aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/lib/mp3/src/trigtabs.c
blob: d02a0277f2475b3b32f7f15c018f7cca6023a258 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/* ***** BEGIN LICENSE BLOCK ***** 
 * Version: RCSL 1.0/RPSL 1.0 
 *  
 * Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved. 
 *      
 * The contents of this file, and the files included with this file, are 
 * subject to the current version of the RealNetworks Public Source License 
 * Version 1.0 (the "RPSL") available at 
 * http://www.helixcommunity.org/content/rpsl unless you have licensed 
 * the file under the RealNetworks Community Source License Version 1.0 
 * (the "RCSL") available at http://www.helixcommunity.org/content/rcsl, 
 * in which case the RCSL will apply. You may also obtain the license terms 
 * directly from RealNetworks.  You may not use this file except in 
 * compliance with the RPSL or, if you have a valid RCSL with RealNetworks 
 * applicable to this file, the RCSL.  Please see the applicable RPSL or 
 * RCSL for the rights, obligations and limitations governing use of the 
 * contents of the file.  
 *  
 * This file is part of the Helix DNA Technology. RealNetworks is the 
 * developer of the Original Code and owns the copyrights in the portions 
 * it created. 
 *  
 * This file, and the files included with this file, is distributed and made 
 * available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER 
 * EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES, 
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS 
 * FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. 
 * 
 * Technology Compatibility Kit Test Suite(s) Location: 
 *    http://www.helixcommunity.org/content/tck 
 * 
 * Contributor(s): 
 *  
 * ***** END LICENSE BLOCK ***** */ 

/**************************************************************************************
 * Fixed-point MP3 decoder
 * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
 * June 2003
 *
 * trigtabs.c - global ROM tables for pre-calculated trig coefficients
 **************************************************************************************/

// constants in RAM are not significantly faster

#include "coder.h"
#include <stdint.h>

/* post-IMDCT window, win[blockType][i]
 * format = Q31
 * Fused sin window with final stage of IMDCT
 * includes 1/sqrt(2) scaling, since we scale by sqrt(2) in dequant in order
 *   for fast IMDCT36 to be usable
 * 
 * 	for(i=0;i<9;i++)   win[0][i] = sin(pi/36 *(i+0.5));
 * 	for(i=9;i<36;i++)  win[0][i] = -sin(pi/36 *(i+0.5));
 * 
 * 	for(i=0;i<9;i++)   win[1][i] = sin(pi/36 *(i+0.5));
 * 	for(i=9;i<18;i++)  win[1][i] = -sin(pi/36 *(i+0.5));
 * 	for(i=18;i<24;i++) win[1][i] = -1;
 * 	for(i=24;i<30;i++) win[1][i] = -sin(pi/12 *(i+0.5-18));
 * 	for(i=30;i<36;i++) win[1][i] = 0;
 * 
 * 	for(i=0;i<6;i++)   win[3][i] = 0;
 * 	for(i=6;i<9;i++)   win[3][i] = sin(pi/12 *(i+0.5-6));
 * 	for(i=9;i<12;i++)  win[3][i] = -sin(pi/12 *(i+0.5-6));
 * 	for(i=12;i<18;i++) win[3][i] = -1;
