aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/lib/mp3/src/imdct.c
blob: 53fda4951367050ebf04f4f316551868f5f6cc74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
/* ***** BEGIN LICENSE BLOCK ***** 
 * Version: RCSL 1.0/RPSL 1.0 
 *  
 * Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved. 
 *      
 * The contents of this file, and the files included with this file, are 
 * subject to the current version of the RealNetworks Public Source License 
 * Version 1.0 (the "RPSL") available at 
 * http://www.helixcommunity.org/content/rpsl unless you have licensed 
 * the file under the RealNetworks Community Source License Version 1.0 
 * (the "RCSL") available at http://www.helixcommunity.org/content/rcsl, 
 * in which case the RCSL will apply. You may also obtain the license terms 
 * directly from RealNetworks.  You may not use this file except in 
 * compliance with the RPSL or, if you have a valid RCSL with RealNetworks 
 * applicable to this file, the RCSL.  Please see the applicable RPSL or 
 * RCSL for the rights, obligations and limitations governing use of the 
 * contents of the file.  
 *  
 * This file is part of the Helix DNA Technology. RealNetworks is the 
 * developer of the Original Code and owns the copyrights in the portions 
 * it created. 
 *  
 * This file, and the files included with this file, is distributed and made 
 * available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER 
 * EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES, 
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS 
 * FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. 
 * 
 * Technology Compatibility Kit Test Suite(s) Location: 
 *    http://www.helixcommunity.org/content/tck 
 * 
 * Contributor(s): 
 *  
 * ***** END LICENSE BLOCK ***** */ 

/**************************************************************************************
 * Fixed-point MP3 decoder
 * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
 * June 2003
 *
 * imdct.c - antialias, inverse transform (short/long/mixed), windowing, 
 *             overlap-add, frequency inversion
 **************************************************************************************/

#include "coder.h"
#include "assembly.h"
#include <stdint.h>

/**************************************************************************************
 * Function:    AntiAlias
 *
 * Description: smooth transition across DCT block boundaries (every 18 coefficients)
 *
 * Inputs:      vector of dequantized coefficients, length = (nBfly+1) * 18
 *              number of "butterflies" to perform (one butterfly means one
 *                inter-block smoothing operation)
 *
 * Outputs:     updated coefficient vector x
 *
 * Return:      none
 *
 * Notes:       weighted average of opposite bands (pairwise) from the 8 samples 
 *                before and after each block boundary
 *              nBlocks = (nonZeroBound + 7) / 18, since nZB is the first ZERO sample 
 *                above which all other samples are also zero
 *              max gain per sample = 1.372
 *                MAX(i) (abs(csa[i][0]) + abs(csa[i][1]))
 *              bits gained = 0
 *              assume at least 1 guard bit in x[] to avoid overflow
 *                (should be guaranteed from dequant, and max gain from stproc * max 
 *                 gain from AntiAlias < 2.0)
 **************************************************************************************/
// a little bit faster in RAM (< 1 ms per block)
/* __attribute__ ((section (".data"))) */ static void AntiAlias(int *x, int nBfly)
{
	int k, a0, b0, c0, c1;
	const int *c;

	/* csa = Q31 */
	for (k = nBfly; k > 0; k--) {
		c = csa[0];
		x += 18;

		a0 = x[-1];			c0 = *c;	c++;	b0 = x[0];		c1 = *c;	c++;
		x[-1] = (MULSHIFT32(c0, a0) - MULSHIFT32(c1, b0)) << 1;	
		x[0] =  (MULSHIFT32(c0, b0) + MULSHIFT32(c1, a0)) << 1;

		a0 = x[-2];			c0 = *c;	c++;	b0 = x[1];		c1 = *c;	c++;
		x[-2] = (MULSHIFT32(c0, a0) - MULSHIFT32(c1, b0)) << 1;	
		x[1] =  (MULSHIFT32(c0, b0) + MULSHIFT32(c1, a0)) << 1;
		
		a0 = x[-3];			c0 = *c;	c++;	b0 = x[2];		c1 = *c;	c++;
		x[-3] = (MULSHIFT32(c0, a0) - MULSHIFT32(c1, b0)) << 1;	
		x[2] =  (MULSHIFT32(c0, b0) + MULSHIFT32(c1, a0)) << 1;

		a0 = x[-4];			c0 = *c;	c++;	b0 = x[3];		c1 = *c;	c++;
		x[-4] = (MULSHIFT32(c0, a0) - MULSHIFT32(c1, b0)) << 1;	
		x[3] =  (MULSHIFT32(c0, b0) + MULSHIFT32(c1, a0)) << 1;

		a0 = x[-5];			c0 = *c;	c++;	b0 = x[4];		c1 = *c;	c++;
		x[-5] = (MULSHIFT32(c0, a0) - MULSHIFT32(c1, b0)) << 1;	
		x[4] =  (MULSHIFT32(c0, b0) + MULSHIFT32(c1, a0)) << 1;

