diff options
Diffstat (limited to 'circuitpython/py/runtime.c')
-rw-r--r-- | circuitpython/py/runtime.c | 1771 |
1 files changed, 1771 insertions, 0 deletions
diff --git a/circuitpython/py/runtime.c b/circuitpython/py/runtime.c new file mode 100644 index 0000000..f2ad872 --- /dev/null +++ b/circuitpython/py/runtime.c @@ -0,0 +1,1771 @@ +/* + * This file is part of the MicroPython project, http://micropython.org/ + * + * The MIT License (MIT) + * + * SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George + * SPDX-FileCopyrightText: Copyright (c) 2014-2018 Paul Sokolovsky + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include <stdarg.h> +#include <stdio.h> +#include <string.h> +#include <assert.h> + +#include "py/parsenum.h" +#include "py/compile.h" +#include "py/mperrno.h" +#include "py/objstr.h" +#include "py/objtuple.h" +#include "py/objlist.h" +#include "py/objtype.h" +#include "py/objmodule.h" +#include "py/objgenerator.h" +#include "py/smallint.h" +#include "py/runtime.h" +#include "py/builtin.h" +#include "py/stackctrl.h" +#include "py/gc.h" + +#include "supervisor/shared/translate.h" + +#if MICROPY_DEBUG_VERBOSE // print debugging info +#define DEBUG_PRINT (1) +#define DEBUG_printf DEBUG_printf +#define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__) +#else // don't print debugging info +#define DEBUG_printf(...) (void)0 +#define DEBUG_OP_printf(...) (void)0 +#endif + +const mp_obj_module_t mp_module___main__ = { + .base = { &mp_type_module }, + .globals = (mp_obj_dict_t *)&MP_STATE_VM(dict_main), +}; + +void mp_init(void) { + qstr_init(); + + // no pending exceptions to start with + MP_STATE_THREAD(mp_pending_exception) = MP_OBJ_NULL; + #if MICROPY_ENABLE_SCHEDULER + MP_STATE_VM(sched_state) = MP_SCHED_IDLE; + MP_STATE_VM(sched_idx) = 0; + MP_STATE_VM(sched_len) = 0; + #endif + + #if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF + mp_init_emergency_exception_buf(); + #endif + + #if MICROPY_KBD_EXCEPTION + // initialise the exception object for raising KeyboardInterrupt + MP_STATE_VM(mp_kbd_exception).base.type = &mp_type_KeyboardInterrupt; + MP_STATE_VM(mp_kbd_exception).args = (mp_obj_tuple_t *)&mp_const_empty_tuple_obj; + MP_STATE_VM(mp_kbd_exception).traceback = (mp_obj_traceback_t *)&mp_const_empty_traceback_obj; + #endif + + MP_STATE_VM(mp_reload_exception).base.type = &mp_type_ReloadException; + MP_STATE_VM(mp_reload_exception).args = (mp_obj_tuple_t *)&mp_const_empty_tuple_obj; + MP_STATE_VM(mp_reload_exception).traceback = (mp_obj_traceback_t *)&mp_const_empty_traceback_obj; + + // call port specific initialization if any + #ifdef MICROPY_PORT_INIT_FUNC + MICROPY_PORT_INIT_FUNC; + #endif + + #if MICROPY_ENABLE_COMPILER + // optimization disabled by default + MP_STATE_VM(mp_optimise_value) = 0; + #if MICROPY_EMIT_NATIVE + MP_STATE_VM(default_emit_opt) = MP_EMIT_OPT_NONE; + #endif + #endif + + // init global module dict + mp_obj_dict_init(&MP_STATE_VM(mp_loaded_modules_dict), MICROPY_LOADED_MODULES_DICT_SIZE); + + // initialise the __main__ module + mp_obj_dict_init(&MP_STATE_VM(dict_main), 1); + mp_obj_dict_store(MP_OBJ_FROM_PTR(&MP_STATE_VM(dict_main)), MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__)); + + // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New()) + mp_locals_set(&MP_STATE_VM(dict_main)); + mp_globals_set(&MP_STATE_VM(dict_main)); + + #if MICROPY_CAN_OVERRIDE_BUILTINS + // start with no extensions to builtins + MP_STATE_VM(mp_module_builtins_override_dict) = NULL; + #endif + + #if MICROPY_PERSISTENT_CODE_TRACK_RELOC_CODE + MP_STATE_VM(track_reloc_code_list) = MP_OBJ_NULL; + #endif + + #ifdef MICROPY_FSUSERMOUNT + // zero out the pointers to the user-mounted devices + memset(MP_STATE_VM(fs_user_mount) + MICROPY_FATFS_NUM_PERSISTENT, 0, + sizeof(MP_STATE_VM(fs_user_mount)) - MICROPY_FATFS_NUM_PERSISTENT); + #endif + + #if MICROPY_PY_SYS_PATH_ARGV_DEFAULTS + mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_path), 0); + mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script) + #if MICROPY_MODULE_FROZEN + mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__dot_frozen)); + #endif + mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_argv), 0); + #endif + + #if MICROPY_PY_SYS_ATEXIT + MP_STATE_VM(sys_exitfunc) = mp_const_none; + #endif + + #if MICROPY_PY_SYS_SETTRACE + MP_STATE_THREAD(prof_trace_callback) = MP_OBJ_NULL; + MP_STATE_THREAD(prof_callback_is_executing) = false; + MP_STATE_THREAD(current_code_state) = NULL; + #endif + + #if MICROPY_PY_THREAD_GIL + mp_thread_mutex_init(&MP_STATE_VM(gil_mutex)); + #endif + + // call port specific initialization if any + #ifdef MICROPY_PORT_INIT_FUNC + MICROPY_PORT_INIT_FUNC; + #endif + + MP_THREAD_GIL_ENTER(); +} + +void