aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/extmod/ulab/docs/ulab-approx.ipynb
blob: 52dc205e45aaa055e5572bddd50930524e01023d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-01-08T12:50:51.417613Z",
     "start_time": "2021-01-08T12:50:51.208257Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Populating the interactive namespace from numpy and matplotlib\n"
     ]
    }
   ],
   "source": [
    "%pylab inline"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Notebook magic"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-01-08T12:50:52.581876Z",
     "start_time": "2021-01-08T12:50:52.567901Z"
    }
   },
   "outputs": [],
   "source": [
    "from IPython.core.magic import Magics, magics_class, line_cell_magic\n",
    "from IPython.core.magic import cell_magic, register_cell_magic, register_line_magic\n",
    "from IPython.core.magic_arguments import argument, magic_arguments, parse_argstring\n",
    "import subprocess\n",
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-01-08T12:50:53.516712Z",
     "start_time": "2021-01-08T12:50:53.454984Z"
    }
   },
   "outputs": [],
   "source": [
    "@magics_class\n",
    "class PyboardMagic(Magics):\n",
    "    @cell_magic\n",
    "    @magic_arguments()\n",
    "    @argument('-skip')\n",
    "    @argument('-unix')\n",
    "    @argument('-pyboard')\n",
    "    @argument('-file')\n",
    "    @argument('-data')\n",
    "    @argument('-time')\n",
    "    @argument('-memory')\n",
    "    def micropython(self, line='', cell=None):\n",
    "        args = parse_argstring(self.micropython, line)\n",
    "        if args.skip: # doesn't care about the cell's content\n",
    "            print('skipped execution')\n",
    "            return None # do not parse the rest\n",
    "        if args.unix: # tests the code on the unix port. Note that this works on unix only\n",
    "            with open('/dev/shm/micropython.py', 'w') as fout:\n",
    "                fout.write(cell)\n",
    "            proc = subprocess.Popen([\"../../micropython/ports/unix/micropython\", \"/dev/shm/micropython.py\"], \n",
    "                                    stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n",
    "            print(proc.stdout.read().decode(\"utf-8\"))\n",
    "            print(proc.stderr.read().decode(\"utf-8\"))\n",
    "            return None\n",
    "        if args.file: # can be used to copy the cell content onto the pyboard's flash\n",
    "            spaces = \"    \"\n",
    "            try:\n",
    "                with open(args.file, 'w') as fout:\n",
    "                    fout.write(cell.replace('\\t', spaces))\n",
    "                    printf('written cell to {}'.format(args.file))\n",
    "            except:\n",
    "                print('Failed to write to disc!')\n",
    "            return None # do not parse the rest\n",
    "        if args.data: # can be used to load data from the pyboard directly into kernel space\n",
    "            message = pyb.exec(cell)\n",
    "            if len(message) == 0:\n",
    "                print('pyboard >>>')\n",
    "            else:\n",
    "                print(message.decode('utf-8'))\n",
    "                # register new variable in user namespace\n",
    "                self.shell.user_ns[args.data] = string_to_matrix(message.decode(\"utf-8\"))\n",
    "        \n",
    "        if args.time: # measures the time of executions\n",
    "            pyb.exec('import utime')\n",
    "            message = pyb.exec('t = utime.ticks_us()\\n' + cell + '\\ndelta = utime.ticks_diff(utime.ticks_us(), t)' + \n",
    "                               \"\\nprint('execution time: {:d} us'.format(delta))\")\n",
    "            print(message.decode('utf-8'))\n",
    "        \n",
    "        if args.memory: # prints out memory information \n",
    "            message = pyb.exec('from micropython import mem_info\\nprint(mem_info())\\n')\n",
    "            print(\"memory before execution:\\n========================\\n\", message.decode('utf-8'))\n",