		a0 = x[-6];			c0 = *c;	c++;	b0 = x[5];		c1 = *c;	c++;
		x[-6] = (MULSHIFT32(c0, a0) - MULSHIFT32(c1, b0)) << 1;	
		x[5] =  (MULSHIFT32(c0, b0) + MULSHIFT32(c1, a0)) << 1;

		a0 = x[-7];			c0 = *c;	c++;	b0 = x[6];		c1 = *c;	c++;
		x[-7] = (MULSHIFT32(c0, a0) - MULSHIFT32(c1, b0)) << 1;	
		x[6] =  (MULSHIFT32(c0, b0) + MULSHIFT32(c1, a0)) << 1;

		a0 = x[-8];			c0 = *c;	c++;	b0 = x[7];		c1 = *c;	c++;
		x[-8] = (MULSHIFT32(c0, a0) - MULSHIFT32(c1, b0)) << 1;	
		x[7] =  (MULSHIFT32(c0, b0) + MULSHIFT32(c1, a0)) << 1;
	}
}

/**************************************************************************************
 * Function:    WinPrevious
 *
 * Description: apply specified window to second half of previous IMDCT (overlap part)
 *
 * Inputs:      vector of 9 coefficients (xPrev)
 *
 * Outputs:     18 windowed output coefficients (gain 1 integer bit)
 *              window type (0, 1, 2, 3)
 *
 * Return:      none
 * 
 * Notes:       produces 9 output samples from 18 input samples via symmetry
 *              all blocks gain at least 1 guard bit via window (long blocks get extra
 *                sign bit, short blocks can have one addition but max gain < 1.0)
 **************************************************************************************/
static void WinPrevious(int *xPrev, int *xPrevWin, int btPrev)
{
	int i, x, *xp, *xpwLo, *xpwHi, wLo, wHi;
	const int *wpLo, *wpHi;

	xp = xPrev;
	/* mapping (see IMDCT12x3): xPrev[0-2] = sum[6-8], xPrev[3-8] = sum[12-17] */
	if (btPrev == 2) {
		/* this could be reordered for minimum loads/stores */
		wpLo = imdctWin[btPrev];
		xPrevWin[ 0] = MULSHIFT32(wpLo[ 6], xPrev[2]) + MULSHIFT32(wpLo[0], xPrev[6]);
		xPrevWin[ 1] = MULSHIFT32(wpLo[ 7], xPrev[1]) + MULSHIFT32(wpLo[1], xPrev[7]);
		xPrevWin[ 2] = MULSHIFT32(wpLo[ 8], xPrev[0]) + MULSHIFT32(wpLo[2], xPrev[8]);
		xPrevWin[ 3] = MULSHIFT32(wpLo[ 9], xPrev[0]) + MULSHIFT32(wpLo[3], xPrev[8]);
		xPrevWin[ 4] = MULSHIFT32(wpLo[10], xPrev[1]) + MULSHIFT32(wpLo[4], xPrev[7]);
		xPrevWin[ 5] = MULSHIFT32(wpLo[11], xPrev[2]) + MULSHIFT32(wpLo[5], xPrev[6]);
		xPrevWin[ 6] = MULSHIFT32(wpLo[ 6], xPrev[5]);
		xPrevWin[ 7] = MULSHIFT32(wpLo[ 7], xPrev[4]);
		xPrevWin[ 8] = MULSHIFT32(wpLo[ 8], xPrev[3]);
		xPrevWin[ 9] = MULSHIFT32(wpLo[ 9], xPrev[3]);
		xPrevWin[10] = MULSHIFT32(wpLo[10], xPrev[4]);
		xPrevWin[11] = MULSHIFT32(wpLo[11], xPrev[5]);
		xPrevWin[12] = xPrevWin[13] = xPrevWin[14] = xPrevWin[15] = xPrevWin[16] = xPrevWin[17] = 0;
	} else {
		/* use ARM-style pointers (*ptr++) so that ADS compiles well */
		wpLo = imdctWin[btPrev] + 18;
		wpHi = wpLo + 17;
		xpwLo = xPrevWin;
		xpwHi = xPrevWin + 17;
		for (i = 9; i > 0; i--) {
			x = *xp++;	wLo = *wpLo++;	wHi = *wpHi--;
			*xpwLo++ = MULSHIFT32(wLo, x);
			*xpwHi-- = MULSHIFT32(wHi, x);
		}
	}
}

