1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
// SPDX-FileCopyrightText: 2022 Jeff Epler for Adafruit Industries
//
// SPDX-License-Identifier: MIT
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#pragma GCC push_options
#pragma GCC optimize("-O3")
typedef struct mfm_io mfm_io_t;
#ifndef MFM_IO_MMIO
#define MFM_IO_MMIO (0)
#endif
// If you have a memory mapped peripheral, define MFM_IO_MMIO to get an
// implementation of the mfm_io functions. then, just populate the fields with
// the actual registers to use and define T2_5 and T3_5 to the empirical values
// dividing between T2/3 and T3/4 pulses.
#if MFM_IO_MMIO
struct mfm_io {
const volatile uint32_t *index_port;
uint32_t index_mask;
const volatile uint32_t *data_port;
uint32_t data_mask;
unsigned index_state;
unsigned index_count;
};
#endif
typedef enum { pulse_10, pulse_100, pulse_1000 } mfm_io_symbol_t;
typedef enum { odd = 0, even = 1 } mfm_state_t;
enum { IDAM = 0xfe, DAM = 0xfb };
enum { blocksize = 512, overhead = 3, metadata_size = 7 };
__attribute__((always_inline)) static inline mfm_io_symbol_t
mfm_io_read_symbol(mfm_io_t *io);
static void mfm_io_reset_sync_count(mfm_io_t *io);
__attribute__((always_inline)) static int mfm_io_get_sync_count(mfm_io_t *io);
// Automatically generated CRC function
// polynomial: 0x11021
static uint16_t crc16(uint8_t *data, int len, uint16_t crc) {
static const uint16_t table[256] = {
0x0000U, 0x1021U, 0x2042U, 0x3063U, 0x4084U, 0x50A5U, 0x60C6U, 0x70E7U,
0x8108U, 0x9129U, 0xA14AU, 0xB16BU, 0xC18CU, 0xD1ADU, 0xE1CEU, 0xF1EFU,
0x1231U, 0x0210U, 0x3273U, 0x2252U, 0x52B5U, 0x4294U, 0x72F7U, 0x62D6U,
0x9339U, 0x8318U, 0xB37BU, 0xA35AU, 0xD3BDU, 0xC39CU, 0xF3FFU, 0xE3DEU,
0x2462U, 0x3443U, 0x0420U, 0x1401U, 0x64E6U, 0x74C7U, 0x44A4U, 0x5485U,
0xA56AU, 0xB54BU, 0x8528U, 0x9509U, 0xE5EEU, 0xF5CFU, 0xC5ACU, 0xD58DU,
0x3653U, 0x2672U, 0x1611U, 0x0630U, 0x76D7U, 0x66F6U, 0x5695U, 0x46B4U,
0xB75BU, 0xA77AU, 0x9719U, 0x8738U, 0xF7DFU, 0xE7FEU, 0xD79DU, 0xC7BCU,
0x48C4U, 0x58E5U, 0x6886U, 0x78A7U, 0x0840U, 0x1861U, 0x2802U, 0x3823U,
0xC9CCU, 0xD9EDU, 0xE98EU, 0xF9AFU, 0x8948U, 0x9969U, 0xA90AU, 0xB92BU,
0x5AF5U, 0x4AD4U, 0x7AB7U, 0x6A96U, 0x1A71U, 0x0A50U, 0x3A33U, 0x2A12U,
0xDBFDU, 0xCBDCU, 0xFBBFU, 0xEB9EU, 0x9B79U, 0x8B58U, 0xBB3BU, 0xAB1AU,