mp_deinit(void) { + MP_THREAD_GIL_EXIT(); + + // call port specific deinitialization if any + #ifdef MICROPY_PORT_DEINIT_FUNC + MICROPY_PORT_DEINIT_FUNC; + #endif +} + +mp_obj_t MICROPY_WRAP_MP_LOAD_NAME(mp_load_name)(qstr qst) { + // logic: search locals, globals, builtins + DEBUG_OP_printf("load name %s\n", qstr_str(qst)); + // If we're at the outer scope (locals == globals), dispatch to load_global right away + if (mp_locals_get() != mp_globals_get()) { + mp_map_elem_t *elem = mp_map_lookup(&mp_locals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); + if (elem != NULL) { + return elem->value; + } + } + return mp_load_global(qst); +} + +mp_obj_t MICROPY_WRAP_MP_LOAD_GLOBAL(mp_load_global)(qstr qst) { + // logic: search globals, builtins + DEBUG_OP_printf("load global %s\n", qstr_str(qst)); + mp_map_elem_t *elem = mp_map_lookup(&mp_globals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); + if (elem == NULL) { + #if MICROPY_CAN_OVERRIDE_BUILTINS + if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) { + // lookup in additional dynamic table of builtins first + elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); + if (elem != NULL) { + return elem->value; + } + } + #endif + elem = mp_map_lookup((mp_map_t *)&mp_module_builtins_globals.map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); + if (elem == NULL) { + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + mp_raise_msg(&mp_type_NameError, MP_ERROR_TEXT("name not defined")); + #else + mp_raise_msg_varg(&mp_type_NameError, MP_ERROR_TEXT("name '%q' is not defined"), qst); + #endif + } + } + return elem->value; +} + +mp_obj_t mp_load_build_class(void) { + DEBUG_OP_printf("load_build_class\n"); + #if MICROPY_CAN_OVERRIDE_BUILTINS + if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) { + // lookup in additional dynamic table of builtins first + mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP); + if (elem != NULL) { + return elem->value; + } + } + #endif + return MP_OBJ_FROM_PTR(&mp_builtin___build_class___obj); +} + +void PLACE_IN_ITCM(mp_store_name)(qstr qst, mp_obj_t obj) { + DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qst), obj); + mp_obj_dict_store(MP_OBJ_FROM_PTR(mp_locals_get()), MP_OBJ_NEW_QSTR(qst), obj); +} + +void mp_delete_name(qstr qst) { + DEBUG_OP_printf("delete name %s\n", qstr_str(qst)); + // TODO convert KeyError to NameError if qst not found + mp_obj_dict_delete(MP_OBJ_FROM_PTR(mp_locals_get()), MP_OBJ_NEW_QSTR(qst)); +} + +void PLACE_IN_ITCM(mp_store_global)(qstr qst, mp_obj_t obj) { + DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qst), obj); + mp_obj_dict_store(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(qst), obj); +} + +void mp_delete_global(qstr qst) { + DEBUG_OP_printf("delete global %s\n", qstr_str(qst)); + // TODO convert KeyError to NameError if qst not found + mp_obj_dict_delete(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(qst)); +} + +mp_obj_t mp_unary_op(mp_unary_op_t op, mp_obj_t arg) { + DEBUG_OP_printf("unary " UINT_FMT " %q %p\n", op, mp_unary_op_method_name[op], arg); + + if (op == MP_UNARY_OP_NOT) { + // "not x" is the negative of whether "x" is true per Python semantics + return mp_obj_new_bool(mp_obj_is_true(arg) == 0); + } else if (mp_obj_is_small_int(arg)) { + mp_int_t val = MP_OBJ_SMALL_INT_VALUE(arg); + switch (op) { + case MP_UNARY_OP_BOOL: + return mp_obj_new_bool(val != 0); + case MP_UNARY_OP_HASH: + return arg; + case MP_UNARY_OP_POSITIVE: + case MP_UNARY_OP_INT: + return arg; + case MP_UNARY_OP_NEGATIVE: + // check for overflow + if (val == MP_SMALL_INT_MIN) { + return mp_obj_new_int(-val); + } else { + return MP_OBJ_NEW_SMALL_INT(-val); + } + case MP_UNARY_OP_ABS: + if (val >= 0) { + return arg; + } else if (val == MP_SMALL_INT_MIN) { + // check for overflow + return mp_obj_new_int(-val); + } else { + return MP_OBJ_NEW_SMALL_INT(-val); + } + default: + assert(op == MP_UNARY_OP_INVERT); + return MP_OBJ_NEW_SMALL_INT(~val); + } + } else if (op == MP_UNARY_OP_HASH && mp_obj_is_str_or_bytes(arg)) { + // fast path for hashing str/bytes + GET_STR_HASH(arg, h); + if (h == 0) { + GET_STR_DATA_LEN(arg, data, len); + h = qstr_compute_hash(data, len); + } + return MP_OBJ_NEW_SMALL_INT(h); + } else { + const mp_obj_type_t *type = mp_obj_get_type(arg); + mp_unary_op_fun_t unary_op = mp_type_get_unary_op_slot(type); + if (unary_op != NULL) { + mp_obj_t result = unary_op(op, arg); + if (result != MP_OBJ_NULL) { + return result; + } + } + if (op == MP_UNARY_OP_BOOL) { + // Type doesn't have unary_op (or didn't handle MP_UNARY_OP_BOOL), + // so is implicitly True as this code path is impossible to reach + // if arg==mp_const_none. + return mp_const_true; + } + // With MP_UNARY_OP_INT, mp_unary_op() becomes a fallback for