/**************************************************************************************
 * Function:    FreqInvertRescale
 *
 * Description: do frequency inversion (odd samples of odd blocks) and rescale 
 *                if necessary (extra guard bits added before IMDCT)
 *
 * Inputs:      output vector y (18 new samples, spaced NBANDS apart)
 *              previous sample vector xPrev (9 samples)
 *              index of current block
 *              number of extra shifts added before IMDCT (usually 0)
 *
 * Outputs:     inverted and rescaled (as necessary) outputs
 *              rescaled (as necessary) previous samples
 *
 * Return:      updated mOut (from new outputs y)
 **************************************************************************************/
static int FreqInvertRescale(int *y, int *xPrev, int blockIdx, int es)
{
	int i, d, mOut;
	int y0, y1, y2, y3, y4, y5, y6, y7, y8;

	if (es == 0) {
		/* fast case - frequency invert only (no rescaling) - can fuse into overlap-add for speed, if desired */
		if (blockIdx & 0x01) {
			y += NBANDS;
			y0 = *y;	y += 2*NBANDS;
			y1 = *y;	y += 2*NBANDS;
			y2 = *y;	y += 2*NBANDS;
			y3 = *y;	y += 2*NBANDS;
			y4 = *y;	y += 2*NBANDS;
			y5 = *y;	y += 2*NBANDS;
			y6 = *y;	y += 2*NBANDS;
			y7 = *y;	y += 2*NBANDS;
			y8 = *y;	y += 2*NBANDS;

			y -= 18*NBANDS;
			*y = -y0;	y += 2*NBANDS;
			*y = -y1;	y += 2*NBANDS;
			*y = -y2;	y += 2*NBANDS;
			*y = -y3;	y += 2*NBANDS;
			*y = -y4;	y += 2*NBANDS;
			*y = -y5;	y += 2*NBANDS;
			*y = -y6;	y += 2*NBANDS;
			*y = -y7;	y += 2*NBANDS;
			*y = -y8;	y += 2*NBANDS;
		}
		return 0;
	} else {
		/* undo pre-IMDCT scaling, clipping if necessary */
		mOut = 0;
		if (blockIdx & 0x01) {
			/* frequency invert */
			for (i = 0; i < 18; i+=2) {
				d = *y;		CLIP_2N(d, 31 - es);	*y = d << es;	mOut |= FASTABS(*y);	y += NBANDS;
				d = -*y;	CLIP_2N(d, 31 - es);	*y = d << es;	mOut |= FASTABS(*y);	y += NBANDS;
				d = *xPrev;	CLIP_2N(d, 31 - es);	*xPrev++ = d << es;
			}
		} else {
			for (i = 0; i < 18; i+=2) {
				d = *y;		CLIP_2N(d, 31 - es);	*y = d << es;	mOut |= FASTABS(*y);	y += NBANDS;
				d = *y;		CLIP_2N(d, 31 - es);	*y = d << es;	mOut |= FASTABS(*y);	y += NBANDS;
				d = *xPrev;	CLIP_2N(d, 31 - es);	*xPrev++ = d << es;
			}
		}
		return mOut;
	}
}

/* format = Q31
 * #define M_PI 3.14159265358979323846
 * double u = 2.0 * M_PI / 9.0;
 * float c0 = sqrt(3.0) / 2.0; 
 * float c1 = cos(u);          
 * float c2 = cos(2*u);        
 * float c3 = sin(u);          
 * float c4 = sin(2*u);
 */
static const int c9_0 = 0x6ed9eba1;
static const int c9_1 = 0x620dbe8b;
static const int c9_2 = 0x163a1a7e;
static const int c9_3 = 0x5246dd49;
static const int c9_4 = 0x7e0e2e32;

/* format = Q31
 * cos(((0:8) + 0.5) * (pi/18)) 
 */
static const int c18[9] = {
	0x7f834ed0, 0x7ba3751d, 0x7401e4c1, 0x68d9f964, 0x5a82799a, 0x496af3e2, 0x36185aee, 0x2120fb83, 0x0b27eb5c, 
};

/* require at least 3 guard bits in x[] to ensure no overflow */
static __inline void idct9(int *x)
{
	int a1, a2, a3, a4, a5, a6, a7, a8, a9;
	int a10, a11, a12, a13, a14, a15, a16, a17, a18;
	int a19, a20, a21, a22, a23, a24, a25, a26, a27;
	int m1, m3, m5, m6, m7, m8, m9, m10, m11, m12;
	int x0, x1, x2, x3, x4, x5, x6, x7, x8;

	x0 = x[0]; x1 = x[1]; x2 = x[2]; x3 = x[3]; x4 = x[4];
	x5 = x[5]; x6 = x[6]; x7 = x[7]; x8 = x[8];

	a1 = x0 - x6;
	a2 = x1 - x5;
	a3 = x1 + x5;
	a4 = x2 - x4;
	a5 = x2 + x4;
	a6 = x2 + x8;
	a7 = x1 + x7;

	a8 = a6 - a5;		/* ie x[8] - x[4] */
	a9 = a3 - a7;		/* ie x[5] - x[7] */
	a10 = a2 - x7;		/* ie x[1] - x[5] - x[7] */
	a11 = a4 - x8;		/* ie x[2] - x[4] - x[8] */