0x6CA6U, 0x7C87U, 0x4CE4U, 0x5CC5U, 0x2C22U, 0x3C03U, 0x0C60U, 0x1C41U,
0xEDAEU, 0xFD8FU, 0xCDECU, 0xDDCDU, 0xAD2AU, 0xBD0BU, 0x8D68U, 0x9D49U,
0x7E97U, 0x6EB6U, 0x5ED5U, 0x4EF4U, 0x3E13U, 0x2E32U, 0x1E51U, 0x0E70U,
0xFF9FU, 0xEFBEU, 0xDFDDU, 0xCFFCU, 0xBF1BU, 0xAF3AU, 0x9F59U, 0x8F78U,
0x9188U, 0x81A9U, 0xB1CAU, 0xA1EBU, 0xD10CU, 0xC12DU, 0xF14EU, 0xE16FU,
0x1080U, 0x00A1U, 0x30C2U, 0x20E3U, 0x5004U, 0x4025U, 0x7046U, 0x6067U,
0x83B9U, 0x9398U, 0xA3FBU, 0xB3DAU, 0xC33DU, 0xD31CU, 0xE37FU, 0xF35EU,
0x02B1U, 0x1290U, 0x22F3U, 0x32D2U, 0x4235U, 0x5214U, 0x6277U, 0x7256U,
0xB5EAU, 0xA5CBU, 0x95A8U, 0x8589U, 0xF56EU, 0xE54FU, 0xD52CU, 0xC50DU,
0x34E2U, 0x24C3U, 0x14A0U, 0x0481U, 0x7466U, 0x6447U, 0x5424U, 0x4405U,
0xA7DBU, 0xB7FAU, 0x8799U, 0x97B8U, 0xE75FU, 0xF77EU, 0xC71DU, 0xD73CU,
0x26D3U, 0x36F2U, 0x0691U, 0x16B0U, 0x6657U, 0x7676U, 0x4615U, 0x5634U,
0xD94CU, 0xC96DU, 0xF90EU, 0xE92FU, 0x99C8U, 0x89E9U, 0xB98AU, 0xA9ABU,
0x5844U, 0x4865U, 0x7806U, 0x6827U, 0x18C0U, 0x08E1U, 0x3882U, 0x28A3U,
0xCB7DU, 0xDB5CU, 0xEB3FU, 0xFB1EU, 0x8BF9U, 0x9BD8U, 0xABBBU, 0xBB9AU,
0x4A75U, 0x5A54U, 0x6A37U, 0x7A16U, 0x0AF1U, 0x1AD0U, 0x2AB3U, 0x3A92U,
0xFD2EU, 0xED0FU, 0xDD6CU, 0xCD4DU, 0xBDAAU, 0xAD8BU, 0x9DE8U, 0x8DC9U,
0x7C26U, 0x6C07U, 0x5C64U, 0x4C45U, 0x3CA2U, 0x2C83U, 0x1CE0U, 0x0CC1U,
0xEF1FU, 0xFF3EU, 0xCF5DU, 0xDF7CU, 0xAF9BU, 0xBFBAU, 0x8FD9U, 0x9FF8U,
0x6E17U, 0x7E36U, 0x4E55U, 0x5E74U, 0x2E93U, 0x3EB2U, 0x0ED1U, 0x1EF0U,
};
while (len > 0) {
crc = table[*data ^ (uint8_t)(crc >> 8)] ^ (crc << 8);
data++;
len--;
}
return crc;
}
enum { triple_mark_magic = 0x09926499, triple_mark_mask = 0x0fffffff };
__attribute__((always_inline)) inline static bool
wait_triple_sync_mark(mfm_io_t *io) {
uint32_t state = 0;
while (mfm_io_get_sync_count(io) < 3 && state != triple_mark_magic) {
state = ((state << 2) | mfm_io_read_symbol(io)) & triple_mark_mask;
}
return state == triple_mark_magic;
}
// Compute the MFM CRC of the data, _assuming it was preceded by three 0xa1 sync
// bytes
static int crc16_preloaded(unsigned char *buf, size_t n) {
return crc16((uint8_t *)buf, n, 0xcdb4);
}
// Copy 'n' bytes of data into 'buf'
__attribute__((always_inline)) inline static void
receive(mfm_io_t *io, unsigned char *buf, size_t n) {
// `tmp` holds up to 9 bits of data, in bits 6..15.
