1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
|
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2019-2021 Zoltán Vörös
* 2020 Taku Fukada
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "../ulab.h"
#include "create.h"
#include "../ulab_tools.h"
#if ULAB_NUMPY_HAS_ONES | ULAB_NUMPY_HAS_ZEROS | ULAB_NUMPY_HAS_FULL | ULAB_NUMPY_HAS_EMPTY
static mp_obj_t create_zeros_ones_full(mp_obj_t oshape, uint8_t dtype, mp_obj_t value) {
if(!mp_obj_is_int(oshape) && !mp_obj_is_type(oshape, &mp_type_tuple) && !mp_obj_is_type(oshape, &mp_type_list)) {
mp_raise_TypeError(translate("input argument must be an integer, a tuple, or a list"));
}
ndarray_obj_t *ndarray = NULL;
if(mp_obj_is_int(oshape)) {
size_t n = mp_obj_get_int(oshape);
ndarray = ndarray_new_linear_array(n, dtype);
} else if(mp_obj_is_type(oshape, &mp_type_tuple) || mp_obj_is_type(oshape, &mp_type_list)) {
uint8_t len = (uint8_t)mp_obj_get_int(mp_obj_len_maybe(oshape));
if(len > ULAB_MAX_DIMS) {
mp_raise_TypeError(translate("too many dimensions"));
}
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
memset(shape, 0, ULAB_MAX_DIMS * sizeof(size_t));
size_t i = 0;
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(oshape, &iter_buf);
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION){
shape[ULAB_MAX_DIMS - len + i] = (size_t)mp_obj_get_int(item);
i++;
}
ndarray = ndarray_new_dense_ndarray(len, shape, dtype);
}
if(value != mp_const_none) {
if(dtype == NDARRAY_BOOL) {
dtype = NDARRAY_UINT8;
if(mp_obj_is_true(value)) {
value = mp_obj_new_int(1);
} else {
value = mp_obj_new_int(0);
}
}
for(size_t i=0; i < ndarray->len; i++) {
#if ULAB_SUPPORTS_COMPLEX
if(dtype == NDARRAY_COMPLEX) {
ndarray_set_complex_value(ndarray->array, i, value);
} else {
ndarray_set_value(dtype, ndarray->array, i, value);
}
#else
ndarray_set_value(dtype, ndarray->array, i, value);
#endif
}
}
// if zeros calls the function, we don't have to do anything
return MP_OBJ_FROM_PTR(ndarray);
}
#endif
#if ULAB_NUMPY_HAS_ARANGE | ULAB_NUMPY_HAS_LINSPACE
static ndarray_obj_t *create_linspace_arange(mp_float_t start, mp_float_t step, mp_float_t stop, size_t len, uint8_t dtype) {
mp_float_t value = start;
ndarray_obj_t *ndarray = ndarray_new_linear_array(len, dtype);
if(ndarray->boolean == NDARRAY_BOOLEAN) {
uint8_t *array = (uint8_t *)ndarray->array;
for(size_t i=0; i < len; i++, value += step) {
*array++ = value == MICROPY_FLOAT_CONST(0.0) ? 0 : 1;
}
} else if(dtype == NDARRAY_UINT8) {
ARANGE_LOOP(uint8_t, ndarray, len, step, stop);
} else if(dtype == NDARRAY_INT8) {
ARANGE_LOOP(int8_t, ndarray, len, step, stop);
} else if(dtype == NDARRAY_UINT16) {
ARANGE_LOOP(uint16_t, ndarray, len, step, stop);
} else if(dtype == NDARRAY_INT16) {
ARANGE_LOOP(int16_t, ndarray, len, step, stop);
} else {
ARANGE_LOOP(mp_float_t, ndarray, len, step, stop);
}
return ndarray;
}
#endif
#if ULAB_NUMPY_HAS_ARANGE
//| @overload
//| def arange(stop: _float, step: _float = 1, *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray: ...
//| @overload
//| def arange(start: _float, stop: _float, step: _float = 1, *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
//| """
//| .. param: start
//| First value in the array, optional, defaults to 0
//| .. param: stop
//| Final value in the array
//| .. param: step
//| Difference between consecutive elements, optional, defaults to 1.0
//| .. param: dtype
//| Type of values in the array
//|
//| Return a new 1-D array with elements ranging from ``start`` to ``stop``, with step size ``step``."""
