1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../ulab.h"
#include "../ulab_tools.h"
#include "carray/carray_tools.h"
#include "transform.h"
#if ULAB_NUMPY_HAS_COMPRESS
static mp_obj_t transform_compress(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t condition = args[0].u_obj;
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[1].u_obj);
uint8_t *array = (uint8_t *)ndarray->array;
mp_obj_t axis = args[2].u_obj;
size_t len = MP_OBJ_SMALL_INT_VALUE(mp_obj_len_maybe(condition));
int8_t ax, shift_ax;
if(axis != mp_const_none) {
ax = tools_get_axis(axis, ndarray->ndim);
shift_ax = ULAB_MAX_DIMS - ndarray->ndim + ax;
}
if(((axis == mp_const_none) && (len != ndarray->len)) ||
((axis != mp_const_none) && (len != ndarray->shape[shift_ax]))) {
mp_raise_ValueError(translate("wrong length of condition array"));
}
size_t true_count = 0;
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(condition, &iter_buf);
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
if(mp_obj_is_true(item)) {
true_count++;
}
}
iterable = mp_getiter(condition, &iter_buf);
ndarray_obj_t *result = NULL;
uint8_t *rarray = NULL;
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
memcpy(shape, ndarray->shape, ULAB_MAX_DIMS * sizeof(size_t));
size_t *rshape = m_new(size_t, ULAB_MAX_DIMS);
memcpy(rshape, ndarray->shape, ULAB_MAX_DIMS * sizeof(size_t));
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
memcpy(strides, ndarray->strides, ULAB_MAX_DIMS * sizeof(int32_t));
int32_t *rstrides = m_new(int32_t, ULAB_MAX_DIMS);
if(axis == mp_const_none) {
result = ndarray_new_linear_array(true_count, ndarray->dtype);
rarray = (uint8_t *)result->array;
memset(rstrides, 0, ndarray->ndim * sizeof(int32_t));
rstrides[ULAB_MAX_DIMS - 1] = ndarray->itemsize;
rshape[ULAB_MAX_DIMS - 1] = 0;
} else {
rshape[shift_ax] = true_count;
result = ndarray_new_dense_ndarray(ndarray->ndim, rshape, ndarray->dtype);
rarray = (uint8_t *)result->array;
SWAP(size_t, shape[shift_ax], shape[ULAB_MAX_DIMS - 1]);
SWAP(size_t, rshape[shift_ax], rshape[ULAB_MAX_DIMS - 1]);
SWAP(int32_t, strides[shift_ax], strides[ULAB_MAX_DIMS - 1]);
memcpy(rstrides, result->strides, ULAB_MAX_DIMS * sizeof(int32_t));
SWAP(int32_t, rstrides[shift_ax], rstrides[ULAB_MAX_DIMS - 1]);
}
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
if(axis != mp_const_none) {
iterable = mp_getiter(condition, &iter_buf);
}
do {
item = mp_iternext(iterable);
if(mp_obj_is_true(item)) {
memcpy(rarray, array, ndarray->itemsize);
rarray += rstrides[ULAB_MAX_DIMS - 1];
}
array += strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
array -= strides[ULAB_MAX_DIMS - 1] * shape[ULAB_MAX_DIMS - 1];
array += strides[ULAB_MAX_DIMS - 2];
rarray -= rstrides[ULAB_MAX_DIMS - 1] * rshape[ULAB_MAX_DIMS - 1];
rarray += rstrides[ULAB_MAX_DIMS - 2];
k++;
} while(k < shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
array -= strides[ULAB_MAX_DIMS - 2] * shape[ULAB_MAX_DIMS - 2];
array += strides[ULAB_MAX_DIMS - 3];
rarray -= rstrides[ULAB_MAX_DIMS - 2] * rshape[ULAB_MAX_DIMS - 2];
rarray += rstrides[ULAB_MAX_DIMS - 3];
j++;
} while(j < shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
array -= strides[ULAB_MAX_DIMS - 3] * shape[ULAB_MAX_DIMS - 3];
array += strides[ULAB_MAX_DIMS - 4];
rarray -= rstrides[ULAB_MAX_DIMS - 2] * rshape[ULAB_MAX_DIMS - 2];
rarray += rstrides[ULAB_MAX_DIMS - 3];
i++;
} while(i < shape[ULAB_MAX_DIMS - 4]);
#endif
return result;
}
MP_DEFINE_CONST_FUN_OBJ_KW(transform_compress_obj, 2, transform_compress);
#endif /* ULAB_NUMPY_HAS_COMPRESS */
#if ULAB_MAX_DIMS > 1
#if ULAB_NUMPY_HAS_DOT
//| def dot(m1: ulab.numpy.ndarray, m2: ulab.numpy.ndarray) -> Union[ulab.numpy.ndarray, _float]:
//| """
//| :param ~ulab.numpy.ndarray m1: a matrix, or a vector
//| :param ~ulab.numpy.ndarray m2: a matrix, or a vector
//|
//| Computes the product of two matrices, or two vectors. In the letter case, the inner product is returned."""