 * 	for(i=18;i<36;i++) win[3][i] = -sin(pi/36*(i+0.5));
 * 
 * 	for(i=0;i<3;i++)   win[2][i] = sin(pi/12*(i+0.5));
 * 	for(i=3;i<12;i++)  win[2][i] = -sin(pi/12*(i+0.5));
 * 	for(i=12;i<36;i++) win[2][i] = 0;
 * 
 * 	for (i = 0; i < 4; i++) {
 * 		if (i == 2) {
 * 			win[i][8]  *= cos(pi/12 * (0+0.5));
 * 			win[i][9]  *= cos(pi/12 * (0+0.5));
 * 			win[i][7]  *= cos(pi/12 * (1+0.5));
 * 			win[i][10] *= cos(pi/12 * (1+0.5));
 * 			win[i][6]  *= cos(pi/12 * (2+0.5));
 * 			win[i][11] *= cos(pi/12 * (2+0.5));
 * 			win[i][0]  *= cos(pi/12 * (3+0.5));
 * 			win[i][5]  *= cos(pi/12 * (3+0.5));
 * 			win[i][1]  *= cos(pi/12 * (4+0.5));
 * 			win[i][4]  *= cos(pi/12 * (4+0.5));
 * 			win[i][2]  *= cos(pi/12 * (5+0.5));
 * 			win[i][3]  *= cos(pi/12 * (5+0.5));
 * 		} else {
 * 			for (j = 0; j < 9; j++) {
 * 				win[i][8-j] *= cos(pi/36 * (17-j+0.5));
 * 				win[i][9+j] *= cos(pi/36 * (17-j+0.5));
 * 			}
 * 			for (j = 0; j < 9; j++) {
 * 				win[i][18+8-j] *= cos(pi/36 * (j+0.5));
 * 				win[i][18+9+j] *= cos(pi/36 * (j+0.5));
 * 			}
 * 		}
 * 	}
 *	for (i = 0; i < 4; i++)
 *		for (j = 0; j < 36; j++)
 * 			win[i][j] *= 1.0 / sqrt(2);
 */
const int imdctWin[4][36] = {
	{
	(int32_t)0x02aace8b, (int32_t)0x07311c28, (int32_t)0x0a868fec, (int32_t)0x0c913b52, (int32_t)0x0d413ccd, (int32_t)0x0c913b52, (int32_t)0x0a868fec, (int32_t)0x07311c28, 
	(int32_t)0x02aace8b, (int32_t)0xfd16d8dd, (int32_t)0xf6a09e66, (int32_t)0xef7a6275, (int32_t)0xe7dbc161, (int32_t)0xe0000000, (int32_t)0xd8243e9f, (int32_t)0xd0859d8b, 
	(int32_t)0xc95f619a, (int32_t)0xc2e92723, (int32_t)0xbd553175, (int32_t)0xb8cee3d8, (int32_t)0xb5797014, (int32_t)0xb36ec4ae, (int32_t)0xb2bec333, (int32_t)0xb36ec4ae, 
	(int32_t)0xb5797014, (int32_t)0xb8cee3d8, (int32_t)0xbd553175, (int32_t)0xc2e92723, (int32_t)0xc95f619a, (int32_t)0xd0859d8b, (int32_t)0xd8243e9f, (int32_t)0xe0000000, 
	(int32_t)0xe7dbc161, (int32_t)0xef7a6275, (int32_t)0xf6a09e66, (int32_t)0xfd16d8dd, 
	},
	{
	(int32_t)0x02aace8b, (int32_t)0x07311c28, (int32_t)0x0a868fec, (int32_t)0x0c913b52, (int32_t)0x0d413ccd, (int32_t)0x0c913b52, (int32_t)0x0a868fec, (int32_t)0x07311c28, 
	(int32_t)0x02aace8b, (int32_t)0xfd16d8dd, (int32_t)0xf6a09e66, (int32_t)0xef7a6275, (int32_t)0xe7dbc161, (int32_t)0xe0000000, (int32_t)0xd8243e9f, (int32_t)0xd0859d8b, 
	(int32_t)0xc95f619a, (int32_t)0xc2e92723, (int32_t)0xbd44ef14, (int32_t)0xb831a052, (int32_t)0xb3aa3837, (int32_t)0xafb789a4, (int32_t)0xac6145bb, (int32_t)0xa9adecdc, 
	(int32_t)0xa864491f, (int32_t)0xad1868f0, (int32_t)0xb8431f49, (int32_t)0xc8f42236, (int32_t)0xdda8e6b1, (int32_t)0xf47755dc, (int32_t)0x00000000, (int32_t)0x00000000, 
	(int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, 
	},
	{
	(int32_t)0x07311c28, (int32_t)0x0d413ccd, (int32_t)0x07311c28, (int32_t)0xf6a09e66, (int32_t)0xe0000000, (int32_t)0xc95f619a, (int32_t)0xb8cee3d8, (int32_t)0xb2bec333, 
	(int32_t)0xb8cee3d8, (int32_t)0xc95f619a, (int32_t)0xe0000000, (int32_t)0xf6a09e66, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, 
	(int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, 