//| ...
//|
mp_obj_t create_arange(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_, MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_, MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = NDARRAY_FLOAT;
mp_float_t start, stop, step;
if(n_args == 1) {
start = MICROPY_FLOAT_CONST(0.0);
stop = mp_obj_get_float(args[0].u_obj);
step = MICROPY_FLOAT_CONST(1.0);
if(mp_obj_is_int(args[0].u_obj)) dtype = NDARRAY_INT16;
} else if(n_args == 2) {
start = mp_obj_get_float(args[0].u_obj);
stop = mp_obj_get_float(args[1].u_obj);
step = MICROPY_FLOAT_CONST(1.0);
if(mp_obj_is_int(args[0].u_obj) && mp_obj_is_int(args[1].u_obj)) dtype = NDARRAY_INT16;
} else if(n_args == 3) {
start = mp_obj_get_float(args[0].u_obj);
stop = mp_obj_get_float(args[1].u_obj);
step = mp_obj_get_float(args[2].u_obj);
if(mp_obj_is_int(args[0].u_obj) && mp_obj_is_int(args[1].u_obj) && mp_obj_is_int(args[2].u_obj)) dtype = NDARRAY_INT16;
} else {
mp_raise_TypeError(translate("wrong number of arguments"));
}
if((MICROPY_FLOAT_C_FUN(fabs)(stop) > 32768) || (MICROPY_FLOAT_C_FUN(fabs)(start) > 32768) || (MICROPY_FLOAT_C_FUN(fabs)(step) > 32768)) {
dtype = NDARRAY_FLOAT;
}
if(args[3].u_obj != mp_const_none) {
dtype = (uint8_t)mp_obj_get_int(args[3].u_obj);
}
ndarray_obj_t *ndarray;
if((stop - start)/step < 0) {
ndarray = ndarray_new_linear_array(0, dtype);
} else {
size_t len = (size_t)(MICROPY_FLOAT_C_FUN(ceil)((stop - start) / step));
stop = start + (len - 1) * step;
ndarray = create_linspace_arange(start, step, stop, len, dtype);
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_arange_obj, 1, create_arange);
#endif
#if ULAB_NUMPY_HAS_CONCATENATE
//| def concatenate(arrays: Tuple[ulab.numpy.ndarray], *, axis: int = 0) -> ulab.numpy.ndarray:
//| """
//| .. param: arrays
//| tuple of ndarrays
//| .. param: axis
//| axis along which the arrays will be joined
//|
//| Join a sequence of arrays along an existing axis."""
//| ...
//|
mp_obj_t create_concatenate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &mp_type_tuple)) {
mp_raise_TypeError(translate("first argument must be a tuple of ndarrays"));
}
int8_t axis = (int8_t)args[1].u_int;
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
mp_obj_tuple_t *ndarrays = MP_OBJ_TO_PTR(args[0].u_obj);
// first check, whether the arrays are compatible
ndarray_obj_t *_ndarray = MP_OBJ_TO_PTR(ndarrays->items[0]);
uint8_t dtype = _ndarray->dtype;
uint8_t ndim = _ndarray->ndim;
if(axis < 0) {
axis += ndim;
}
if((axis < 0) || (axis >= ndim)) {
mp_raise_ValueError(translate("wrong axis specified"));
}
// shift axis
axis = ULAB_MAX_DIMS - ndim + axis;
for(uint8_t j=0; j < ULAB_MAX_DIMS; j++) {
shape[j] = _ndarray->shape[j];
}
for(uint8_t i=1; i < ndarrays->len; i++) {
_ndarray = MP_OBJ_TO_PTR(ndarrays->items[i]);
// check, whether the arrays are compatible
if((dtype != _ndarray->dtype) || (ndim != _ndarray->ndim)) {
mp_raise_ValueError(translate("input arrays are not compatible"));
}
for(uint8_t j=0; j < ULAB_MAX_DIMS; j++) {
if(j == axis) {
shape[j] += _ndarray->shape[j];
} else {
if(shape[j] != _ndarray->shape[j]) {
mp_raise_ValueError(translate("input arrays are not compatible"));
}
}
}
}
ndarray_obj_t *target = ndarray_new_dense_ndarray(ndim, shape, dtype);
uint8_t *tpos = (uint8_t *)target->array;
uint8_t *tarray;
for(uint8_t p=0; p < ndarrays->len; p++) {
// reset the pointer along the axis
ndarray_obj_t *source = MP_OBJ_TO_PTR(ndarrays->items[p]);
uint8_t *sarray = (uint8_t *)source->array;
tarray = tpos;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(tarray, sarray, source->itemsize);