    "            message = pyb.exec(cell)\n",
    "            print(\">>> \", message.decode('utf-8'))\n",
    "            message = pyb.exec('print(mem_info())')\n",
    "            print(\"memory after execution:\\n========================\\n\", message.decode('utf-8'))\n",
    "\n",
    "        if args.pyboard:\n",
    "            message = pyb.exec(cell)\n",
    "            print(message.decode('utf-8'))\n",
    "\n",
    "ip = get_ipython()\n",
    "ip.register_magics(PyboardMagic)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## pyboard"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2020-05-07T07:35:35.126401Z",
     "start_time": "2020-05-07T07:35:35.105824Z"
    }
   },
   "outputs": [],
   "source": [
    "import pyboard\n",
    "pyb = pyboard.Pyboard('/dev/ttyACM0')\n",
    "pyb.enter_raw_repl()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2020-05-19T19:11:18.145548Z",
     "start_time": "2020-05-19T19:11:18.137468Z"
    }
   },
   "outputs": [],
   "source": [
    "pyb.exit_raw_repl()\n",
    "pyb.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2020-05-07T07:35:38.725924Z",
     "start_time": "2020-05-07T07:35:38.645488Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "%%micropython -pyboard 1\n",
    "\n",
    "import utime\n",
    "import ulab as np\n",
    "\n",
    "def timeit(n=1000):\n",
    "    def wrapper(f, *args, **kwargs):\n",
    "        func_name = str(f).split(' ')[1]\n",
    "        def new_func(*args, **kwargs):\n",
    "            run_times = np.zeros(n, dtype=np.uint16)\n",
    "            for i in range(n):\n",
    "                t = utime.ticks_us()\n",
    "                result = f(*args, **kwargs)\n",
    "                run_times[i] = utime.ticks_diff(utime.ticks_us(), t)\n",
    "            print('{}() execution times based on {} cycles'.format(func_name, n, (delta2-delta1)/n))\n",
    "            print('\\tbest: %d us'%np.min(run_times))\n",
    "            print('\\tworst: %d us'%np.max(run_times))\n",
    "            print('\\taverage: %d us'%np.mean(run_times))\n",
    "            print('\\tdeviation: +/-%.3f us'%np.std(run_times))            \n",
    "            return result\n",
    "        return new_func\n",
    "    return wrapper\n",
    "\n",
    "def timeit(f, *args, **kwargs):\n",
    "    func_name = str(f).split(' ')[1]\n",
    "    def new_func(*args, **kwargs):\n",
    "        t = utime.ticks_us()\n",
    "        result = f(*args, **kwargs)\n",
    "        print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')\n",
    "        return result\n",
    "    return new_func"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "__END_OF_DEFS__"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Approximation methods\n",
    "\n",
    "`ulab` implements five functions that can be used for interpolating, root finding, and minimising arbitrary `python` functions in one dimension. Two of these functions, namely, `interp`, and `trapz` are defined in `numpy`, while the other three are parts of `scipy`'s `optimize` module. \n",
    "\n",
    "Note that routines that work with user-defined functions still have to call the underlying `python` code, and therefore, gains in speed are not as significant as with other vectorised operations. As a rule of thumb, a factor of two can be expected, when compared to an optimised `python` implementation."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## interp\n",
    "\n",
    "`numpy`: https://docs.scipy.org/doc/numpy/numpy.interp\n",
    "\n",
    "The `interp` function returns the linearly interpolated values of a one-dimensional numerical array. It requires three positional arguments,`x`, at which the interpolated values are evaluated, `xp`, the array\n",
    "of the independent data variable, and `fp`, the array of the dependent values of the data. `xp` must be a monotonically increasing sequence of numbers.\n",
    "\n",