	/* do the << 1 as constant shifts where mX is actually used (free, no stall or extra inst.) */
	m1 =  MULSHIFT32(c9_0, x3);
	m3 =  MULSHIFT32(c9_0, a10);
	m5 =  MULSHIFT32(c9_1, a5);
	m6 =  MULSHIFT32(c9_2, a6);
	m7 =  MULSHIFT32(c9_1, a8);
	m8 =  MULSHIFT32(c9_2, a5);
	m9 =  MULSHIFT32(c9_3, a9);
	m10 = MULSHIFT32(c9_4, a7);
	m11 = MULSHIFT32(c9_3, a3);
	m12 = MULSHIFT32(c9_4, a9);

	a12 = x[0] +  (x[6] >> 1);
	a13 = a12  +  (  m1 << 1);
	a14 = a12  -  (  m1 << 1);
	a15 = a1   +  ( a11 >> 1);
	a16 = ( m5 << 1) + (m6 << 1);
	a17 = ( m7 << 1) - (m8 << 1);
	a18 = a16 + a17;
	a19 = ( m9 << 1) + (m10 << 1);
	a20 = (m11 << 1) - (m12 << 1);

	a21 = a20 - a19;
	a22 = a13 + a16;
	a23 = a14 + a16;
	a24 = a14 + a17;
	a25 = a13 + a17;
	a26 = a14 - a18;
	a27 = a13 - a18;

	x0 = a22 + a19;			x[0] = x0;
	x1 = a15 + (m3 << 1);	x[1] = x1;
	x2 = a24 + a20;			x[2] = x2;
	x3 = a26 - a21;			x[3] = x3;
	x4 = a1 - a11;			x[4] = x4;
	x5 = a27 + a21;			x[5] = x5;
	x6 = a25 - a20;			x[6] = x6;
	x7 = a15 - (m3 << 1);	x[7] = x7;
	x8 = a23 - a19;			x[8] = x8;
}

/* let c(j) = cos(M_PI/36 * ((j)+0.5)), s(j) = sin(M_PI/36 * ((j)+0.5))
 * then fastWin[2*j+0] = c(j)*(s(j) + c(j)), j = [0, 8]
 *      fastWin[2*j+1] = c(j)*(s(j) - c(j))
 * format = Q30
 */
static const int fastWin36[18] = {
	(int32_t)0x42aace8b, (int32_t)0xc2e92724, (int32_t)0x47311c28, (int32_t)0xc95f619a, (int32_t)0x4a868feb, (int32_t)0xd0859d8c,
	(int32_t)0x4c913b51, (int32_t)0xd8243ea0, (int32_t)0x4d413ccc, (int32_t)0xe0000000, (int32_t)0x4c913b51, (int32_t)0xe7dbc161,
	(int32_t)0x4a868feb, (int32_t)0xef7a6275, (int32_t)0x47311c28, (int32_t)0xf6a09e67, (int32_t)0x42aace8b, (int32_t)0xfd16d8dd,
};

/**************************************************************************************
 * Function:    IMDCT36
 *
 * Description: 36-point modified DCT, with windowing and overlap-add (50% overlap)
 *
 * Inputs:      vector of 18 coefficients (N/2 inputs produces N outputs, by symmetry)
 *              overlap part of last IMDCT (9 samples - see output comments)
 *              window type (0,1,2,3) of current and previous block
 *              current block index (for deciding whether to do frequency inversion)
 *              number of guard bits in input vector
 *
 * Outputs:     18 output samples, after windowing and overlap-add with last frame
 *              second half of (unwindowed) 36-point IMDCT - save for next time
 *                only save 9 xPrev samples, using symmetry (see WinPrevious())
 *
 * Notes:       this is Ken's hyper-fast algorithm, including symmetric sin window
 *                optimization, if applicable
 *              total number of multiplies, general case: 
 *                2*10 (idct9) + 9 (last stage imdct) + 36 (for windowing) = 65
 *              total number of multiplies, btCurr == 0 && btPrev == 0:
 *                2*10 (idct9) + 9 (last stage imdct) + 18 (for windowing) = 47
 *
 *              blockType == 0 is by far the most common case, so it should be
 *                possible to use the fast path most of the time
 *              this is the fastest known algorithm for performing 
 *                long IMDCT + windowing + overlap-add in MP3
 *
 * Return:      mOut (OR of abs(y) for all y calculated here)
 *
 * TODO:        optimize for ARM (reorder window coefs, ARM-style pointers in C, 
 *                inline asm may or may not be helpful)
 **************************************************************************************/
// barely faster in RAM
/*__attribute__ ((section (".data")))*/ static int IMDCT36(int *xCurr, int *xPrev, int *y, int btCurr, int btPrev, int blockIdx, int gb)
{
	int i, es, xBuf[18], xPrevWin[18];
	int acc1, acc2, s, d, t, mOut;
	int xo, xe, c, *xp, yLo, yHi;
	const int *cp, *wp;

	acc1 = acc2 = 0;
	xCurr += 17;

