aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/lib/mp3/src/dct32.c
blob: d29a18e2d78dea119914736b972d88f7ce35b3c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/* ***** BEGIN LICENSE BLOCK ***** 
 * Version: RCSL 1.0/RPSL 1.0 
 *  
 * Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved. 
 *      
 * The contents of this file, and the files included with this file, are 
 * subject to the current version of the RealNetworks Public Source License 
 * Version 1.0 (the "RPSL") available at 
 * http://www.helixcommunity.org/content/rpsl unless you have licensed 
 * the file under the RealNetworks Community Source License Version 1.0 
 * (the "RCSL") available at http://www.helixcommunity.org/content/rcsl, 
 * in which case the RCSL will apply. You may also obtain the license terms 
 * directly from RealNetworks.  You may not use this file except in 
 * compliance with the RPSL or, if you have a valid RCSL with RealNetworks 
 * applicable to this file, the RCSL.  Please see the applicable RPSL or 
 * RCSL for the rights, obligations and limitations governing use of the 
 * contents of the file.  
 *  
 * This file is part of the Helix DNA Technology. RealNetworks is the 
 * developer of the Original Code and owns the copyrights in the portions 
 * it created. 
 *  
 * This file, and the files included with this file, is distributed and made 
 * available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER 
 * EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES, 
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS 
 * FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. 
 * 
 * Technology Compatibility Kit Test Suite(s) Location: 
 *    http://www.helixcommunity.org/content/tck 
 * 
 * Contributor(s): 
 *  
 * ***** END LICENSE BLOCK ***** */ 

/**************************************************************************************
 * Fixed-point MP3 decoder
 * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
 * June 2003
 *
 * dct32.c - optimized implementations of 32-point DCT for matrixing stage of 
 *             polyphase filter
 **************************************************************************************/

#include "coder.h"
#include "assembly.h"

#define COS0_0  0x4013c251	/* Q31 */
#define COS0_1  0x40b345bd	/* Q31 */
#define COS0_2  0x41fa2d6d	/* Q31 */
#define COS0_3  0x43f93421	/* Q31 */
#define COS0_4  0x46cc1bc4	/* Q31 */
#define COS0_5  0x4a9d9cf0	/* Q31 */
#define COS0_6  0x4fae3711	/* Q31 */
#define COS0_7  0x56601ea7	/* Q31 */
#define COS0_8  0x5f4cf6eb	/* Q31 */
#define COS0_9  0x6b6fcf26	/* Q31 */
#define COS0_10 0x7c7d1db3	/* Q31 */
#define COS0_11 0x4ad81a97	/* Q30 */
#define COS0_12 0x5efc8d96	/* Q30 */
#define COS0_13 0x41d95790	/* Q29 */
#define COS0_14 0x6d0b20cf	/* Q29 */
#define COS0_15 0x518522fb	/* Q27 */

#define COS1_0  0x404f4672	/* Q31 */
#define COS1_1  0x42e13c10	/* Q31 */
#define COS1_2  0x48919f44	/* Q31 */
#define COS1_3  0x52cb0e63	/* Q31 */
#define COS1_4  0x64e2402e	/* Q31 */
#define COS1_5  0x43e224a9	/* Q30 */
#define COS1_6  0x6e3c92c1	/* Q30 */
#define COS1_7  0x519e4e04	/* Q28 */

#define COS2_0  0x4140fb46	/* Q31 */
#define COS2_1  0x4cf8de88	/* Q31 */
#define COS2_2  0x73326bbf	/* Q31 */
#define COS2_3  0x52036742	/* Q29 */

#define COS3_0  0x4545e9ef	/* Q31 */
#define COS3_1  0x539eba45	/* Q30 */

#define COS4_0  0x5a82799a	/* Q31 */

// faster in ROM
static const int dcttab[48] = {
	/* first pass */
	COS0_0, COS0_15, COS1_0,	/* 31, 27, 31 */
	COS0_1, COS0_14, COS1_1,	/* 31, 29, 31 */
	COS0_2, COS0_13, COS1_2,	/* 31, 29, 31 */
	COS0_3, COS0_12, COS1_3,	/* 31, 30, 31 */
	COS0_4, COS0_11, COS1_4,	/* 31, 30, 31 */
	COS0_5, COS0_10, COS1_5,	/* 31, 31, 30 */
	COS0_6, COS0_9,  COS1_6,	/* 31, 31, 30 */
	COS0_7, COS0_8,  COS1_7,	/* 31, 31, 28 */
	/* second pass */
	 COS2_0,  COS2_3, COS3_0,	/* 31, 29, 31 */
	 COS2_1,  COS2_2, COS3_1,	/* 31, 31, 30 */
	-COS2_0, -COS2_3, COS3_0, 	/* 31, 29, 31 */
	-COS2_1, -COS2_2, COS3_1, 	/* 31, 31, 30 */
	 COS2_0,  COS2_3, COS3_0, 	/* 31, 29, 31 */
	 COS2_1,  COS2_2, COS3_1, 	/* 31, 31, 30 */
	-COS2_0, -COS2_3, COS3_0, 	/* 31, 29, 31 */
	-COS2_1, -COS2_2, COS3_1, 	/* 31, 31, 30 */
};