mp_obj_get_int(). + // In this case provide a more focused error message to not confuse, e.g. chr(1.0) + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + if (op == MP_UNARY_OP_INT) { + mp_raise_TypeError(MP_ERROR_TEXT("can't convert to int")); + } else { + mp_raise_TypeError(MP_ERROR_TEXT("unsupported type for operator")); + } + #else + if (op == MP_UNARY_OP_INT) { + mp_raise_TypeError_varg(MP_ERROR_TEXT("can't convert %q to int"), mp_obj_get_type_qstr(arg)); + } else { + mp_raise_TypeError_varg(MP_ERROR_TEXT("unsupported type for %q: '%q'"), + mp_unary_op_method_name[op], mp_obj_get_type_qstr(arg)); + } + #endif + } +} + +mp_obj_t MICROPY_WRAP_MP_BINARY_OP(mp_binary_op)(mp_binary_op_t op, mp_obj_t lhs, mp_obj_t rhs) { + DEBUG_OP_printf("binary " UINT_FMT " %q %p %p\n", op, mp_binary_op_method_name[op], lhs, rhs); + + // TODO correctly distinguish inplace operators for mutable objects + // lookup logic that CPython uses for +=: + // check for implemented += + // then check for implemented + + // then check for implemented seq.inplace_concat + // then check for implemented seq.concat + // then fail + // note that list does not implement + or +=, so that inplace_concat is reached first for += + + // deal with is + if (op == MP_BINARY_OP_IS) { + return mp_obj_new_bool(lhs == rhs); + } + + // deal with == and != for all types + if (op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) { + // mp_obj_equal_not_equal supports a bunch of shortcuts + return mp_obj_equal_not_equal(op, lhs, rhs); + } + + // deal with exception_match for all types + if (op == MP_BINARY_OP_EXCEPTION_MATCH) { + // rhs must be issubclass(rhs, BaseException) + if (mp_obj_is_exception_type(rhs)) { + if (mp_obj_exception_match(lhs, rhs)) { + return mp_const_true; + } else { + return mp_const_false; + } + } else if (mp_obj_is_type(rhs, &mp_type_tuple)) { + mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(rhs); + for (size_t i = 0; i < tuple->len; i++) { + rhs = tuple->items[i]; + if (!mp_obj_is_exception_type(rhs)) { + goto unsupported_op; + } + if (mp_obj_exception_match(lhs, rhs)) { + return mp_const_true; + } + } + return mp_const_false; + } + goto unsupported_op; + } + + if (mp_obj_is_small_int(lhs)) { + mp_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs); + if (mp_obj_is_small_int(rhs)) { + mp_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs); + // This is a binary operation: lhs_val op rhs_val + // We need to be careful to handle overflow; see CERT INT32-C + // Operations that can overflow: + // + result always fits in mp_int_t, then handled by SMALL_INT check + // - result always fits in mp_int_t, then handled by SMALL_INT check + // * checked explicitly + // / if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check + // % if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check + // << checked explicitly + switch (op) { + case MP_BINARY_OP_OR: + case MP_BINARY_OP_INPLACE_OR: + lhs_val |= rhs_val; + break; + case MP_BINARY_OP_XOR: + case MP_BINARY_OP_INPLACE_XOR: + lhs_val ^= rhs_val; + break; + case MP_BINARY_OP_AND: + case MP_BINARY_OP_INPLACE_AND: + lhs_val &= rhs_val; + break; + case MP_BINARY_OP_LSHIFT: + case MP_BINARY_OP_INPLACE_LSHIFT: { + if (rhs_val < 0) { + // negative shift not allowed + mp_raise_ValueError(MP_ERROR_TEXT("negative shift count")); + } else if (rhs_val >= (mp_int_t)(sizeof(lhs_val) * MP_BITS_PER_BYTE) + || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) + || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) { + // left-shift will overflow, so use higher precision integer + lhs = mp_obj_new_int_from_ll(lhs_val); + goto generic_binary_op; + } else { + // use standard precision + lhs_val = (mp_uint_t)lhs_val << rhs_val; + } + break; + } + case MP_BINARY_OP_RSHIFT: + case MP_BINARY_OP_INPLACE_RSHIFT: + if (rhs_val < 0) { + // negative shift not allowed + mp_raise_ValueError(MP_ERROR_TEXT("negative shift count")); + } else { + // standard precision is enough for right-shift + if (rhs_val >= (mp_int_t)(sizeof(lhs_val) * MP_BITS_PER_BYTE)) { + // Shifting to big amounts is underfined behavior + // in C and is CPU-dependent; propagate sign bit. + rhs_val = sizeof(lhs_val) * MP_BITS_PER_BYTE - 1; + } + lhs_val >>= rhs_val; + } + break; + case MP_BINARY_OP_ADD: + case MP_BINARY_OP_INPLACE_ADD: + lhs_val += rhs_val; + break; + case MP_BINARY_OP_SUBTRACT: + case MP_BINARY_OP_INPLACE_SUBTRACT: + lhs_val -= rhs_val; + break; + case MP_BINARY_OP_MULTIPLY: + case MP_BINARY_OP_INPLACE_MULTIPLY: { + + // If long long type exists and is larger than mp_int_t, then + // we can use the following code to perform overflow-checked multiplication. + // Otherwise (eg in x64 case) we must use mp_small_int_mul_overflow. + #if 0 + // compute result using