	/* 7 gb is always adequate for antialias + accumulator loop + idct9 */
	if (gb < 7) {
		/* rarely triggered - 5% to 10% of the time on normal clips (with Q25 input) */
		es = 7 - gb;
		for (i = 8; i >= 0; i--) {	
			acc1 = ((*xCurr--) >> es) - acc1;
			acc2 = acc1 - acc2;
			acc1 = ((*xCurr--) >> es) - acc1;
			xBuf[i+9] = acc2;	/* odd */
			xBuf[i+0] = acc1;	/* even */
			xPrev[i] >>= es;
		}
	} else {
		es = 0;
		/* max gain = 18, assume adequate guard bits */
		for (i = 8; i >= 0; i--) {	
			acc1 = (*xCurr--) - acc1;
			acc2 = acc1 - acc2;
			acc1 = (*xCurr--) - acc1;
			xBuf[i+9] = acc2;	/* odd */
			xBuf[i+0] = acc1;	/* even */
		}
	}
	/* xEven[0] and xOdd[0] scaled by 0.5 */
	xBuf[9] >>= 1;
	xBuf[0] >>= 1;

	/* do 9-point IDCT on even and odd */
	idct9(xBuf+0);	/* even */
	idct9(xBuf+9);	/* odd */

	xp = xBuf + 8;
	cp = c18 + 8;
	mOut = 0;
	if (btPrev == 0 && btCurr == 0) {
		/* fast path - use symmetry of sin window to reduce windowing multiplies to 18 (N/2) */
		wp = fastWin36;
		for (i = 0; i < 9; i++) {
			/* do ARM-style pointer arithmetic (i still needed for y[] indexing - compiler spills if 2 y pointers) */
			c = *cp--;	xo = *(xp + 9);		xe = *xp--;
			/* gain 2 int bits here */
			xo = MULSHIFT32(c, xo);			/* 2*c18*xOdd (mul by 2 implicit in scaling)  */
			xe >>= 2;

			s = -(*xPrev);		/* sum from last block (always at least 2 guard bits) */
			d = -(xe - xo);		/* gain 2 int bits, don't shift xo (effective << 1 to eat sign bit, << 1 for mul by 2) */
			(*xPrev++) = xe + xo;			/* symmetry - xPrev[i] = xPrev[17-i] for long blocks */
			t = s - d;

			yLo = (d + (MULSHIFT32(t, *wp++) << 2));
			yHi = (s + (MULSHIFT32(t, *wp++) << 2));
			y[(i)*NBANDS]    = 	yLo;
			y[(17-i)*NBANDS] =  yHi;
			mOut |= FASTABS(yLo);
			mOut |= FASTABS(yHi);
		}
	} else {
		/* slower method - either prev or curr is using window type != 0 so do full 36-point window 
		 * output xPrevWin has at least 3 guard bits (xPrev has 2, gain 1 in WinPrevious)
		 */
		WinPrevious(xPrev, xPrevWin, btPrev);

		wp = imdctWin[btCurr];
		for (i = 0; i < 9; i++) {
			c = *cp--;	xo = *(xp + 9);		xe = *xp--;
			/* gain 2 int bits here */
			xo = MULSHIFT32(c, xo);			/* 2*c18*xOdd (mul by 2 implicit in scaling)  */
			xe >>= 2;

			d = xe - xo;
			(*xPrev++) = xe + xo;	/* symmetry - xPrev[i] = xPrev[17-i] for long blocks */
			
			yLo = (xPrevWin[i]    + MULSHIFT32(d, wp[i])) << 2;
			yHi = (xPrevWin[17-i] + MULSHIFT32(d, wp[17-i])) << 2;
			y[(i)*NBANDS]    = yLo;
			y[(17-i)*NBANDS] = yHi;
			mOut |= FASTABS(yLo);
			mOut |= FASTABS(yHi);
		}
	}

	xPrev -= 9;
	mOut |= FreqInvertRescale(y, xPrev, blockIdx, es);

	return mOut;
}

static const int c3_0 = (int32_t)0x6ed9eba1;	/* format = Q31, cos(pi/6) */
static const int c6[3] = { (int32_t)0x7ba3751d, (int32_t)0x5a82799a, (int32_t)0x2120fb83 };	/* format = Q31, cos(((0:2) + 0.5) * (pi/6)) */