//| ...
//|
mp_obj_t transform_dot(mp_obj_t _m1, mp_obj_t _m2) {
// TODO: should the results be upcast?
// This implements 2D operations only!
if(!mp_obj_is_type(_m1, &ulab_ndarray_type) || !mp_obj_is_type(_m2, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("arguments must be ndarrays"));
}
ndarray_obj_t *m1 = MP_OBJ_TO_PTR(_m1);
ndarray_obj_t *m2 = MP_OBJ_TO_PTR(_m2);
COMPLEX_DTYPE_NOT_IMPLEMENTED(m1->dtype)
COMPLEX_DTYPE_NOT_IMPLEMENTED(m2->dtype)
uint8_t *array1 = (uint8_t *)m1->array;
uint8_t *array2 = (uint8_t *)m2->array;
mp_float_t (*func1)(void *) = ndarray_get_float_function(m1->dtype);
mp_float_t (*func2)(void *) = ndarray_get_float_function(m2->dtype);
if(m1->shape[ULAB_MAX_DIMS - 1] != m2->shape[ULAB_MAX_DIMS - m2->ndim]) {
mp_raise_ValueError(translate("dimensions do not match"));
}
uint8_t ndim = MIN(m1->ndim, m2->ndim);
size_t shape1 = m1->ndim == 2 ? m1->shape[ULAB_MAX_DIMS - m1->ndim] : 1;
size_t shape2 = m2->ndim == 2 ? m2->shape[ULAB_MAX_DIMS - 1] : 1;
size_t *shape = NULL;
if(ndim == 2) { // matrix times matrix -> matrix
shape = ndarray_shape_vector(0, 0, shape1, shape2);
} else { // matrix times vector -> vector, vector times vector -> vector (size 1)
shape = ndarray_shape_vector(0, 0, 0, shape1);
}
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
mp_float_t *rarray = (mp_float_t *)results->array;
for(size_t i=0; i < shape1; i++) { // rows of m1
for(size_t j=0; j < shape2; j++) { // columns of m2
mp_float_t dot = 0.0;
for(size_t k=0; k < m1->shape[ULAB_MAX_DIMS - 1]; k++) {
// (i, k) * (k, j)
dot += func1(array1) * func2(array2);
array1 += m1->strides[ULAB_MAX_DIMS - 1];
array2 += m2->strides[ULAB_MAX_DIMS - m2->ndim];
}
*rarray++ = dot;
array1 -= m1->strides[ULAB_MAX_DIMS - 1] * m1->shape[ULAB_MAX_DIMS - 1];
array2 -= m2->strides[ULAB_MAX_DIMS - m2->ndim] * m2->shape[ULAB_MAX_DIMS - m2->ndim];
array2 += m2->strides[ULAB_MAX_DIMS - 1];
}
array1 += m1->strides[ULAB_MAX_DIMS - m1->ndim];
array2 = m2->array;
}
if((m1->ndim * m2->ndim) == 1) { // return a scalar, if product of two vectors
return mp_obj_new_float(*(--rarray));
} else {
return MP_OBJ_FROM_PTR(results);
}
}
MP_DEFINE_CONST_FUN_OBJ_2(transform_dot_obj, transform_dot);
#endif
#endif
|