tarray += target->strides[ULAB_MAX_DIMS - 1];
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
tarray -= target->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
tarray += target->strides[ULAB_MAX_DIMS - 2];
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
tarray -= target->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
tarray += target->strides[ULAB_MAX_DIMS - 3];
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
tarray -= target->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
tarray += target->strides[ULAB_MAX_DIMS - 4];
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif
if(p < ndarrays->len - 1) {
tpos += target->strides[axis] * source->shape[axis];
}
}
return MP_OBJ_FROM_PTR(target);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_concatenate_obj, 1, create_concatenate);
#endif
#if ULAB_MAX_DIMS > 1
#if ULAB_NUMPY_HAS_DIAG
//| def diag(a: ulab.numpy.ndarray, *, k: int = 0) -> ulab.numpy.ndarray:
//| """
//| .. param: a
//| an ndarray
//| .. param: k
//| Offset of the diagonal from the main diagonal. Can be positive or negative.
//|
//| Return specified diagonals."""
//| ...
//|
mp_obj_t create_diag(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_k, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("input must be an ndarray"));
}
ndarray_obj_t *source = MP_OBJ_TO_PTR(args[0].u_obj);
if(source->ndim == 1) { // return a rank-2 tensor with the prescribed diagonal
ndarray_obj_t *target = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, source->len, source->len), source->dtype);
uint8_t *sarray = (uint8_t *)source->array;
uint8_t *tarray = (uint8_t *)target->array;
for(size_t i=0; i < source->len; i++) {
memcpy(tarray, sarray, source->itemsize);
sarray += source->strides[ULAB_MAX_DIMS - 1];
tarray += (source->len + 1) * target->itemsize;
}
return MP_OBJ_FROM_PTR(target);
}
if(source->ndim > 2) {
mp_raise_TypeError(translate("input must be a tensor of rank 2"));
}
int32_t k = args[1].u_int;
size_t len = 0;
uint8_t *sarray = (uint8_t *)source->array;
if(k < 0) { // move the pointer "vertically"
if(-k < (int32_t)source->shape[ULAB_MAX_DIMS - 2]) {
sarray -= k * source->strides[ULAB_MAX_DIMS - 2];
len = MIN(source->shape[ULAB_MAX_DIMS - 2] + k, source->shape[ULAB_MAX_DIMS - 1]);
}
} else { // move the pointer "horizontally"
if(k < (int32_t)source->shape[ULAB_MAX_DIMS - 1]) {
sarray += k * source->strides[ULAB_MAX_DIMS - 1];
len = MIN(source->shape[ULAB_MAX_DIMS - 1] - k, source->shape[ULAB_MAX_DIMS - 2]);
}
}
if(len == 0) {
mp_raise_ValueError(translate("offset is too large"));
}
ndarray_obj_t *target = ndarray_new_linear_array(len, source->dtype);
uint8_t *tarray = (uint8_t *)target->array;
for(size_t i=0; i < len; i++) {
memcpy(tarray, sarray, source->itemsize);
sarray += source->strides[ULAB_MAX_DIMS - 2];
sarray += source->strides[ULAB_MAX_DIMS - 1];
tarray += source->itemsize;
}
return MP_OBJ_FROM_PTR(target);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_diag_obj, 1, create_diag);
#endif /* ULAB_NUMPY_HAS_DIAG */
#if ULAB_NUMPY_HAS_EMPTY
// This function is bound in numpy.c to numpy.zeros(), and is simply an alias for that
//| def empty(shape: Union[int, Tuple[int, ...]], *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
//| """
//| .. param: shape
//| Shape of the array, either an integer (for a 1-D array) or a tuple of 2 integers (for a 2-D array)
//| .. param: dtype
//| Type of values in the array
//|
//| Return a new array of the given shape with all elements set to 0. An alias for numpy.zeros."""