long long precision + long long res = (long long)lhs_val * (long long)rhs_val; + if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) { + // result overflowed SMALL_INT, so return higher precision integer + return mp_obj_new_int_from_ll(res); + } else { + // use standard precision + lhs_val = (mp_int_t)res; + } + #endif + + if (mp_small_int_mul_overflow(lhs_val, rhs_val)) { + // use higher precision + lhs = mp_obj_new_int_from_ll(lhs_val); + goto generic_binary_op; + } else { + // use standard precision + return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val); + } + } + case MP_BINARY_OP_FLOOR_DIVIDE: + case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE: + if (rhs_val == 0) { + goto zero_division; + } + lhs_val = mp_small_int_floor_divide(lhs_val, rhs_val); + break; + + #if MICROPY_PY_BUILTINS_FLOAT + case MP_BINARY_OP_TRUE_DIVIDE: + case MP_BINARY_OP_INPLACE_TRUE_DIVIDE: + if (rhs_val == 0) { + goto zero_division; + } + return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val); + #endif + + case MP_BINARY_OP_MODULO: + case MP_BINARY_OP_INPLACE_MODULO: { + if (rhs_val == 0) { + goto zero_division; + } + lhs_val = mp_small_int_modulo(lhs_val, rhs_val); + break; + } + + case MP_BINARY_OP_POWER: + case MP_BINARY_OP_INPLACE_POWER: + if (rhs_val < 0) { + #if MICROPY_PY_BUILTINS_FLOAT + return mp_obj_float_binary_op(op, (mp_float_t)lhs_val, rhs); + #else + mp_raise_ValueError(MP_ERROR_TEXT("negative power with no float support")); + #endif + } else { + mp_int_t ans = 1; + while (rhs_val > 0) { + if (rhs_val & 1) { + if (mp_small_int_mul_overflow(ans, lhs_val)) { + goto power_overflow; + } + ans *= lhs_val; + } + if (rhs_val == 1) { + break; + } + rhs_val /= 2; + if (mp_small_int_mul_overflow(lhs_val, lhs_val)) { + goto power_overflow; + } + lhs_val *= lhs_val; + } + lhs_val = ans; + } + break; + + power_overflow: + // use higher precision + lhs = mp_obj_new_int_from_ll(MP_OBJ_SMALL_INT_VALUE(lhs)); + goto generic_binary_op; + + case MP_BINARY_OP_DIVMOD: { + if (rhs_val == 0) { + goto zero_division; + } + // to reduce stack usage we don't pass a temp array of the 2 items + mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL)); + tuple->items[0] = MP_OBJ_NEW_SMALL_INT(mp_small_int_floor_divide(lhs_val, rhs_val)); + tuple->items[1] = MP_OBJ_NEW_SMALL_INT(mp_small_int_modulo(lhs_val, rhs_val)); + return MP_OBJ_FROM_PTR(tuple); + } + + case MP_BINARY_OP_LESS: + return mp_obj_new_bool(lhs_val < rhs_val); + case MP_BINARY_OP_MORE: + return mp_obj_new_bool(lhs_val > rhs_val); + case MP_BINARY_OP_LESS_EQUAL: + return mp_obj_new_bool(lhs_val <= rhs_val); + case MP_BINARY_OP_MORE_EQUAL: + return mp_obj_new_bool(lhs_val >= rhs_val); + + default: + goto unsupported_op; + } + // This is an inlined version of mp_obj_new_int, for speed + if (MP_SMALL_INT_FITS(lhs_val)) { + return MP_OBJ_NEW_SMALL_INT(lhs_val); + } else { + return mp_obj_new_int_from_ll(lhs_val); + } + #if MICROPY_PY_BUILTINS_FLOAT + } else if (mp_obj_is_float(rhs)) { + mp_obj_t res = mp_obj_float_binary_op(op, (mp_float_t)lhs_val, rhs); + if (res == MP_OBJ_NULL) { + goto unsupported_op; + } else { + return res; + } + #endif + #if MICROPY_PY_BUILTINS_COMPLEX + } else if (mp_obj_is_type(rhs, &mp_type_complex)) { + mp_obj_t res = mp_obj_complex_binary_op(op, (mp_float_t)lhs_val, 0, rhs); + if (res == MP_OBJ_NULL) { + goto unsupported_op; + } else { + return res; + } + #endif + } + } + + // Convert MP_BINARY_OP_IN to MP_BINARY_OP_CONTAINS with swapped args. + if (op == MP_BINARY_OP_IN) { + op = MP_BINARY_OP_CONTAINS; + mp_obj_t temp = lhs; + lhs = rhs; + rhs = temp; + } + + // generic binary_op supplied by type + const mp_obj_type_t *type; +generic_binary_op: + type = mp_obj_get_type(lhs); + mp_binary_op_fun_t binary_op = mp_type_get_binary_op_slot(type); + if (binary_op != NULL) { + mp_obj_t result = binary_op(op, lhs, rhs); + if (result != MP_OBJ_NULL) { + return result; + } + } + + #if MICROPY_PY_REVERSE_SPECIAL_METHODS + if (op >= MP_BINARY_OP_OR && op <= MP_BINARY_OP_POWER) { + mp_obj_t t = rhs; + rhs = lhs; + lhs = t; + op += MP_BINARY_OP_REVERSE_OR - MP_BINARY_OP_OR; + goto generic_binary_op; + } else if (op >= MP_BINARY_OP_REVERSE_OR) { + // Convert __rop__ back to __op__ for error message + mp_obj_t t = rhs; + rhs = lhs; + lhs = t; + op -= MP_BINARY_OP_REVERSE_OR - MP_BINARY_OP_OR; + } + #endif + + if (op == MP_BINARY_OP_CONTAINS) { + // If type didn't support containment then explicitly walk the iterator. + // mp_getiter will raise the appropriate exception if lhs is not iterable. + mp_obj_iter_buf_t iter_buf; + mp_obj_t iter = mp_getiter(lhs, &iter_buf); + mp_obj_t next; + while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) { + if (mp_obj_equal(next, rhs)) { + return