    "Two keyword arguments, `left`, and `right` can also be supplied; these determine the return values, if `x < xp[0]`, and `x > xp[-1]`, respectively. If these arguments are not supplied, `left`, and `right` default to `fp[0]`, and `fp[-1]`, respectively."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-01-08T12:54:58.895801Z",
     "start_time": "2021-01-08T12:54:58.869338Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "array([0.8, 1.8, 2.8, 3.8, 4.8], dtype=float64)\n",
      "array([1.0, 1.8, 2.8, 4.6, 5.0], dtype=float64)\n",
      "array([0.0, 1.8, 2.8, 4.6, 5.0], dtype=float64)\n",
      "array([1.0, 1.8, 2.8, 4.6, 10.0], dtype=float64)\n",
      "\n",
      "\n"
     ]
    }
   ],
   "source": [
    "%%micropython -unix 1\n",
    "\n",
    "from ulab import numpy as np\n",
    "\n",
    "x = np.array([1, 2, 3, 4, 5]) - 0.2\n",
    "xp = np.array([1, 2, 3, 4])\n",
    "fp = np.array([1, 2, 3, 5])\n",
    "\n",
    "print(x)\n",
    "print(np.interp(x, xp, fp))\n",
    "print(np.interp(x, xp, fp, left=0.0))\n",
    "print(np.interp(x, xp, fp, right=10.0))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## newton\n",
    "\n",
    "`scipy`:https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html\n",
    "\n",
    "`newton` finds a zero of a real, user-defined function using the Newton-Raphson (or secant or Halley’s) method. The routine requires two positional arguments, the function, and the initial value. Three keyword\n",
    "arguments can be supplied to control the iteration. These are the absolute and relative tolerances `tol`, and `rtol`, respectively, and the number of iterations before stopping, `maxiter`. The function retuns a single scalar, the position of the root."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-01-08T12:56:35.139958Z",
     "start_time": "2021-01-08T12:56:35.119712Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1.260135727246117\n",
      "\n",
      "\n"
     ]
    }
   ],
   "source": [
    "%%micropython -unix 1\n",
    "\n",
    "from ulab import scipy as spy\n",
    "    \n",
    "def f(x):\n",
    "    return x*x*x - 2.0\n",
    "\n",
    "print(spy.optimize.newton(f, 3., tol=0.001, rtol=0.01))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## bisect \n",
    "\n",
    "`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.bisect.html\n",
    "\n",
    "`bisect` finds the root of a function of one variable using a simple bisection routine. It takes three positional arguments, the function itself, and two starting points. The function must have opposite signs\n",
    "at the starting points. Returned is the position of the root.\n",
    "\n",
    "Two keyword arguments, `xtol`, and `maxiter` can be supplied to control the accuracy, and the number of bisections, respectively."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-01-08T12:58:28.444300Z",
     "start_time": "2021-01-08T12:58:28.421989Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.9999997615814209\n",
      "only 8 bisections:  0.984375\n",
      "with 0.1 accuracy:  0.9375\n",
      "\n",
      "\n"
     ]
    }
   ],
   "source": [
    "%%micropython -unix 1\n",
    "\n",
    "from ulab import scipy as spy\n",
    "    \n",
    "def f(x):\n",
    "    return x*x - 1\n",
    "\n",
    "print(spy.optimize.bisect(f, 0, 4))\n",
    "\n",
    "print('only 8 bisections: ',  spy.optimize.bisect(f, 0, 4, maxiter=8))\n",
    "\n",
    "print('with 0.1 accuracy: ',  spy.optimize.bisect(f, 0, 4, xtol=0.1))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Performance\n",
    "\n",
    "Since the `bisect` routine calls user-defined `python` functions, the speed gain is only about a factor of two, if compared to a purely `python` implementation."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2020-05-19T19:08:24.750562Z",
     "start_time": "2020-05-19T19:08:24.682959Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "bisect running in python\r\n",
      "execution time:  1270  us\r\n",
      "bisect running in C\r\n",
      "execution time:  642  us\r\n",
      "\n"
     ]
    }
   ],
   "source": [
    "%%micropython -pyboard 1\n",
    "\n",
    "from ulab import scipy as spy\n",
    "\n",
    "def f(x):\n",
    "    return (x-1)*(x-1) - 2.0\n",