#define D32FP(i, s0, s1, s2) { \
    a0 = buf[i];			a3 = buf[31-i]; \
	a1 = buf[15-i];			a2 = buf[16+i]; \
    b0 = a0 + a3;			b3 = MULSHIFT32(*cptr++, a0 - a3) << (s0);	\
	b1 = a1 + a2;			b2 = MULSHIFT32(*cptr++, a1 - a2) << (s1);	\
	buf[i] = b0 + b1;		buf[15-i] = MULSHIFT32(*cptr,   b0 - b1) << (s2); \
	buf[16+i] = b2 + b3;    buf[31-i] = MULSHIFT32(*cptr++, b3 - b2) << (s2); \
}

/**************************************************************************************
 * Function:    FDCT32
 *
 * Description: Ken's highly-optimized 32-point DCT (radix-4 + radix-8) 
 *
 * Inputs:      input buffer, length = 32 samples
 *              require at least 6 guard bits in input vector x to avoid possibility
 *                of overflow in internal calculations (see bbtest_imdct test app)
 *              buffer offset and oddblock flag for polyphase filter input buffer
 *              number of guard bits in input
 *
 * Outputs:     output buffer, data copied and interleaved for polyphase filter
 *              no guarantees about number of guard bits in output
 *
 * Return:      none
 *
 * Notes:       number of muls = 4*8 + 12*4 = 80
 *              final stage of DCT is hardcoded to shuffle data into the proper order
 *                for the polyphase filterbank
 *              fully unrolled stage 1, for max precision (scale the 1/cos() factors
 *                differently, depending on magnitude)
 *              guard bit analysis verified by exhaustive testing of all 2^32 
 *                combinations of max pos/max neg values in x[]
 *
 * TODO:        code organization and optimization for ARM
 *              possibly interleave stereo (cut # of coef loads in half - may not have
 *                enough registers)
 **************************************************************************************/
// about 1ms faster in RAM
/*__attribute__ ((section (".data")))*/ void FDCT32(int *buf, int *dest, int offset, int oddBlock, int gb)
{
    int i, s, tmp, es;
    const int *cptr = dcttab;
    int a0, a1, a2, a3, a4, a5, a6, a7;
    int b0, b1, b2, b3, b4, b5, b6, b7;
	int *d;

	/* scaling - ensure at least 6 guard bits for DCT 
	 * (in practice this is already true 99% of time, so this code is
	 *  almost never triggered)
	 */
	es = 0;
	if (gb < 6) {
		es = 6 - gb;
		for (i = 0; i < 32; i++)
			buf[i] >>= es;
	}

	/* first pass */    
	D32FP(0, 1, 5, 1);
	D32FP(1, 1, 3, 1);
	D32FP(2, 1, 3, 1);
	D32FP(3, 1, 2, 1);
	D32FP(4, 1, 2, 1);
	D32FP(5, 1, 1, 2);
	D32FP(6, 1, 1, 2);
	D32FP(7, 1, 1, 4);

	/* second pass */
	for (i = 4; i > 0; i--) {
		a0 = buf[0]; 	    a7 = buf[7];		a3 = buf[3];	    a4 = buf[4];
		b0 = a0 + a7;	    b7 = MULSHIFT32(*cptr++, a0 - a7) << 1;
		b3 = a3 + a4;	    b4 = MULSHIFT32(*cptr++, a3 - a4) << 3;
		a0 = b0 + b3;	    a3 = MULSHIFT32(*cptr,   b0 - b3) << 1;
		a4 = b4 + b7;		a7 = MULSHIFT32(*cptr++, b7 - b4) << 1;

		a1 = buf[1];	    a6 = buf[6];	    a2 = buf[2];	    a5 = buf[5];
		b1 = a1 + a6;	    b6 = MULSHIFT32(*cptr++, a1 - a6) << 1;
		b2 = a2 + a5;	    b5 = MULSHIFT32(*cptr++, a2 - a5) << 1;
		a1 = b1 + b2;		a2 = MULSHIFT32(*cptr,   b1 - b2) << 2;
		a5 = b5 + b6;	    a6 = MULSHIFT32(*cptr++, b6 - b5) << 2;

		b0 = a0 + a1;	    b1 = MULSHIFT32(COS4_0, a0 - a1) << 1;
		b2 = a2 + a3;	    b3 = MULSHIFT32(COS4_0, a3 - a2) << 1;
		buf[0] = b0;	    buf[1] = b1;
		buf[2] = b2 + b3;	buf[3] = b3;

		b4 = a4 + a5;	    b5 = MULSHIFT32(COS4_0, a4 - a5) << 1;
		b6 = a6 + a7;	    b7 = MULSHIFT32(COS4_0, a7 - a6) << 1;
		b6 += b7;
		buf[4] = b4 + b6;	buf[5] = b5 + b7;
		buf[6] = b5 + b6;	buf[7] = b7;

		buf += 8;
	}
	buf -= 32;	/* reset */

	/* sample 0 - always delayed one block */
	d = dest + 64*16 + ((offset - oddBlock) & 7) + (oddBlock ? 0 : VBUF_LENGTH);
	s = buf[ 0];				d[0] = d[8] = s;
    