mp_const_true; + } + } + return mp_const_false; + } + +unsupported_op: + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + mp_raise_TypeError(MP_ERROR_TEXT("unsupported type for operator")); + #else + mp_raise_TypeError_varg( + MP_ERROR_TEXT("unsupported types for %q: '%q', '%q'"), + mp_binary_op_method_name[op], mp_obj_get_type_qstr(lhs), mp_obj_get_type_qstr(rhs)); + #endif + +zero_division: + mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("division by zero")); +} + +mp_obj_t mp_call_function_0(mp_obj_t fun) { + return mp_call_function_n_kw(fun, 0, 0, NULL); +} + +mp_obj_t mp_call_function_1(mp_obj_t fun, mp_obj_t arg) { + return mp_call_function_n_kw(fun, 1, 0, &arg); +} + +mp_obj_t mp_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) { + mp_obj_t args[2]; + args[0] = arg1; + args[1] = arg2; + return mp_call_function_n_kw(fun, 2, 0, args); +} + +// args contains, eg: arg0 arg1 key0 value0 key1 value1 +mp_obj_t mp_call_function_n_kw(mp_obj_t fun_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { + // TODO improve this: fun object can specify its type and we parse here the arguments, + // passing to the function arrays of fixed and keyword arguments + + DEBUG_OP_printf("calling function %p(n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", fun_in, n_args, n_kw, args); + + // get the type + const mp_obj_type_t *type = mp_obj_get_type(fun_in); + + // do the call + mp_call_fun_t call = mp_type_get_call_slot(type); + if (call) { + return call(fun_in, n_args, n_kw, args); + } + + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + mp_raise_TypeError(MP_ERROR_TEXT("object not callable")); + #else + mp_raise_TypeError_varg(MP_ERROR_TEXT("'%q' object is not callable"), mp_obj_get_type_qstr(fun_in)); + #endif +} + +// args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1) +// if n_args==0 and n_kw==0 then there are only fun and self/NULL +mp_obj_t mp_call_method_n_kw(size_t n_args, size_t n_kw, const mp_obj_t *args) { + DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", args[0], args[1], n_args, n_kw, args); + int adjust = (args[1] == MP_OBJ_NULL) ? 0 : 1; + return mp_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust); +} + +// This function only needs to be exposed externally when in stackless mode. +#if !MICROPY_STACKLESS +STATIC +#endif +void PLACE_IN_ITCM(mp_call_prepare_args_n_kw_var)(bool have_self, size_t n_args_n_kw, const mp_obj_t *args, mp_call_args_t *out_args) { + mp_obj_t fun = *args++; + mp_obj_t self = MP_OBJ_NULL; + if (have_self) { + self = *args++; // may be MP_OBJ_NULL + } + uint n_args = n_args_n_kw & 0xff; + uint n_kw = (n_args_n_kw >> 8) & 0xff; + mp_obj_t pos_seq = args[n_args + 2 * n_kw]; // may be MP_OBJ_NULL + mp_obj_t kw_dict = args[n_args + 2 * n_kw + 1]; // may be MP_OBJ_NULL + + DEBUG_OP_printf("call method var (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p, seq=%p, dict=%p)\n", fun, self, n_args, n_kw, args, pos_seq, kw_dict); + + // We need to create the following array of objects: + // args[0 .. n_args] unpacked(pos_seq) args[n_args .. n_args + 2 * n_kw] unpacked(kw_dict) + // TODO: optimize one day to avoid constructing new arg array? Will be hard. + + // The new args array + mp_obj_t *args2; + uint args2_alloc; + uint args2_len = 0; + + // Try to get a hint for the size of the kw_dict + uint kw_dict_len = 0; + if (kw_dict != MP_OBJ_NULL && mp_obj_is_type(kw_dict, &mp_type_dict)) { + kw_dict_len = mp_obj_dict_len(kw_dict); + } + + // Extract the pos_seq sequence to the new args array. + // Note that it can be arbitrary iterator. + if (pos_seq == MP_OBJ_NULL) { + // no sequence + + // allocate memory for the new array of args + args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len); + args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t)); + + // copy the self + if (self != MP_OBJ_NULL) { + args2[args2_len++] = self; + } + + // copy the fixed pos args + mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t); + args2_len += n_args; + + } else if (mp_obj_is_type(pos_seq, &mp_type_tuple) || mp_obj_is_type(pos_seq, &mp_type_list)) { + // optimise the case of a tuple and list + + // get the items + size_t len; + mp_obj_t *items; + mp_obj_get_array(pos_seq, &len, &items); + + // allocate memory for the new array of args + args2_alloc = 1 + n_args + len + 2 * (n_kw + kw_dict_len); + args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t)); + + // copy the self + if (self != MP_OBJ_NULL) { + args2[args2_len++] = self; + } + + // copy the fixed and variable position args + mp_seq_cat(args2 + args2_len, args, n_args, items, len, mp_obj_t); + args2_len += n_args + len; + + } else { + // generic iterator + + // allocate memory for the new array of args + args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len) + 