//| ...
//|
#endif
#if ULAB_NUMPY_HAS_EYE
//| def eye(size: int, *, M: Optional[int] = None, k: int = 0, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
//| """Return a new square array of size, with the diagonal elements set to 1
//| and the other elements set to 0. If k is given, the diagonal is shifted by the specified amount."""
//| ...
//|
mp_obj_t create_eye(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_INT, { .u_int = 0 } },
{ MP_QSTR_M, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_k, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
size_t n = args[0].u_int, m;
size_t k = args[2].u_int > 0 ? (size_t)args[2].u_int : (size_t)(-args[2].u_int);
uint8_t dtype = args[3].u_int;
if(args[1].u_rom_obj == mp_const_none) {
m = n;
} else {
m = mp_obj_get_int(args[1].u_rom_obj);
}
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, n, m), dtype);
if(dtype == NDARRAY_BOOL) {
dtype = NDARRAY_UINT8;
}
mp_obj_t one = mp_obj_new_int(1);
size_t i = 0;
if((args[2].u_int >= 0)) {
while(k < m) {
ndarray_set_value(dtype, ndarray->array, i*m+k, one);
k++;
i++;
}
} else {
while(k < n) {
ndarray_set_value(dtype, ndarray->array, k*m+i, one);
k++;
i++;
}
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_eye_obj, 1, create_eye);
#endif /* ULAB_NUMPY_HAS_EYE */
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_NUMPY_HAS_FULL
//| def full(shape: Union[int, Tuple[int, ...]], fill_value: Union[_float, _bool], *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
//| """
//| .. param: shape
//| Shape of the array, either an integer (for a 1-D array) or a tuple of integers (for tensors of higher rank)
//| .. param: fill_value
//| scalar, the value with which the array is filled
//| .. param: dtype
//| Type of values in the array
//|
//| Return a new array of the given shape with all elements set to 0."""
//| ...
//|
mp_obj_t create_full(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = args[2].u_int;
return create_zeros_ones_full(args[0].u_obj, dtype, args[1].u_obj);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_full_obj, 0, create_full);
#endif
#if ULAB_NUMPY_HAS_LINSPACE
//| def linspace(
//| start: _float,
//| stop: _float,
//| *,
//| dtype: _DType = ulab.numpy.float,
//| num: int = 50,
//| endpoint: _bool = True,
//| retstep: _bool = False
//| ) -> ulab.numpy.ndarray:
//| """
//| .. param: start
//| First value in the array
//| .. param: stop
//| Final value in the array
//| .. param int: num
//| Count of values in the array.
//| .. param: dtype
//| Type of values in the array
//| .. param bool: endpoint
//| Whether the ``stop`` value is included. Note that even when
//| endpoint=True, the exact ``stop`` value may not be included due to the
//| inaccuracy of floating point arithmetic.
//| .. param bool: retstep,
//| If True, return (`samples`, `step`), where `step` is the spacing between samples.
//|
//| Return a new 1-D array with ``num`` elements ranging from ``start`` to ``stop`` linearly."""
//| ...