	/* samples 16 to 31 */
	d = dest + offset + (oddBlock ? VBUF_LENGTH  : 0);

	s = buf[ 1];				d[0] = d[8] = s;	d += 64;

	tmp = buf[25] + buf[29];
	s = buf[17] + tmp;			d[0] = d[8] = s;	d += 64;
	s = buf[ 9] + buf[13];		d[0] = d[8] = s;	d += 64;
	s = buf[21] + tmp;			d[0] = d[8] = s;	d += 64;

	tmp = buf[29] + buf[27];
	s = buf[ 5];				d[0] = d[8] = s;	d += 64;
	s = buf[21] + tmp;			d[0] = d[8] = s;	d += 64;
	s = buf[13] + buf[11];		d[0] = d[8] = s;	d += 64;
	s = buf[19] + tmp;			d[0] = d[8] = s;	d += 64;

	tmp = buf[27] + buf[31];
	s = buf[ 3];				d[0] = d[8] = s;	d += 64;
	s = buf[19] + tmp;			d[0] = d[8] = s;	d += 64;
	s = buf[11] + buf[15];		d[0] = d[8] = s;	d += 64;
	s = buf[23] + tmp;			d[0] = d[8] = s;	d += 64;

	tmp = buf[31];
	s = buf[ 7];				d[0] = d[8] = s;	d += 64;
	s = buf[23] + tmp;			d[0] = d[8] = s;	d += 64;
	s = buf[15];				d[0] = d[8] = s;	d += 64;
	s = tmp;					d[0] = d[8] = s;

	/* samples 16 to 1 (sample 16 used again) */
	d = dest + 16 + ((offset - oddBlock) & 7) + (oddBlock ? 0 : VBUF_LENGTH);

	s = buf[ 1];				d[0] = d[8] = s;	d += 64;

	tmp = buf[30] + buf[25];
	s = buf[17] + tmp;			d[0] = d[8] = s;	d += 64;
	s = buf[14] + buf[ 9];		d[0] = d[8] = s;	d += 64;
	s = buf[22] + tmp;			d[0] = d[8] = s;	d += 64;
	s = buf[ 6];				d[0] = d[8] = s;	d += 64;

	tmp = buf[26] + buf[30];
	s = buf[22] + tmp;			d[0] = d[8] = s;	d += 64;
	s = buf[10] + buf[14];		d[0] = d[8] = s;	d += 64;
	s = buf[18] + tmp;			d[0] = d[8] = s;	d += 64;
	s = buf[ 2];				d[0] = d[8] = s;	d += 64;

	tmp = buf[28] + buf[26];
	s = buf[18] + tmp;			d[0] = d[8] = s;	d += 64;
	s = buf[12] + buf[10];		d[0] = d[8] = s;	d += 64;
	s = buf[20] + tmp;			d[0] = d[8] = s;	d += 64;
	s = buf[ 4];				d[0] = d[8] = s;	d += 64;

	tmp = buf[24] + buf[28];
	s = buf[20] + tmp;			d[0] = d[8] = s;	d += 64;
	s = buf[ 8] + buf[12];		d[0] = d[8] = s;	d += 64;
	s = buf[16] + tmp;			d[0] = d[8] = s;

	/* this is so rarely invoked that it's not worth making two versions of the output
	 *   shuffle code (one for no shift, one for clip + variable shift) like in IMDCT
	 * here we just load, clip, shift, and store on the rare instances that es != 0
	 */
	if (es) {
		d = dest + 64*16 + ((offset - oddBlock) & 7) + (oddBlock ? 0 : VBUF_LENGTH);
		s = d[0];	CLIP_2N(s, 31 - es);	d[0] = d[8] = (s << es);
	
		d = dest + offset + (oddBlock ? VBUF_LENGTH  : 0);
		for (i = 16; i <= 31; i++) {
			s = d[0];	CLIP_2N(s, 31 - es);	d[0] = d[8] = (s << es);	d += 64;
		}

		d = dest + 16 + ((offset - oddBlock) & 7) + (oddBlock ? 0 : VBUF_LENGTH);
		for (i = 15; i >= 0; i--) {
			s = d[0];	CLIP_2N(s, 31 - es);	d[0] = d[8] = (s << es);	d += 64;
		}
	}
}