3; + args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t)); + + // copy the self + if (self != MP_OBJ_NULL) { + args2[args2_len++] = self; + } + + // copy the fixed position args + mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t); + args2_len += n_args; + + // extract the variable position args from the iterator + mp_obj_iter_buf_t iter_buf; + mp_obj_t iterable = mp_getiter(pos_seq, &iter_buf); + mp_obj_t item; + while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { + if (args2_len >= args2_alloc) { + args2 = mp_nonlocal_realloc(args2, args2_alloc * sizeof(mp_obj_t), args2_alloc * 2 * sizeof(mp_obj_t)); + args2_alloc *= 2; + } + args2[args2_len++] = item; + } + } + + // The size of the args2 array now is the number of positional args. + uint pos_args_len = args2_len; + + // Copy the fixed kw args. + mp_seq_copy(args2 + args2_len, args + n_args, 2 * n_kw, mp_obj_t); + args2_len += 2 * n_kw; + + // Extract (key,value) pairs from kw_dict dictionary and append to args2. + // Note that it can be arbitrary iterator. + if (kw_dict == MP_OBJ_NULL) { + // pass + } else if (mp_obj_is_type(kw_dict, &mp_type_dict)) { + // dictionary + mp_map_t *map = mp_obj_dict_get_map(kw_dict); + assert(args2_len + 2 * map->used <= args2_alloc); // should have enough, since kw_dict_len is in this case hinted correctly above + for (size_t i = 0; i < map->alloc; i++) { + if (mp_map_slot_is_filled(map, i)) { + // the key must be a qstr, so intern it if it's a string + mp_obj_t key = map->table[i].key; + if (!mp_obj_is_qstr(key)) { + key = mp_obj_str_intern_checked(key); + } + args2[args2_len++] = key; + args2[args2_len++] = map->table[i].value; + } + } + } else { + // generic mapping: + // - call keys() to get an iterable of all keys in the mapping + // - call __getitem__ for each key to get the corresponding value + + // get the keys iterable + mp_obj_t dest[3]; + mp_load_method(kw_dict, MP_QSTR_keys, dest); + mp_obj_t iterable = mp_getiter(mp_call_method_n_kw(0, 0, dest), NULL); + + mp_obj_t key; + while ((key = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { + // expand size of args array if needed + if (args2_len + 1 >= args2_alloc) { + uint new_alloc = args2_alloc * 2; + if (new_alloc < 4) { + new_alloc = 4; + } + args2 = mp_nonlocal_realloc(args2, args2_alloc * sizeof(mp_obj_t), new_alloc * sizeof(mp_obj_t)); + args2_alloc = new_alloc; + } + + // the key must be a qstr, so intern it if it's a string + if (!mp_obj_is_qstr(key)) { + key = mp_obj_str_intern_checked(key); + } + + // get the value corresponding to the key + mp_load_method(kw_dict, MP_QSTR___getitem__, dest); + dest[2] = key; + mp_obj_t value = mp_call_method_n_kw(1, 0, dest); + + // store the key/value pair in the argument array + args2[args2_len++] = key; + args2[args2_len++] = value; + } + } + + out_args->fun = fun; + out_args->args = args2; + out_args->n_args = pos_args_len; + out_args->n_kw = (args2_len - pos_args_len) / 2; + out_args->n_alloc = args2_alloc; +} + +mp_obj_t mp_call_method_n_kw_var(bool have_self, size_t n_args_n_kw, const mp_obj_t *args) { + mp_call_args_t out_args; + mp_call_prepare_args_n_kw_var(have_self, n_args_n_kw, args, &out_args); + + mp_obj_t res = mp_call_function_n_kw(out_args.fun, out_args.n_args, out_args.n_kw, out_args.args); + mp_nonlocal_free(out_args.args, out_args.n_alloc * sizeof(mp_obj_t)); + + return res; +} + +// unpacked items are stored in reverse order into the array pointed to by items +void mp_unpack_sequence(mp_obj_t seq_in, size_t num, mp_obj_t *items) { + size_t seq_len; + if (mp_obj_is_type(seq_in, &mp_type_tuple) || mp_obj_is_type(seq_in, &mp_type_list)) { + mp_obj_t *seq_items; + mp_obj_get_array(seq_in, &seq_len, &seq_items); + if (seq_len < num) { + goto too_short; + } else if (seq_len > num) { + goto too_long; + } + for (size_t i = 0; i < num; i++) { + items[i] = seq_items[num - 1 - i]; + } + } else { + mp_obj_iter_buf_t iter_buf; + mp_obj_t iterable = mp_getiter(seq_in, &iter_buf); + + for (seq_len = 0; seq_len < num; seq_len++) { + mp_obj_t el = mp_iternext(iterable); + if (el == MP_OBJ_STOP_ITERATION) { + goto too_short; + } + items[num - 1 - seq_len] = el; + } + if (mp_iternext(iterable) != MP_OBJ_STOP_ITERATION) { + goto too_long; + } + } + return; + +too_short: + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + mp_raise_ValueError(MP_ERROR_TEXT("wrong number of values to unpack")); + #else + mp_raise_ValueError_varg(MP_ERROR_TEXT("need more than %d values to unpack"), + (int)seq_len); + #endif +too_long: + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + mp_raise_ValueError(MP_ERROR_TEXT("wrong number of values to unpack")); + #else + mp_raise_ValueError_varg(MP_ERROR_TEXT("too many values to unpack (expected %d)"), + (int)num); + #endif +} + +// unpacked items are stored in reverse order into the array pointed to by items +void mp_unpack_ex(mp_obj_t seq_in, size_t num_in, mp_obj_t *items) { + size_t num_left = num_in & 0xff; + size_t num_right = (num_in >> 8) & 0xff; + DEBUG_OP_printf("unpack ex " UINT_FMT " " UINT_FMT "\n", num_left, num_right); + size_t seq_len; + if (mp_obj_is_type(seq_in, &mp_type_tuple) || mp_obj_is_type(seq_in, &mp_type_list)) { + // Make the seq variable volatile so the compiler keeps a reference to it, + // since if it's a tuple then seq_items points to the interior of the GC cell + // and mp_obj_new_list may trigger a GC which doesn't trace this and reclaims seq. + volatile mp_obj_t seq = seq_in; + mp_obj_t *seq_items; + mp_obj_get_array(seq, &seq_len, &seq_items); + if (seq_len < num_left + num_right) { + goto too_short; + } + for (size_t i = 0; i < num_right; i++) { + items[i] = seq_items[seq_len - 1 - i]; + } + items[num_right] = mp_obj_new_list(seq_len - num_left - num_right, seq_items + num_left); + for (size_t i = 0; i < num_left; i++) { + items[num_right + 1 + i] = seq_items[num_left - 1 - i]; + } + seq = MP_OBJ_NULL; + } else { + // Generic iterable; this gets a bit messy: we unpack known left length to the + // items destination array, then the rest to a dynamically created list. Once the + // iterable is exhausted, we take from this list for the right part of the items. + // TODO Improve to waste less memory in the dynamically created list. + mp_obj_t iterable = mp_getiter(seq_in, NULL); + mp_obj_t item; + for (seq_len = 0; seq_len < num_left; seq_len++) { + item = mp_iternext(iterable); + if (item == MP_OBJ_STOP_ITERATION) { + goto too_short; + } + items[num_left + num_right + 1 - 1 - seq_len] = item; + } + mp_obj_list_t *rest = MP_OBJ_TO_PTR(mp_obj_new_list(0, NULL)); + while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { + mp_obj_list_append(MP_OBJ_FROM_PTR(rest), item); + } + if (rest->len < num_right) { + goto too_short; + } + items[num_right] = MP_OBJ_FROM_PTR(rest); + for (size_t i = 0; i < num_right; i++) { + items[num_right - 1 - i] = rest->items[rest->len - num_right + i]; + } + mp_obj_list_set_len(MP_OBJ_FROM_PTR(rest), rest->len - num_right); + } + return; + +too_short: + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + mp_raise_ValueError(MP_ERROR_TEXT("wrong number of values to unpack")); + #else + mp_raise_ValueError_varg(MP_ERROR_TEXT("need more than %d values to unpack"), + (int)seq_len); + #endif +} + +mp_obj_t mp_load_attr(mp_obj_t base, qstr attr) { + DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr)); + // use load_method + mp_obj_t dest[2]; + mp_load_method(base, attr, dest); + if (dest[1] == MP_OBJ_NULL) { + // load_method returned just a normal attribute + return dest[0]; + } else { + // load_method returned a method, so build a bound method object + return mp_obj_new_bound_meth(dest[0], dest[1]); + } +} + +#if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG + +// The following "checked fun" type is local to the mp_convert_member_lookup +// function, and serves to check that the first argument to a builtin function +// has the correct type. + +typedef struct _mp_obj_checked_fun_t { + mp_obj_base_t base; + const mp_obj_type_t *type; + mp_obj_t fun; +} mp_obj_checked_fun_t; + +STATIC mp_obj_t checked_fun_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { + mp_obj_checked_fun_t *self = MP_OBJ_TO_PTR(self_in); + if (n_args > 0) { + const mp_obj_type_t *arg0_type = mp_obj_get_type(args[0]); + if (arg0_type != self->type) { + if (MICROPY_ERROR_REPORTING != MICROPY_ERROR_REPORTING_DETAILED) { + mp_raise_TypeError(MP_ERROR_TEXT("argument has wrong type")); + } else { + mp_raise_TypeError_varg(MP_ERROR_TEXT("argument should be a '%q' not a '%q'"), + self->type->name, arg0_type->name); + } + } + } + return mp_call_function_n_kw(self->fun, n_args, n_kw, args); +} + +STATIC const mp_obj_type_t mp_type_checked_fun = { + { &mp_type_type }, + .flags = MP_TYPE_FLAG_BINDS_SELF | MP_TYPE_FLAG_EXTENDED, + .name = MP_QSTR_function, + MP_TYPE_EXTENDED_FIELDS( + .call = checked_fun_call, + ) +}; + +STATIC mp_obj_t mp_obj_new_checked_fun(const mp_obj_type_t *type, mp_obj_t fun) { + mp_obj_checked_fun_t *o = m_new_obj(mp_obj_checked_fun_t); + o->base.type = &mp_type_checked_fun; + o->type = type; + o->fun = fun; + return MP_OBJ_FROM_PTR(o); +} + +#endif // MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG + +// Given a member that was extracted from an instance, convert it correctly +// and put the result in the dest[] array for a possible method call. +// Conversion means dealing with static/class methods, callables, and values. +// see http://docs.python.org/3/howto/descriptor.html +// and