16_t *)output)[out_i] = ((int16_t)((uint8_t *)input)[i] - 0x80) << shift;
            } else {
                ((uint16_t *)output)[out_i] = ((uint16_t)((uint8_t *)input)[i]) << shift;
            }
            out_i += 1;
        }
    } else if (dma->sample_resolution <= 8 && dma->output_resolution <= 8) {
        for (uint32_t i = 0; i < input_length; i += dma->sample_spacing) {
            if (dma->signed_to_unsigned) {
                ((uint8_t *)output)[out_i] = ((int8_t *)input)[i] + 0x80;
            } else if (dma->unsigned_to_signed) {
                ((int8_t *)output)[out_i] = ((uint8_t *)input)[i] - 0x80;
            } else {
                ((uint8_t *)output)[out_i] = ((uint8_t *)input)[i];
            }
            out_i += 1;
        }
    } else if (dma->sample_resolution > 8 && dma->output_resolution > 8) {
        size_t shift = 16 - dma->output_resolution;
        for (uint32_t i = 0; i < input_length / 2; i += dma->sample_spacing) {
            if (dma->signed_to_unsigned) {
                ((uint16_t *)output)[out_i] = ((int16_t *)input)[i] + 0x8000;
            } else if (dma->unsigned_to_signed) {
                ((int16_t *)output)[out_i] = ((uint16_t *)input)[i] - 0x8000;
            } else {
                ((uint16_t *)output)[out_i] = ((uint16_t *)input)[i];
            }
            if (dma->output_resolution < 16) {
                if (dma->output_signed) {
                    ((int16_t *)output)[out_i] = ((int16_t *)output)[out_i] >> shift;
                } else {
                    ((uint16_t *)output)[out_i] = ((uint16_t *)output)[out_i] >> shift;
                }
            }
            out_i += 1;
        }
    } else {
        // (dma->sample_resolution > 8 && dma->output_resolution <= 8)
        // Not currently used, but might be in the future.
        mp_raise_RuntimeError(translate("Audio conversion not implemented"));
    }
    #pragma GCC diagnostic pop
    return output_length_used;
}

// buffer_idx is 0 or 1.
STATIC void audio_dma_load_next_block(audio_dma_t *dma, size_t buffer_idx) {
    size_t dma_channel = dma->channel[buffer_idx];

    audioio_get_buffer_result_t get_buffer_result;
    uint8_t *sample_buffer;
    uint32_t sample_buffer_length;
    get_buffer_result = audiosample_get_buffer(dma->sample,
        dma->single_channel_output, dma->audio_channel, &sample_buffer, &sample_buffer_length);

    if (get_buffer_result == GET_BUFFER_ERROR) {
        audio_dma_stop(dma);
        return;
    }

    // Convert the sample format resolution and signedness, as necessary.
    // The input sample buffer is what was read from a file, Mixer, or a raw sample buffer.
    // The output buffer is one of the DMA buffers (passed in).

    size_t output_length_used = audio_dma_convert_samples(
        dma, sample_buffer, sample_buffer_length,
        dma->buffer[buffer_idx], dma->buffer_length[buffer_idx]);

    dma_channel_set_read_addr(dma_channel, dma->buffer[buffer_idx], false /* trigger */);
    dma_channel_set_trans_count(dma_channel, output_length_used / dma->output_size, false /* trigger */);

    if (get_buffer_result == GET_BUFFER_DONE) {
        if (dma->loop) {
            audiosample_reset_buffer(dma->sample, dma->single_channel_output, dma->audio_channel);
        } else {
            // Set channel trigger to ourselves so we don't keep going.
            dma_channel_hw_t *c = &dma_hw->ch[dma_channel];
            c->al1_ctrl =
                (c->al1_ctrl & ~DMA_CH0_CTRL_TRIG_CHAIN_TO_BITS) |
                (dma_channel << DMA_CH0_CTRL_TRIG_CHAIN_TO_LSB);

            if (output_length_used == 0 &&
                !dma_channel_is_busy(dma->channel[0]) &&
                !dma_channel_is_busy(dma->channel[1])) {
                // No data has been read, and both DMA channels have now finished, so it's safe to stop.
                audio_dma_stop(dma);
                dma->playing_in_progress = false;
            }
        }
    }
}