/* 12-point inverse DCT, used in IMDCT12x3() 
 * 4 input guard bits will ensure no overflow
 */
static __inline void imdct12 (int *x, int *out)
{
	int a0, a1, a2;
	int x0, x1, x2, x3, x4, x5;

	x0 = *x;	x+=3;	x1 = *x;	x+=3;
	x2 = *x;	x+=3;	x3 = *x;	x+=3;
	x4 = *x;	x+=3;	x5 = *x;	x+=3;

	x4 -= x5;
	x3 -= x4;
	x2 -= x3;
	x3 -= x5;
	x1 -= x2;
	x0 -= x1;
	x1 -= x3;

	x0 >>= 1;
	x1 >>= 1;

	a0 = MULSHIFT32(c3_0, x2) << 1;
	a1 = x0 + (x4 >> 1);
	a2 = x0 - x4;
	x0 = a1 + a0;
	x2 = a2;
	x4 = a1 - a0;

	a0 = MULSHIFT32(c3_0, x3) << 1;
	a1 = x1 + (x5 >> 1);
	a2 = x1 - x5;

	/* cos window odd samples, mul by 2, eat sign bit */
	x1 = MULSHIFT32(c6[0], a1 + a0) << 2;			
	x3 = MULSHIFT32(c6[1], a2) << 2;
	x5 = MULSHIFT32(c6[2], a1 - a0) << 2;

	*out = x0 + x1;	out++;
	*out = x2 + x3;	out++;
	*out = x4 + x5;	out++;
	*out = x4 - x5;	out++;
	*out = x2 - x3;	out++;
	*out = x0 - x1;
}

/**************************************************************************************
 * Function:    IMDCT12x3
 *
 * Description: three 12-point modified DCT's for short blocks, with windowing,
 *                short block concatenation, and overlap-add
 *
 * Inputs:      3 interleaved vectors of 6 samples each 
 *                (block0[0], block1[0], block2[0], block0[1], block1[1]....)
 *              overlap part of last IMDCT (9 samples - see output comments)
 *              window type (0,1,2,3) of previous block
 *              current block index (for deciding whether to do frequency inversion)
 *              number of guard bits in input vector
 *
 * Outputs:     updated sample vector x, net gain of 1 integer bit
 *              second half of (unwindowed) IMDCT's - save for next time
 *                only save 9 xPrev samples, using symmetry (see WinPrevious())
 *
 * Return:      mOut (OR of abs(y) for all y calculated here)
 *
 * TODO:        optimize for ARM
 **************************************************************************************/
 // barely faster in RAM
/*__attribute__ ((section (".data")))*/ static int IMDCT12x3(int *xCurr, int *xPrev, int *y, int btPrev, int blockIdx, int gb)
{
	int i, es, mOut, yLo, xBuf[18], xPrevWin[18];	/* need temp buffer for reordering short blocks */
	const int *wp;

	es = 0;
	/* 7 gb is always adequate for accumulator loop + idct12 + window + overlap */
	if (gb < 7) {
		es = 7 - gb;
		for (i = 0; i < 18; i+=2) {
			xCurr[i+0] >>= es;
			xCurr[i+1] >>= es;
			*xPrev++ >>= es;
		}
		xPrev -= 9;
	}

	/* requires 4 input guard bits for each imdct12 */
	imdct12(xCurr + 0, xBuf + 0);
	imdct12(xCurr + 1, xBuf + 6);
	imdct12(xCurr + 2, xBuf + 12);

	/* window previous from last time */
	WinPrevious(xPrev, xPrevWin, btPrev);

	/* could unroll this for speed, minimum loads (short blocks usually rare, so doesn't make much overall difference) 
	 * xPrevWin[i] << 2 still has 1 gb always, max gain of windowed xBuf stuff also < 1.0 and gain the sign bit
	 * so y calculations won't overflow
	 */
	wp = imdctWin[2];
	mOut = 0;
	for (i = 0; i < 3; i++) {
		yLo = (xPrevWin[ 0+i] << 2);
		mOut |= FASTABS(yLo);	y[( 0+i)*NBANDS] = yLo;
		yLo = (xPrevWin[ 3+i] << 2);
		mOut |= FASTABS(yLo);	y[( 3+i)*NBANDS] = yLo;
		yLo = (xPrevWin[ 6+i] << 2) + (MULSHIFT32(wp[0+i], xBuf[3+i]));	
		mOut |= FASTABS(yLo);	y[( 6+i)*NBANDS] = yLo;
		yLo = (xPrevWin[ 9+i] << 2) + (MULSHIFT32(wp[3+i], xBuf[5-i]));	
		mOut |= FASTABS(yLo);	y[( 9+i)*NBANDS] = yLo;
		yLo = (xPrevWin[12+i] << 2) + (MULSHIFT32(wp[6+i], xBuf[2-i]) + MULSHIFT32(wp[0+i], xBuf[(6+3)+i]));	
		mOut |= FASTABS(yLo);	y[(12+i)*NBANDS] = yLo;
		yLo = (xPrevWin[15+i] << 2) + (MULSHIFT32(wp[9+i], xBuf[0+i]) + MULSHIFT32(wp[3+i], xBuf[(6+5)-i]));	
		mOut |= FASTABS(yLo);	y[(15+i)*NBANDS] = yLo;
	}