unsigned tmp = 0, weight = 0x8000;
#define PUT_BIT(x) \
do { \
if (x) \
tmp |= weight; \
weight >>= 1; \
} while (0)
// In MFM, flux marks can be 2, 3, or 4 "T" apart. These three signals
// stand for the bit sequences 10, 100, and 1000. However, half of the
// bits are data bits, and half are 'clock' bits. We have to keep track of
// whether [in the next symbol] we want the "even" bit(s) or the "odd" bit(s):
//
// 10 - leaves even/odd (parity) unchanged
// 100 - inverts even/odd (parity)
// 1000 - leaves even/odd (parity) unchanged
// ^ ^ data bits if state is even
// ^ ^ data bits if state is odd
// We do this by knowing that when we arrive, we are waiting to parse the
// final '1' data bit of the MFM sync mark. This means we apply a special rule
// to the first word, starting as though in the 'even' state but not recording
// the '1' bit.
mfm_io_symbol_t s = mfm_io_read_symbol(io);
mfm_state_t state = even;
switch (s) {
case pulse_100: // first data bit is a 0, and we start in the ODD state
state = odd;
/* fallthrough */
case pulse_1000: // first data bit is a 0, and we start in EVEN state
PUT_BIT(0);
break;
default:
break;
}
while (n) {
s = mfm_io_read_symbol(io);
PUT_BIT(state); // 'even' is 1, so record a '1' or '0' as appropriate
if (s == pulse_1000) {
PUT_BIT(0); // the other bit recorded for a 1000 is always a '0'
}
if (s == pulse_100) {
if (state) {
PUT_BIT(0);
} // If 'even', record an additional '0'
state = (mfm_state_t)!state; // the next symbol has opposite parity
}
*buf = tmp >> 8; // store every time to make timing more even
if (weight <= 0x80) {
tmp <<= 8;
weight <<= 8;
buf++;
n--;
}
}
}
// Perform all the steps of receiving the next IDAM, DAM (or DDAM, but we don't
// use them)
__attribute__((always_inline)) inline static bool
wait_triple_sync_mark_receive_crc(mfm_io_t *io, void *buf, size_t n) {
if (!wait_triple_sync_mark(io)) {
return false;
}
receive(io, (uint8_t *)buf, n);
unsigned crc = crc16_preloaded((uint8_t *)buf, n);
return crc == 0;
}
// Read a whole track, setting validity[] for each sector actually read, up to
// n_sectors indexing of validity & data is 0-based, even though IDAMs store
// sectors as 1-based
static int read_track(mfm_io_t io, int n_sectors, void *data,
uint8_t *validity) {
memset(validity, 0, n_sectors);
int n_valid = 0;
mfm_io_reset_sync_count(&io);
unsigned char buf[512 + 3];
while (mfm_io_get_sync_count(&io) < 3 && n_valid < n_sectors) {
if (!wait_triple_sync_mark_receive_crc(&io, buf, metadata_size)) {
continue;
}
if (buf[0] != IDAM) {
continue;
}
int r = (uint8_t)buf[3] - 1;
if (r >= n_sectors) {
continue;
}
if (validity[r]) {
continue;
}
if (!wait_triple_sync_mark_receive_crc(&io, buf, sizeof(buf))) {
continue;
}
if (buf[0] != DAM) {
continue;
}
memcpy((char *)data + blocksize * r, buf + 1, blocksize);
validity[r] = 1;
n_valid++;
}
return n_valid;
}
#if MFM_IO_MMIO
#define READ_DATA() (!!(*io->data_port & io->data_mask))
#define READ_INDEX() (!!(*io->index_port & io->index_mask))
__attribute__((optimize("O3"), always_inline)) static inline mfm_io_symbol_t
mfm_io_read_symbol(mfm_io_t *io) {
unsigned pulse_count = 3;
while (!READ_DATA()) {
pulse_count++;
}
unsigned index_state = (io->index_state << 1) | READ_INDEX();
if ((index_state & 3) == 2) { // a zero-to-one transition
io->index_count++;
}
io->index_state = index_state;
while (READ_DATA()) {
pulse_count++;
}
int result = pulse_10;
if (pulse_count > T2_5) {
result++;
}
if (pulse_count > T3_5) {
result++;
}
return (mfm_io_symbol_t)result;
}
static void mfm_io_reset_sync_count(mfm_io_t *io) { io->index_count = 0; }
__attribute__((optimize("O3"), always_inline)) inline static int
mfm_io_get_sync_count(mfm_io_t *io) {
return io->index_count;
}
#endif
#pragma GCC pop_options
|