    "\n",
    "def bisect(f, a, b, xtol=2.4e-7, maxiter=100):\n",
    "    if f(a) * f(b) > 0:\n",
    "        raise ValueError\n",
    "\n",
    "    rtb = a if f(a) < 0.0 else b\n",
    "    dx = b - a if f(a) < 0.0 else a - b\n",
    "    for i in range(maxiter):\n",
    "        dx *= 0.5\n",
    "        x_mid = rtb + dx\n",
    "        mid_value = f(x_mid)\n",
    "        if mid_value < 0:\n",
    "            rtb = x_mid\n",
    "        if abs(dx) < xtol:\n",
    "            break\n",
    "\n",
    "    return rtb\n",
    "\n",
    "@timeit\n",
    "def bisect_scipy(f, a, b):\n",
    "    return spy.optimize.bisect(f, a, b)\n",
    "\n",
    "@timeit\n",
    "def bisect_timed(f, a, b):\n",
    "    return bisect(f, a, b)\n",
    "\n",
    "print('bisect running in python')\n",
    "bisect_timed(f, 3, 2)\n",
    "\n",
    "print('bisect running in C')\n",
    "bisect_scipy(f, 3, 2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## fmin\n",
    "\n",
    "`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin.html\n",
    "\n",
    "The `fmin` function finds the position of the minimum of a user-defined function by using the downhill simplex method. Requires two positional arguments, the function, and the initial value. Three keyword arguments, `xatol`, `fatol`, and `maxiter` stipulate conditions for stopping."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-01-08T13:00:26.729947Z",
     "start_time": "2021-01-08T13:00:26.702748Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.9996093749999952\n",
      "1.199999999999996\n",
      "\n",
      "\n"
     ]
    }
   ],
   "source": [
    "%%micropython -unix 1\n",
    "\n",
    "from ulab import scipy as spy\n",
    "\n",
    "def f(x):\n",
    "    return (x-1)**2 - 1\n",
    "\n",
    "print(spy.optimize.fmin(f, 3.0))\n",
    "print(spy.optimize.fmin(f, 3.0, xatol=0.1))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## trapz\n",
    "\n",
    "`numpy`: https://numpy.org/doc/stable/reference/generated/numpy.trapz.html\n",
    "\n",
    "The function takes one or two one-dimensional `ndarray`s, and integrates the dependent values (`y`) using the trapezoidal rule. If the independent variable (`x`) is given, that is taken as the sample points corresponding to `y`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-01-08T13:01:29.515166Z",
     "start_time": "2021-01-08T13:01:29.494285Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "x:  array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0], dtype=float64)\n",
      "y:  array([0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0], dtype=float64)\n",
      "============================\n",
      "integral of y:  244.5\n",
      "integral of y at x:  244.5\n",
      "\n",
      "\n"
     ]
    }
   ],
   "source": [
    "%%micropython -unix 1\n",
    "\n",
    "from ulab import numpy as np\n",
    "\n",
    "x = np.linspace(0, 9, num=10)\n",
    "y = x*x\n",
    "\n",
    "print('x: ',  x)\n",
    "print('y: ',  y)\n",
    "print('============================')\n",
    "print('integral of y: ', np.trapz(y))\n",
    "print('integral of y at x: ', np.trapz(y, x=x))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.5"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {
    "height": "calc(100% - 180px)",
    "left": "10px",
    "top": "150px",
    "width": "382.797px"
   },
   "toc_section_display": true,
   "toc_window_display": true
  },
  "varInspector": {
   "cols": {
    "lenName": 16,
    "lenType": 16,
    "lenVar": 40
   },
   "kernels_config": {
    "python": {
     "delete_cmd_postfix": "",
     "delete_cmd_prefix": "del ",
     "library": "var_list.py",
     "varRefreshCmd": "print(var_dic_list())"
    },
    "r": {
     "delete_cmd_postfix": ") ",
     "delete_cmd_prefix": "rm(",
     "library": "var_list.r",
     "varRefreshCmd": "cat(var_dic_list()) "
    }
   },
   "types_to_exclude": [
    "module",
    "function",
    "builtin_function_or_method",
    "instance",
    "_Feature"
   ],
   "window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}