	/* save previous (unwindowed) for overlap - only need samples 6-8, 12-17 */
	for (i = 6; i < 9; i++)
		*xPrev++ = xBuf[i] >> 2;
	for (i = 12; i < 18; i++)
		*xPrev++ = xBuf[i] >> 2;

	xPrev -= 9;
	mOut |= FreqInvertRescale(y, xPrev, blockIdx, es);

	return mOut;
}

/**************************************************************************************
 * Function:    HybridTransform
 *
 * Description: IMDCT's, windowing, and overlap-add on long/short/mixed blocks
 *
 * Inputs:      vector of input coefficients, length = nBlocksTotal * 18)
 *              vector of overlap samples from last time, length = nBlocksPrev * 9)
 *              buffer for output samples, length = MAXNSAMP
 *              SideInfoSub struct for this granule/channel
 *              BlockCount struct with necessary info
 *                number of non-zero input and overlap blocks
 *                number of long blocks in input vector (rest assumed to be short blocks)
 *                number of blocks which use long window (type) 0 in case of mixed block
 *                  (bc->currWinSwitch, 0 for non-mixed blocks)
 *
 * Outputs:     transformed, windowed, and overlapped sample buffer
 *              does frequency inversion on odd blocks
 *              updated buffer of samples for overlap
 *
 * Return:      number of non-zero IMDCT blocks calculated in this call
 *                (including overlap-add)
 *
 * TODO:        examine mixedBlock/winSwitch logic carefully (test he_mode.bit)
 **************************************************************************************/
static int HybridTransform(int *xCurr, int *xPrev, int y[BLOCK_SIZE][NBANDS], SideInfoSub *sis, BlockCount *bc)
{
	int xPrevWin[18], currWinIdx, prevWinIdx;
	int i, j, nBlocksOut, nonZero, mOut;
	int fiBit, xp;

	ASSERT(bc->nBlocksLong  <= NBANDS);
	ASSERT(bc->nBlocksTotal <= NBANDS);
	ASSERT(bc->nBlocksPrev  <= NBANDS);

	mOut = 0;

	/* do long blocks, if any */
	for(i = 0; i < bc->nBlocksLong; i++) {
		/* currWinIdx picks the right window for long blocks (if mixed, long blocks use window type 0) */
		currWinIdx = sis->blockType;
		if (sis->mixedBlock && i < bc->currWinSwitch) 
			currWinIdx = 0;

		prevWinIdx = bc->prevType;
		if (i < bc->prevWinSwitch)
			 prevWinIdx = 0;

		/* do 36-point IMDCT, including windowing and overlap-add */
		mOut |= IMDCT36(xCurr, xPrev, &(y[0][i]), currWinIdx, prevWinIdx, i, bc->gbIn);
		xCurr += 18;
		xPrev += 9;
	}

	/* do short blocks (if any) */
	for (   ; i < bc->nBlocksTotal; i++) {
		ASSERT(sis->blockType == 2);

		prevWinIdx = bc->prevType;
		if (i < bc->prevWinSwitch)
			 prevWinIdx = 0;
		
		mOut |= IMDCT12x3(xCurr, xPrev, &(y[0][i]), prevWinIdx, i, bc->gbIn);
		xCurr += 18;
		xPrev += 9;
	}
	nBlocksOut = i;
	
	/* window and overlap prev if prev longer that current */
	for (   ; i < bc->nBlocksPrev; i++) {
		prevWinIdx = bc->prevType;
		if (i < bc->prevWinSwitch)
			 prevWinIdx = 0;
		WinPrevious(xPrev, xPrevWin, prevWinIdx);

		nonZero = 0;
		fiBit = i << 31;
		for (j = 0; j < 9; j++) {
			xp = xPrevWin[2*j+0] << 2;	/* << 2 temp for scaling */
			nonZero |= xp;
			y[2*j+0][i] = xp;
			mOut |= FASTABS(xp);