	(int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, 
	(int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, 
	},
	{
	(int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x00000000, (int32_t)0x028e9709, (int32_t)0x04855ec0, 
	(int32_t)0x026743a1, (int32_t)0xfcde2c10, (int32_t)0xf515dc82, (int32_t)0xec93e53b, (int32_t)0xe4c880f8, (int32_t)0xdd5d0b08, (int32_t)0xd63510b7, (int32_t)0xcf5e834a, 
	(int32_t)0xc8e6b562, (int32_t)0xc2da4105, (int32_t)0xbd553175, (int32_t)0xb8cee3d8, (int32_t)0xb5797014, (int32_t)0xb36ec4ae, (int32_t)0xb2bec333, (int32_t)0xb36ec4ae, 
	(int32_t)0xb5797014, (int32_t)0xb8cee3d8, (int32_t)0xbd553175, (int32_t)0xc2e92723, (int32_t)0xc95f619a, (int32_t)0xd0859d8b, (int32_t)0xd8243e9f, (int32_t)0xe0000000, 
	(int32_t)0xe7dbc161, (int32_t)0xef7a6275, (int32_t)0xf6a09e66, (int32_t)0xfd16d8dd, 
	},
};

/* indexing = [mid-side off/on][intensity scale factor]
 * format = Q30, range = [0.0, 1.414]
 *
 * mid-side off: 
 *   ISFMpeg1[0][i] = tan(i*pi/12) / [1 + tan(i*pi/12)]  (left scalefactor)
 *                  =      1       / [1 + tan(i*pi/12)]  (right scalefactor)
 *
 * mid-side on: 
 *   ISFMpeg1[1][i] = sqrt(2) * ISFMpeg1[0][i]
 *
 * output L = ISFMpeg1[midSide][isf][0] * input L
 * output R = ISFMpeg1[midSide][isf][1] * input L
 *
 * obviously left scalefactor + right scalefactor = 1 (m-s off) or sqrt(2) (m-s on)
 *   so just store left and calculate right as 1 - left 
 *  (can derive as right = ISFMpeg1[x][6] - left)
 *
 * if mid-side enabled, multiply joint stereo scale factors by sqrt(2)
 *   - we scaled whole spectrum by 1/sqrt(2) in Dequant for the M+S/sqrt(2) in MidSideProc
 *   - but the joint stereo part of the spectrum doesn't need this, so we have to undo it
 *
 * if scale factor is and illegal intensity position, this becomes a passthrough
 *   - gain = [1, 0] if mid-side off, since L is coded directly and R = 0 in this region
 *   - gain = [1, 1] if mid-side on, since L = (M+S)/sqrt(2), R = (M-S)/sqrt(2)
 *     - and since S = 0 in the joint stereo region (above NZB right) then L = R = M * 1.0
 */
const int ISFMpeg1[2][7] = {
	{(int32_t)0x00000000, (int32_t)0x0d8658ba, (int32_t)0x176cf5d0, (int32_t)0x20000000, (int32_t)0x28930a2f, (int32_t)0x3279a745, (int32_t)0x40000000},
	{(int32_t)0x00000000, (int32_t)0x13207f5c, (int32_t)0x2120fb83, (int32_t)0x2d413ccc, (int32_t)0x39617e16, (int32_t)0x4761fa3d, (int32_t)0x5a827999}
};

/* indexing = [intensity scale on/off][mid-side off/on][intensity scale factor]
 * format = Q30, range = [0.0, 1.414]
 *
 * if (isf == 0)                 kl = 1.0             kr = 1.0
 * else if (isf & (int32_t)0x01 == (int32_t)0x01)  kl = i0^((isf+1)/2), kr = 1.0
 * else if (isf & (int32_t)0x01 == (int32_t)0x00)  kl = 1.0,            kr = i0^(isf/2)
 *
 * if (intensityScale == 1)      i0 = 1/sqrt(2)       = (int32_t)0x2d413ccc (Q30)
 * else                          i0 = 1/sqrt(sqrt(2)) = (int32_t)0x35d13f32 (Q30)
 *
 * see comments for ISFMpeg1 (just above) regarding scaling, sqrt(2), etc.