//|
mp_obj_t create_linspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_num, MP_ARG_INT, { .u_int = 50 } },
{ MP_QSTR_endpoint, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_true } },
{ MP_QSTR_retstep, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_false } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(args[2].u_int < 2) {
mp_raise_ValueError(translate("number of points must be at least 2"));
}
size_t len = (size_t)args[2].u_int;
mp_float_t start, step, stop;
ndarray_obj_t *ndarray = NULL;
#if ULAB_SUPPORTS_COMPLEX
mp_float_t step_real, step_imag;
bool complex_out = false;
if(mp_obj_is_type(args[0].u_obj, &mp_type_complex) || mp_obj_is_type(args[1].u_obj, &mp_type_complex)) {
complex_out = true;
ndarray = ndarray_new_linear_array(len, NDARRAY_COMPLEX);
mp_float_t *array = (mp_float_t *)ndarray->array;
mp_float_t start_real, start_imag;
mp_float_t stop_real, stop_imag;
mp_obj_get_complex(args[0].u_obj, &start_real, &start_imag);
mp_obj_get_complex(args[1].u_obj, &stop_real, &stop_imag);
if(args[3].u_obj == mp_const_true) {
step_real = (stop_real - start_real) / (len - 1);
step_imag = (stop_imag - start_imag) / (len - 1);
} else {
step_real = (stop_real - start_real) / len;
step_imag = (stop_imag - start_imag) / len;
}
for(size_t i = 0; i < len; i++) {
*array++ = start_real;
*array++ = start_imag;
start_real += step_real;
start_imag += step_imag;
}
} else {
#endif
start = mp_obj_get_float(args[0].u_obj);
stop = mp_obj_get_float(args[1].u_obj);
uint8_t typecode = args[5].u_int;
if(args[3].u_obj == mp_const_true) {
step = (stop - start) / (len - 1);
} else {
step = (stop - start) / len;
stop = start + step * (len - 1);
}
ndarray = create_linspace_arange(start, step, stop, len, typecode);
#if ULAB_SUPPORTS_COMPLEX
}
#endif
if(args[4].u_obj == mp_const_false) {
return MP_OBJ_FROM_PTR(ndarray);
} else {
mp_obj_t tuple[2];
tuple[0] = ndarray;
#if ULAB_SUPPORTS_COMPLEX
if(complex_out) {
tuple[1] = mp_obj_new_complex(step_real, step_imag);
} else {
tuple[1] = mp_obj_new_float(step);
}
#else /* ULAB_SUPPORTS_COMPLEX */
tuple[1] = mp_obj_new_float(step);
#endif
return mp_obj_new_tuple(2, tuple);
}
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_linspace_obj, 2, create_linspace);
#endif
#if ULAB_NUMPY_HAS_LOGSPACE
//| def logspace(
//| start: _float,
//| stop: _float,
//| *,
//| dtype: _DType = ulab.numpy.float,
//| num: int = 50,
//| endpoint: _bool = True,
//| base: _float = 10.0
//| ) -> ulab.numpy.ndarray:
//| """
//| .. param: start
//| First value in the array
//| .. param: stop
//| Final value in the array
//| .. param int: num
//| Count of values in the array. Defaults to 50.
//| .. param: base
//| The base of the log space. The step size between the elements in
//| ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform. Defaults to 10.0.
//| .. param: dtype
//| Type of values in the array
//| .. param bool: endpoint
//| Whether the ``stop`` value is included. Note that even when
//| endpoint=True, the exact ``stop`` value may not be included due to the
//| inaccuracy of floating point arithmetic. Defaults to True.
//|
//| Return a new 1-D array with ``num`` evenly spaced elements on a log scale.
//| The sequence starts at ``base ** start``, and ends with ``base ** stop``."""
//| ...
//|
const mp_obj_float_t create_float_const_ten = {{&mp_type_float}, MICROPY_FLOAT_CONST(10.0)};
mp_obj_t create_logspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_num, MP_ARG_INT, { .u_int = 50 } },
{ MP_QSTR_base, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_PTR(&create_float_const_ten) } },
{ MP_QSTR_endpoint, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_true } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(args[2].u_int < 2) {
mp_raise_ValueError(translate("number of points must be at least 2"));
}
size_t len = (size_t)args[2].u_int;
mp_float_t start, step, quotient;
start = mp_obj_get_float(args[0].u_obj);
uint8_t dtype = args[5].u_int;
mp_float_t base = mp_obj_get_float(args[3].u_obj);
if(args[4].u_obj == mp_const_true) step = (mp_obj_get_float(args[1].u_obj) - start)/(len - 1);