			/* frequency inversion on odd blocks/odd samples (flip sign if i odd, j odd) */
			xp = xPrevWin[2*j+1] << 2;
			xp = (xp ^ (fiBit >> 31)) + (i & 0x01);	
			nonZero |= xp;
			y[2*j+1][i] = xp;
			mOut |= FASTABS(xp);

			xPrev[j] = 0;
		}
		xPrev += 9;
		if (nonZero)
			nBlocksOut = i;
	}
	
	/* clear rest of blocks */
	for (   ; i < 32; i++) {
		for (j = 0; j < 18; j++) 
			y[j][i] = 0;
	}

	bc->gbOut = CLZ(mOut) - 1;

	return nBlocksOut;
}

/**************************************************************************************
 * Function:    IMDCT
 *
 * Description: do alias reduction, inverse MDCT, overlap-add, and frequency inversion
 *
 * Inputs:      MP3DecInfo structure filled by UnpackFrameHeader(), UnpackSideInfo(),
 *                UnpackScaleFactors(), and DecodeHuffman() (for this granule, channel)
 *                includes PCM samples in overBuf (from last call to IMDCT) for OLA
 *              index of current granule and channel
 *
 * Outputs:     PCM samples in outBuf, for input to subband transform
 *              PCM samples in overBuf, for OLA next time
 *              updated hi->nonZeroBound index for this channel
 *
 * Return:      0 on success,  -1 if null input pointers
 **************************************************************************************/
 // a bit faster in RAM
/*__attribute__ ((section (".data")))*/ int IMDCT(MP3DecInfo *mp3DecInfo, int gr, int ch)
{
	int nBfly, blockCutoff;
	FrameHeader *fh;
	SideInfo *si;
	HuffmanInfo *hi;
	IMDCTInfo *mi;
	BlockCount bc;

	/* validate pointers */
	if (!mp3DecInfo || !mp3DecInfo->FrameHeaderPS || !mp3DecInfo->SideInfoPS || 
		!mp3DecInfo->HuffmanInfoPS || !mp3DecInfo->IMDCTInfoPS)
		return -1;

	/* si is an array of up to 4 structs, stored as gr0ch0, gr0ch1, gr1ch0, gr1ch1 */
	fh = (FrameHeader *)(mp3DecInfo->FrameHeaderPS);
	si = (SideInfo *)(mp3DecInfo->SideInfoPS);
	hi = (HuffmanInfo*)(mp3DecInfo->HuffmanInfoPS);
	mi = (IMDCTInfo *)(mp3DecInfo->IMDCTInfoPS);

	/* anti-aliasing done on whole long blocks only
	 * for mixed blocks, nBfly always 1, except 3 for 8 kHz MPEG 2.5 (see sfBandTab) 
     *   nLongBlocks = number of blocks with (possibly) non-zero power 
	 *   nBfly = number of butterflies to do (nLongBlocks - 1, unless no long blocks)
	 */
	blockCutoff = fh->sfBand->l[(fh->ver == MPEG1 ? 8 : 6)] / 18;	/* same as 3* num short sfb's in spec */
	if (si->sis[gr][ch].blockType != 2) {
		/* all long transforms */
		bc.nBlocksLong = MIN((hi->nonZeroBound[ch] + 7) / 18 + 1, 32);	
		nBfly = bc.nBlocksLong - 1;
	} else if (si->sis[gr][ch].blockType == 2 && si->sis[gr][ch].mixedBlock) {
		/* mixed block - long transforms until cutoff, then short transforms */
		bc.nBlocksLong = blockCutoff;	
		nBfly = bc.nBlocksLong - 1;
	} else {
		/* all short transforms */
		bc.nBlocksLong = 0;
		nBfly = 0;
	}
 
	AntiAlias(hi->huffDecBuf[ch], nBfly);
	hi->nonZeroBound[ch] = MAX(hi->nonZeroBound[ch], (nBfly * 18) + 8);

	ASSERT(hi->nonZeroBound[ch] <= MAX_NSAMP);

	/* for readability, use a struct instead of passing a million parameters to HybridTransform() */
	bc.nBlocksTotal = (hi->nonZeroBound[ch] + 17) / 18;
	bc.nBlocksPrev = mi->numPrevIMDCT[ch];
	bc.prevType = mi->prevType[ch];
	bc.prevWinSwitch = mi->prevWinSwitch[ch];
	bc.currWinSwitch = (si->sis[gr][ch].mixedBlock ? blockCutoff : 0);	/* where WINDOW switches (not nec. transform) */
	bc.gbIn = hi->gb[ch];

	mi->numPrevIMDCT[ch] = HybridTransform(hi->huffDecBuf[ch], mi->overBuf[ch], mi->outBuf[ch], &si->sis[gr][ch], &bc);
	mi->prevType[ch] = si->sis[gr][ch].blockType;
	mi->prevWinSwitch[ch] = bc.currWinSwitch;		/* 0 means not a mixed block (either all short or all long) */
	mi->gb[ch] = bc.gbOut;

	ASSERT(mi->numPrevIMDCT[ch] <= NBANDS);

	/* output has gained 2 int bits */
	return 0;
}