// Playback should be shutdown before calling this.
audio_dma_result audio_dma_setup_playback(
    audio_dma_t *dma,
    mp_obj_t sample,
    bool loop,
    bool single_channel_output,
    uint8_t audio_channel,
    bool output_signed,
    uint8_t output_resolution,
    uint32_t output_register_address,
    uint8_t dma_trigger_source) {

    // Use two DMA channels to play because the DMA can't wrap to itself without the
    // buffer being power of two aligned.
    int dma_channel_0_maybe = dma_claim_unused_channel(false);
    if (dma_channel_0_maybe < 0) {
        return AUDIO_DMA_DMA_BUSY;
    }

    int dma_channel_1_maybe = dma_claim_unused_channel(false);
    if (dma_channel_1_maybe < 0) {
        dma_channel_unclaim((uint)dma_channel_0_maybe);
        return AUDIO_DMA_DMA_BUSY;
    }

    dma->channel[0] = (uint8_t)dma_channel_0_maybe;
    dma->channel[1] = (uint8_t)dma_channel_1_maybe;

    dma->sample = sample;
    dma->loop = loop;
    dma->single_channel_output = single_channel_output;
    dma->audio_channel = audio_channel;
    dma->signed_to_unsigned = false;
    dma->unsigned_to_signed = false;
    dma->output_signed = output_signed;
    dma->sample_spacing = 1;
    dma->output_resolution = output_resolution;
    dma->sample_resolution = audiosample_bits_per_sample(sample);
    dma->output_register_address = output_register_address;

    audiosample_reset_buffer(sample, single_channel_output, audio_channel);


    bool single_buffer;  // True if data fits in one single buffer.

    bool samples_signed;
    uint32_t max_buffer_length;
    audiosample_get_buffer_structure(sample, single_channel_output, &single_buffer, &samples_signed,
        &max_buffer_length, &dma->sample_spacing);

    // Check to see if we have to scale the resolution up.
    if (dma->sample_resolution <= 8 && dma->output_resolution > 8) {
        max_buffer_length *= 2;
    }
    if (output_signed != samples_signed ||
        dma->sample_spacing > 1 ||
        (dma->sample_resolution != dma->output_resolution)) {
        max_buffer_length /= dma->sample_spacing;
    }

    dma->buffer[0] = (uint8_t *)m_realloc(dma->buffer[0], max_buffer_length);
    dma->buffer_length[0] = max_buffer_length;
    if (dma->buffer[0] == NULL) {
        return AUDIO_DMA_MEMORY_ERROR;
    }

    if (!single_buffer) {
        dma->buffer[1] = (uint8_t *)m_realloc(dma->buffer[1], max_buffer_length);
        dma->buffer_length[1] = max_buffer_length;
        if (dma->buffer[1] == NULL) {
            return AUDIO_DMA_MEMORY_ERROR;
        }
    }

    dma->signed_to_unsigned = !output_signed && samples_signed;
    dma->unsigned_to_signed = output_signed && !samples_signed;

    if (output_resolution > 8) {
        dma->output_size = 2;
    } else {
        dma->output_size = 1;
    }
    // Transfer both channels at once.
    if (!single_channel_output && audiosample_channel_count(sample) == 2) {
        dma->output_size *= 2;
    }
    enum dma_channel_transfer_size dma_size = DMA_SIZE_8;
    if (dma->output_size == 2) {
        dma_size = DMA_SIZE_16;
    } else if (dma->output_size == 4) {
        dma_size = DMA_SIZE_32;
    }

    for (size_t i = 0; i < 2; i++) {
        dma_channel_config c = dma_channel_get_default_config(dma->channel[i]);
        channel_config_set_transfer_data_size(&c, dma_size);
        channel_config_set_dreq(&c, dma_trigger_source);
        channel_config_set_read_increment(&c, true);
        channel_config_set_write_increment(&c, false);