else step = (mp_obj_get_float(args[1].u_obj) - start) / len;
quotient = MICROPY_FLOAT_C_FUN(pow)(base, step);
ndarray_obj_t *ndarray = ndarray_new_linear_array(len, dtype);
mp_float_t value = MICROPY_FLOAT_C_FUN(pow)(base, start);
if(ndarray->dtype == NDARRAY_UINT8) {
uint8_t *array = (uint8_t *)ndarray->array;
if(ndarray->boolean) {
memset(array, 1, len);
} else {
for(size_t i=0; i < len; i++, value *= quotient) *array++ = (uint8_t)value;
}
} else if(ndarray->dtype == NDARRAY_INT8) {
int8_t *array = (int8_t *)ndarray->array;
for(size_t i=0; i < len; i++, value *= quotient) *array++ = (int8_t)value;
} else if(ndarray->dtype == NDARRAY_UINT16) {
uint16_t *array = (uint16_t *)ndarray->array;
for(size_t i=0; i < len; i++, value *= quotient) *array++ = (uint16_t)value;
} else if(ndarray->dtype == NDARRAY_INT16) {
int16_t *array = (int16_t *)ndarray->array;
for(size_t i=0; i < len; i++, value *= quotient) *array++ = (int16_t)value;
} else {
mp_float_t *array = (mp_float_t *)ndarray->array;
for(size_t i=0; i < len; i++, value *= quotient) *array++ = value;
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_logspace_obj, 2, create_logspace);
#endif
#if ULAB_NUMPY_HAS_ONES
//| def ones(shape: Union[int, Tuple[int, ...]], *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
//| """
//| .. param: shape
//| Shape of the array, either an integer (for a 1-D array) or a tuple of 2 integers (for a 2-D array)
//| .. param: dtype
//| Type of values in the array
//|
//| Return a new array of the given shape with all elements set to 1."""
//| ...
//|
mp_obj_t create_ones(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = args[1].u_int;
mp_obj_t one = mp_obj_new_int(1);
return create_zeros_ones_full(args[0].u_obj, dtype, one);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_ones_obj, 0, create_ones);
#endif
#if ULAB_NUMPY_HAS_ZEROS
//| def zeros(shape: Union[int, Tuple[int, ...]], *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
//| """
//| .. param: shape
//| Shape of the array, either an integer (for a 1-D array) or a tuple of 2 integers (for a 2-D array)
//| .. param: dtype
//| Type of values in the array
//|
//| Return a new array of the given shape with all elements set to 0."""
//| ...
//|
mp_obj_t create_zeros(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = args[1].u_int;
return create_zeros_ones_full(args[0].u_obj, dtype, mp_const_none);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_zeros_obj, 0, create_zeros);
#endif
#if ULAB_NUMPY_HAS_FROMBUFFER
mp_obj_t create_frombuffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(NDARRAY_FLOAT) } },
{ MP_QSTR_count, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(-1) } },
{ MP_QSTR_offset, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(0) } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = mp_obj_get_int(args[1].u_obj);
size_t offset = mp_obj_get_int(args[3].u_obj);
mp_buffer_info_t bufinfo;
if(mp_get_buffer(args[0].u_obj, &bufinfo, MP_BUFFER_READ)) {
size_t sz = ulab_binary_get_size(dtype);
if(bufinfo.len < offset) {
mp_raise_ValueError(translate("offset must be non-negative and no greater than buffer length"));
}
size_t len = (bufinfo.len - offset) / sz;
if((len * sz) != (bufinfo.len - offset)) {
mp_raise_ValueError(translate("buffer size must be a multiple of element size"));
}
if(mp_obj_get_int(args[2].u_obj) > 0) {
size_t count = mp_obj_get_int(args[2].u_obj);
if(len < count) {
mp_raise_ValueError(translate("buffer is smaller than requested size"));
} else {
len = count;
}
}
ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
ndarray->base.type = &ulab_ndarray_type;
ndarray->dtype = dtype == NDARRAY_BOOL ? NDARRAY_UINT8 : dtype;
ndarray->boolean = dtype == NDARRAY_BOOL ? NDARRAY_BOOLEAN : NDARRAY_NUMERIC;
ndarray->ndim = 1;
ndarray->len = len;
ndarray->itemsize = sz;
ndarray->shape[ULAB_MAX_DIMS - 1] = len;
ndarray->strides[ULAB_MAX_DIMS - 1] = sz;
uint8_t *buffer = bufinfo.buf;
ndarray->array = buffer + offset;
return MP_OBJ_FROM_PTR(ndarray);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_frombuffer_obj, 1, create_frombuffer);
#endif
|