 *
 * compress the MPEG2 table using the obvious identities above...
 * for isf = [0, 1, 2, ... 30], let sf = table[(isf+1) >> 1] 
 *   - if isf odd,  L = sf*L,     R = tab[0]*R
 *   - if isf even, L = tab[0]*L, R = sf*R
 */
const int ISFMpeg2[2][2][16] = {
{
	{
		/* intensityScale off, mid-side off */
		(int32_t)0x40000000, (int32_t)0x35d13f32, (int32_t)0x2d413ccc, (int32_t)0x260dfc14, (int32_t)0x1fffffff, (int32_t)0x1ae89f99, (int32_t)0x16a09e66, (int32_t)0x1306fe0a, 
		(int32_t)0x0fffffff, (int32_t)0x0d744fcc, (int32_t)0x0b504f33, (int32_t)0x09837f05, (int32_t)0x07ffffff, (int32_t)0x06ba27e6, (int32_t)0x05a82799, (int32_t)0x04c1bf82,
	},
	{
		/* intensityScale off, mid-side on */
		(int32_t)0x5a827999, (int32_t)0x4c1bf827, (int32_t)0x3fffffff, (int32_t)0x35d13f32, (int32_t)0x2d413ccc, (int32_t)0x260dfc13, (int32_t)0x1fffffff, (int32_t)0x1ae89f99, 
		(int32_t)0x16a09e66, (int32_t)0x1306fe09, (int32_t)0x0fffffff, (int32_t)0x0d744fcc, (int32_t)0x0b504f33, (int32_t)0x09837f04, (int32_t)0x07ffffff, (int32_t)0x06ba27e6, 
	},
},
{
	{
		/* intensityScale on, mid-side off */
		(int32_t)0x40000000, (int32_t)0x2d413ccc, (int32_t)0x20000000, (int32_t)0x16a09e66, (int32_t)0x10000000, (int32_t)0x0b504f33, (int32_t)0x08000000, (int32_t)0x05a82799, 
		(int32_t)0x04000000, (int32_t)0x02d413cc, (int32_t)0x02000000, (int32_t)0x016a09e6, (int32_t)0x01000000, (int32_t)0x00b504f3, (int32_t)0x00800000, (int32_t)0x005a8279, 
	},
		/* intensityScale on, mid-side on */
	{
		(int32_t)0x5a827999, (int32_t)0x3fffffff, (int32_t)0x2d413ccc, (int32_t)0x1fffffff, (int32_t)0x16a09e66, (int32_t)0x0fffffff, (int32_t)0x0b504f33, (int32_t)0x07ffffff, 
		(int32_t)0x05a82799, (int32_t)0x03ffffff, (int32_t)0x02d413cc, (int32_t)0x01ffffff, (int32_t)0x016a09e6, (int32_t)0x00ffffff, (int32_t)0x00b504f3, (int32_t)0x007fffff, 
	}
}
};

/* indexing = [intensity scale on/off][left/right]
 * format = Q30, range = [0.0, 1.414]
 *
 * illegal intensity position scalefactors (see comments on ISFMpeg1)
 */
const int ISFIIP[2][2] = {
	{(int32_t)0x40000000, (int32_t)0x00000000}, /* mid-side off */
	{(int32_t)0x40000000, (int32_t)0x40000000}, /* mid-side on */
};