        // Chain to the other channel by default.
        channel_config_set_chain_to(&c, dma->channel[(i + 1) % 2]);
        dma_channel_set_config(dma->channel[i], &c, false /* trigger */);

        dma_channel_set_write_addr(dma->channel[i], (void *)output_register_address, false /* trigger */);
    }

    // We keep the audio_dma_t for internal use and the sample as a root pointer because it
    // contains the audiodma structure.
    MP_STATE_PORT(playing_audio)[dma->channel[0]] = dma;
    MP_STATE_PORT(playing_audio)[dma->channel[1]] = dma;

    // Load the first two blocks up front.
    audio_dma_load_next_block(dma, 0);
    if (!single_buffer) {
        audio_dma_load_next_block(dma, 1);
    }

    // Special case the DMA for a single buffer. It's commonly used for a single wave length of sound
    // and may be short. Therefore, we use DMA chaining to loop quickly without involving interrupts.
    // On the RP2040 we chain by having a second DMA writing to the config registers of the first.
    // Read and write addresses change with DMA so we need to reset the read address back to the
    // start of the sample.
    if (single_buffer) {
        dma_channel_config c = dma_channel_get_default_config(dma->channel[1]);
        channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
        channel_config_set_dreq(&c, 0x3f); // dma as fast as possible
        channel_config_set_read_increment(&c, false);
        channel_config_set_write_increment(&c, false);
        channel_config_set_chain_to(&c, dma->channel[1]); // Chain to ourselves so we stop.
        dma_channel_configure(dma->channel[1], &c,
            &dma_hw->ch[dma->channel[0]].al3_read_addr_trig, // write address
            &dma->buffer[0], // read address
            1, // transaction count
            false); // trigger
    } else {
        // Enable our DMA channels on DMA_IRQ_0 to the CPU. This will wake us up when
        // we're WFI.
        dma_hw->inte0 |= (1 << dma->channel[0]) | (1 << dma->channel[1]);
        irq_set_mask_enabled(1 << DMA_IRQ_0, true);
    }

    dma->playing_in_progress = true;
    dma_channel_start(dma->channel[0]);

    return AUDIO_DMA_OK;
}

void audio_dma_stop(audio_dma_t *dma) {
    // Disable our interrupts.
    uint32_t channel_mask = 0;
    if (dma->channel[0] < NUM_DMA_CHANNELS) {
        channel_mask |= 1 << dma->channel[0];
    }
    if (dma->channel[1] < NUM_DMA_CHANNELS) {
        channel_mask |= 1 << dma->channel[1];
    }
    dma_hw->inte0 &= ~channel_mask;
    if (!dma_hw->inte0) {
        irq_set_mask_enabled(1 << DMA_IRQ_0, false);
    }

    // Run any remaining audio tasks because we remove ourselves from
    // playing_audio.
    RUN_BACKGROUND_TASKS;

    for (size_t i = 0; i < 2; i++) {
        size_t channel = dma->channel[i];
        if (channel == NUM_DMA_CHANNELS) {
            // Channel not in use.
            continue;
        }

        dma_channel_config c = dma_channel_get_default_config(dma->channel[i]);
        channel_config_set_enable(&c, false);
        dma_channel_set_config(channel, &c, false /* trigger */);

        if (dma_channel_is_busy(channel)) {
            dma_channel_abort(channel);
        }

        dma_channel_set_read_addr(channel, NULL, false /* trigger */);
        dma_channel_set_write_addr(channel, NULL, false /* trigger */);
        dma_channel_set_trans_count(channel, 0, false /* trigger */);
        dma_channel_unclaim(channel);
        MP_STATE_PORT(playing_audio)[channel] = NULL;
        dma->channel[i] = NUM_DMA_CHANNELS;
    }
    dma->playing_in_progress = false;

    // Hold onto our buffers.
}

// To pause we simply stop the DMA. It is the responsibility of the output peripheral
// to hold the previous value.
void audio_dma_pause(audio_dma_t *dma) {
    dma_hw->ch[dma->channel[0]].al1_ctrl &= ~DMA_CH0_CTRL_TRIG_EN_BITS;
    dma_hw->ch[dma->channel[1]].al1_ctrl &= ~DMA_CH1_CTRL_TRIG_EN_BITS;
}

void audio_dma_resume(audio_dma_t *dma) {
    // Always re-enable the non-busy channel first so it's ready to continue when the busy channel
    // finishes and chains to it. (An interrupt could make the time between enables long.)
    if (dma_channel_is_busy(dma->channel[0])) {
        dma_hw->ch[dma->channel[1]].al1_ctrl |= DMA_CH1_CTRL_TRIG_EN_BITS;
        dma_hw->ch[dma->channel[0]].al1_ctrl |= DMA_CH0_CTRL_TRIG_EN_BITS;
    } else {
        dma_hw->ch[dma->channel[0]].al1_ctrl |= DMA_CH0_CTRL_TRIG_EN_BITS;
        dma_hw->ch[dma->channel[1]].al1_ctrl |= DMA_CH1_CTRL_TRIG_EN_BITS;
    }
}

bool audio_dma_get_paused(audio_dma_t *dma) {
    if (dma->channel[0] >= NUM_DMA_CHANNELS) {
        return false;
    }
    uint32_t control = dma_hw->ch[dma->channel[0]].ctrl_trig;

    return (control & DMA_CH0_CTRL_TRIG_EN_BITS) == 0;
}

void audio_dma_init(audio_dma_t *dma) {
    dma->buffer[0] = NULL;
    dma->buffer[1] = NULL;

    dma->channel[0] = NUM_DMA_CHANNELS;
    dma->channel[1] = NUM_DMA_CHANNELS;
}

void audio_dma_deinit(audio_dma_t *dma) {
    m_free(dma->buffer[0]);
    dma->buffer[0] = NULL;

    m_free(dma->buffer[1]);
    dma->buffer[1] = NULL;
}

bool audio_dma_get_playing(audio_dma_t *dma) {
    if (dma->channel[0] == NUM_DMA_CHANNELS) {
        return false;
    }
    return dma->playing_in_progress;
}

// WARN(tannewt): DO NOT print from here, or anything it calls. Printing calls
// background tasks such as this and causes a stack overflow.
// NOTE(dhalbert): I successfully printed from here while debugging.
// So it's possible, but be careful.
STATIC void dma_callback_fun(void *arg) {
    audio_dma_t *dma = arg;
    if (dma == NULL) {
        return;
    }

    common_hal_mcu_disable_interrupts();
    uint32_t channels_to_load_mask = dma->channels_to_load_mask;
    dma->channels_to_load_mask = 0;
    common_hal_mcu_enable_interrupts();

    // Load the blocks for the requested channels.
    uint32_t channel = 0;
    while (channels_to_load_mask) {
        if (channels_to_load_mask & 1) {
            if (dma->channel[0] == channel) {
                audio_dma_load_next_block(dma, 0);
            }
            if (dma->channel[1] == channel) {
                audio_dma_load_next_block(dma, 1);
            }
        }
        channels_to_load_mask >>= 1;
        channel++;
    }
}

void isr_dma_0(void) {
    for (size_t i = 0; i < NUM_DMA_CHANNELS; i++) {
        uint32_t mask = 1 << i;
        if ((dma_hw->intr & mask) == 0) {
            continue;
        }
        // acknowledge interrupt early. Doing so late means that you could lose an
        // interrupt if the buffer is very small and the DMA operation
        // completed by the time callback_add() / dma_complete() returned. This
        // affected PIO continuous write more than audio.
        dma_hw->ints0 = mask;
        if (MP_STATE_PORT(playing_audio)[i] != NULL) {
            audio_dma_t *dma = MP_STATE_PORT(playing_audio)[i];
            // Record all channels whose DMA has completed; they need loading.
            dma->channels_to_load_mask |= mask;
            background_callback_add(&dma->callback, dma_callback_fun, (void *)dma);
        }
        if (MP_STATE_PORT(background_pio)[i] != NULL) {
            rp2pio_statemachine_obj_t *pio = MP_STATE_PORT(background_pio)[i];
            rp2pio_statemachine_dma_complete(pio, i);
        }
    }
}

#endif