const unsigned char uniqueIDTab[8] = {(int32_t)0x5f, (int32_t)0x4b, (int32_t)0x43, (int32_t)0x5f, (int32_t)0x5f, (int32_t)0x4a, (int32_t)0x52, (int32_t)0x5f};

/* anti-alias coefficients - see spec Annex B, table 3-B.9 
 *   csa[0][i] = CSi, csa[1][i] = CAi
 * format = Q31
 */
const int csa[8][2] = {
	{(int32_t)0x6dc253f0, (int32_t)0xbe2500aa}, 
	{(int32_t)0x70dcebe4, (int32_t)0xc39e4949},
	{(int32_t)0x798d6e73, (int32_t)0xd7e33f4a},
	{(int32_t)0x7ddd40a7, (int32_t)0xe8b71176},
	{(int32_t)0x7f6d20b7, (int32_t)0xf3e4fe2f},
	{(int32_t)0x7fe47e40, (int32_t)0xfac1a3c7}, 
	{(int32_t)0x7ffcb263, (int32_t)0xfe2ebdc6}, 
	{(int32_t)0x7fffc694, (int32_t)0xff86c25d}, 
};

/* format = Q30, range = [0.0981, 1.9976]
 *
 * n = 16;
 * k = 0;
 * for(i=0; i<5; i++, n=n/2) {
 *   for(p=0; p<n; p++, k++) {
 *     t = (PI / (4*n)) * (2*p + 1);
 *     coef32[k] = 2.0 * cos(t);
 *   }
 * }
 * coef32[30] *= 0.5;	/ *** for initial back butterfly (i.e. two-point DCT) *** /
 */
const int coef32[31] = {
	(int32_t)0x7fd8878d, (int32_t)0x7e9d55fc, (int32_t)0x7c29fbee, (int32_t)0x78848413, (int32_t)0x73b5ebd0, (int32_t)0x6dca0d14, (int32_t)0x66cf811f, (int32_t)0x5ed77c89, 
	(int32_t)0x55f5a4d2, (int32_t)0x4c3fdff3, (int32_t)0x41ce1e64, (int32_t)0x36ba2013, (int32_t)0x2b1f34eb, (int32_t)0x1f19f97b, (int32_t)0x12c8106e, (int32_t)0x0647d97c, 
	(int32_t)0x7f62368f, (int32_t)0x7a7d055b, (int32_t)0x70e2cbc6, (int32_t)0x62f201ac, (int32_t)0x5133cc94, (int32_t)0x3c56ba70, (int32_t)0x25280c5d, (int32_t)0x0c8bd35e, 
	(int32_t)0x7d8a5f3f, (int32_t)0x6a6d98a4, (int32_t)0x471cece6, (int32_t)0x18f8b83c, (int32_t)0x7641af3c, (int32_t)0x30fbc54d, (int32_t)0x2d413ccc, 
};

/* format = Q30, right shifted by 12 (sign bits only in top 12 - undo this when rounding to short)
 *   this is to enable early-terminating multiplies on ARM
 * range = [-1.144287109, 1.144989014]
 * max gain of filter (per output sample) ~= 2.731
 *
 * new (properly sign-flipped) values 
 *  - these actually are correct to 32 bits, (floating-pt coefficients in spec
 *      chosen such that only ~20 bits are required)
 *
 * Reordering - see table 3-B.3 in spec (appendix B)
 *
 * polyCoef[i] = 
 *   D[ 0, 32, 64, ... 480],   i = [  0, 15]
 *   D[ 1, 33, 65, ... 481],   i = [ 16, 31]
 *   D[ 2, 34, 66, ... 482],   i = [ 32, 47]
 *     ...
 *   D[15, 47, 79, ... 495],   i = [240,255]
 *
 * also exploits symmetry: D[i] = -D[512 - i], for i = [1, 255]
 * 
 * polyCoef[256, 257, ... 263] are for special case of sample 16 (out of 0)
 *   see PolyphaseStereo() and PolyphaseMono()
 */
const int polyCoef[264] = {
	/* shuffled vs. original from 0, 1, ... 15 to 0, 15, 2, 13, ... 14, 1 */
	(int32_t)0x00000000, (int32_t)0x00000074, (int32_t)0x00000354, (int32_t)0x0000072c, (int32_t)0x00001fd4, (int32_t)0x00005084, (int32_t)0x000066b8, (int32_t)0x000249c4,
	(int32_t)0x00049478, (int32_t)0xfffdb63c, (int32_t)0x000066b8, (int32_t)0xffffaf7c, (int32_t)0x00001fd4, (int32_t)0xfffff8d4, (int32_t)0x00000354, (int32_t)0xffffff8c,
	(int32_t)0xfffffffc, (int32_t)0x00000068, (int32_t)0x00000368, (int32_t)0x00000644, (int32_t)0x00001f40, (int32_t)0x00004ad0, (int32_t)0x00005d1c, (int32_t)0x00022ce0,
	(int32_t)0x000493c0, (int32_t)0xfffd9960, (int32_t)0x00006f78, (int32_t)0xffffa9cc, (int32_t)0x0000203c, (int32_t)0xfffff7e4, (int32_t)0x00000340, (int32_t)0xffffff84,
	(int32_t)0xfffffffc, (int32_t)0x00000060, (int32_t)0x00000378, (int32_t)0x0000056c, (int32_t)0x00001e80, (int32_t)0x00004524, (int32_t)0x000052a0, (int32_t)0x00020ffc,
	(int32_t)0x000491a0, (int32_t)0xfffd7ca0, (int32_t)0x00007760, (int32_t)0xffffa424, (int32_t)0x00002080, (int32_t)0xfffff6ec, (int32_t)0x00000328, (int32_t)0xffffff74,
	(int32_t)0xfffffffc, (int32_t)0x00000054, (int32_t)0x00000384, (int32_t)0x00000498, (int32_t)0x00001d94, (int32_t)0x00003f7c, (int32_t)0x00004744, (int32_t)0x0001f32c,
	(int32_t)0x00048e18, (int32_t)0xfffd6008, (int32_t)0x00007e70, (int32_t)0xffff9e8c, (int32_t)0x0000209c, (int32_t)0xfffff5ec, (int32_t)0x00000310, (int32_t)0xffffff68,
	(int32_t)0xfffffffc, (int32_t)0x0000004c, (int32_t)0x0000038c, (int32_t)0x000003d0, (int32_t)0x00001c78, (int32_t)0x000039e4, (int32_t)0x00003b00, (int32_t)0x0001d680,
	(int32_t)0x00048924, (int32_t)0xfffd43ac, (int32_t)0x000084b0, (int32_t)0xffff990c, (int32_t)0x00002094, (int32_t)0xfffff4e4, (int32_t)0x000002f8, (int32_t)0xffffff5c,
	(int32_t)0xfffffffc, (int32_t)0x00000044, (int32_t)0x00000390, (int32_t)0x00000314, (int32_t)0x00001b2c, (int32_t)0x0000345c, (int32_t)0x00002ddc, (int32_t)0x0001ba04,
	(int32_t)0x000482d0, (int32_t)0xfffd279c, (int32_t)0x00008a20, (int32_t)0xffff93a4, (int32_t)0x0000206c, (int32_t)0xfffff3d4, (int32_t)0x000002dc, (int32_t)0xffffff4c,
	(int32_t)0xfffffffc, (int32_t)0x00000040, (int32_t)0x00000390, (int32_t)0x00000264, (int32_t)0x000019b0, (int32_t)0x00002ef0, (int32_t)0x00001fd4, (int32_t)0x00019dc8,
	(int32_t)0x00047b1c, (int32_t)0xfffd0be8, (int32_t)0x00008ecc, (int32_t)0xffff8e64, (int32_t)0x00002024, (int32_t)0xfffff2c0, (int32_t)0x000002c0, (int32_t)0xffffff3c,
	(int32_t)0xfffffff8, (int32_t)0x00000038, (int32_t)0x0000038c, (int32_t)0x000001bc, (int32_t)0x000017fc, (int32_t)0x0000299c, (int32_t)0x000010e8, (int32_t)0x000181d8,
	(int32_t)0x0004720c, (int32_t)0xfffcf09c, (int32_t)0x000092b4, (int32_t)0xffff894c, (int32_t)0x00001fc0, (int32_t)0xfffff1a4, (int32_t)0x000002a4, (int32_t)0xffffff2c,
	(int32_t)0xfffffff8, (int32_t)0x00000034, (int32_t)0x00000380, (int32_t)0x00000120, (int32_t)0x00001618, (int32_t)0x00002468, (int32_t)0x00000118, (int32_t)0x00016644,
	(int32_t)0x000467a4, (int32_t)0xfffcd5cc, (int32_t)0x000095e0, (int32_t)0xffff8468, (int32_t)0x00001f44, (int32_t)0xfffff084, (int32_t)0x00000284, (int32_t)0xffffff18,
	(int32_t)0xfffffff8, (int32_t)0x0000002c, (int32_t)0x00000374, (int32_t)0x00000090, (int32_t)0x00001400, (int32_t)0x00001f58, (int32_t)0xfffff068, (int32_t)0x00014b14,
	(int32_t)0x00045bf0, (int32_t)0xfffcbb88, (int32_t)0x00009858, (int32_t)0xffff7fbc, (int32_t)0x00001ea8, (int32_t)0xffffef60, (int32_t)0x00000268, (int32_t)0xffffff04,
	(int32_t)0xfffffff8, (int32_t)0x00000028, (int32_t)0x0000035c, (int32_t)0x00000008, (int32_t)0x000011ac, (int32_t)0x00001a70, (int32_t)0xffffded8, (int32_t)0x00013058,
	(int32_t)0x00044ef8, (int32_t)0xfffca1d8, (int32_t)0x00009a1c, (int32_t)0xffff7b54, (int32_t)0x00001dfc, (int32_t)0xffffee3c, (int32_t)0x0000024c, (int32_t)0xfffffef0,
	(int32_t)0xfffffff4, (int32_t)0x00000024, (int32_t)0x00000340, (int32_t)0xffffff8c, (int32_t)0x00000f28, (int32_t)0x000015b0, (int32_t)0xffffcc70, (int32_t)0x0001161c,
	(int32_t)0x000440bc, (int32_t)0xfffc88d8, (int32_t)0x00009b3c, (int32_t)0xffff7734, (int32_t)0x00001d38, (int32_t)0xffffed18, (int32_t)0x0000022c, (int32_t)0xfffffedc,
	(int32_t)0xfffffff4, (int32_t)0x00000020, (int32_t)0x00000320, (int32_t)0xffffff1c, (int32_t)0x00000c68, (int32_t)0x0000111c, (int32_t)0xffffb92c, (int32_t)0x0000fc6c,
	(int32_t)0x00043150, (int32_t)0xfffc708c, (int32_t)0x00009bb8, (int32_t)0xffff7368, (int32_t)0x00001c64, (int32_t)0xffffebf4, (int32_t)0x00000210, (int32_t)0xfffffec4,
	(int32_t)0xfffffff0, (int32_t)0x0000001c, (int32_t)0x000002f4, (int32_t)0xfffffeb4, (int32_t)0x00000974, (int32_t)0x00000cb8, (int32_t)0xffffa518, (int32_t)0x0000e350,
	(int32_t)0x000420b4, (int32_t)0xfffc5908, (int32_t)0x00009b9c, (int32_t)0xffff6ff4, (int32_t)0x00001b7c, (int32_t)0xffffead0, (int32_t)0x000001f4, (int32_t)0xfffffeac,
	(int32_t)0xfffffff0, (int32_t)0x0000001c, (int32_t)0x000002c4, (int32_t)0xfffffe58, (int32_t)0x00000648, (int32_t)0x00000884, (int32_t)0xffff9038, (int32_t)0x0000cad0,
	(int32_t)0x00040ef8, (int32_t)0xfffc425c, (int32_t)0x00009af0, (int32_t)0xffff6ce0, (int32_t)0x00001a88, (int32_t)0xffffe9b0, (int32_t)0x000001d4, (int32_t)0xfffffe94,
	(int32_t)0xffffffec, (int32_t)0x00000018, (int32_t)0x0000028c, (int32_t)0xfffffe04, (int32_t)0x000002e4, (int32_t)0x00000480, (int32_t)0xffff7a90, (int32_t)0x0000b2fc,
	(int32_t)0x0003fc28, (int32_t)0xfffc2c90, (int32_t)0x000099b8, (int32_t)0xffff6a3c, (int32_t)0x00001988, (int32_t)0xffffe898, (int32_t)0x000001bc, (int32_t)0xfffffe7c,
	(int32_t)0x000001a0, (int32_t)0x0000187c, (int32_t)0x000097fc, (int32_t)0x0003e84c, (int32_t)0xffff6424, (int32_t)0xffffff4c, (int32_t)0x00000248, (int32_t)0xffffffec, 
};