also https://mail.python.org/pipermail/python-dev/2015-March/138950.html +void mp_convert_member_lookup(mp_obj_t self, const mp_obj_type_t *type, mp_obj_t member, mp_obj_t *dest) { + if (mp_obj_is_obj(member)) { + const mp_obj_type_t *m_type = ((mp_obj_base_t *)MP_OBJ_TO_PTR(member))->type; + if (m_type->flags & MP_TYPE_FLAG_BINDS_SELF) { + // `member` is a function that binds self as its first argument. + if (m_type->flags & MP_TYPE_FLAG_BUILTIN_FUN) { + // `member` is a built-in function, which has special behaviour. + if (mp_obj_is_instance_type(type)) { + // Built-in functions on user types always behave like a staticmethod. + dest[0] = member; + } + #if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG + else if (self == MP_OBJ_NULL && type != &mp_type_object) { + // `member` is a built-in method without a first argument, so wrap + // it in a type checker that will check self when it's supplied. + // Note that object will do its own checking so shouldn't be wrapped. + dest[0] = mp_obj_new_checked_fun(type, member); + } + #endif + else { + // Return a (built-in) bound method, with self being this object. + dest[0] = member; + dest[1] = self; + } + } else { + // Return a bound method, with self being this object. + dest[0] = member; + dest[1] = self; + } + } else if (m_type == &mp_type_staticmethod) { + // `member` is a staticmethod, return the function that it wraps. + dest[0] = ((mp_obj_static_class_method_t *)MP_OBJ_TO_PTR(member))->fun; + } else if (m_type == &mp_type_classmethod) { + // `member` is a classmethod, return a bound method with self being the type of + // this object. This type should be the type of the original instance, not the + // base type (which is what is passed in the `type` argument to this function). + if (self != MP_OBJ_NULL) { + type = mp_obj_get_type(self); + } + dest[0] = ((mp_obj_static_class_method_t *)MP_OBJ_TO_PTR(member))->fun; + dest[1] = MP_OBJ_FROM_PTR(type); + #if MICROPY_PY_BUILTINS_PROPERTY + // If self is MP_OBJ_NULL, we looking at the class itself, not an instance. + } else if (mp_obj_is_type(member, &mp_type_property) && mp_obj_is_native_type(type) && self != MP_OBJ_NULL) { + // object member is a property; delegate the load to the property + // Note: This is an optimisation for code size and execution time. + // The proper way to do it is have the functionality just below + // in a __get__ method of the property object, and then it would + // be called by the descriptor code down below. But that way + // requires overhead for the nested mp_call's and overhead for + // the code. + size_t n_proxy; + const mp_obj_t *proxy = mp_obj_property_get(member, &n_proxy); + if (proxy[0] == mp_const_none) { + mp_raise_AttributeError(MP_ERROR_TEXT("unreadable attribute")); + } else { + dest[0] = mp_call_function_n_kw(proxy[0], 1, 0, &self); + } + #endif + } else { + // `member` is a value, so just return that value. + dest[0] = member; + } + } else { + // `member` is a value, so just return that value. + dest[0] = member; + } +} + +// no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL +// normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL +// method attribute found, returns: dest[0] == <method>, dest[1] == <self> +void mp_load_method_maybe(mp_obj_t obj, qstr attr, mp_obj_t *dest) { + // clear output to indicate no attribute/method found yet + dest[0] = MP_OBJ_NULL; + dest[1] = MP_OBJ_NULL; + + // Note: the specific case of obj being an instance type is fast-path'ed in the VM + // for the MP_BC_LOAD_ATTR opcode. Instance types handle type->attr and look up directly + // in their member's map. + + // get the type + const mp_obj_type_t *type = mp_obj_get_type(obj); + + // look for built-in names + #if MICROPY_CPYTHON_COMPAT + if (attr == MP_QSTR___class__) { + // a.__class__ is equivalent to type(a) + dest[0] = MP_OBJ_FROM_PTR(type); + return; + } + #endif + + if (attr == MP_QSTR___next__ && mp_type_get_iternext_slot(type) != NULL) { + dest[0] = MP_OBJ_FROM_PTR(&mp_builtin_next_obj); + dest[1] = obj; + return; + } + mp_attr_fun_t attr_fun = mp_type_get_attr_slot(type); + if (attr_fun != NULL) { + // this type can do its own load, so call it + attr_fun(obj, attr, dest); + + // If type->attr has set dest[1] = MP_OBJ_SENTINEL, we should proceed + // with lookups below (i.e. in locals_dict). If not, return right away. + if (dest[1] != MP_OBJ_SENTINEL) { + return; + } + // Clear the fail flag set by type->attr so it's like it never ran. + dest[1] = MP_OBJ_NULL; + } + if (type->locals_dict != NULL) { + // generic method lookup + // this is a lookup in the object (ie not class or type) + assert(type->locals_dict->base.type == &mp_type_dict); // MicroPython restriction, for now + mp_map_t *locals_map = &type->locals_dict->map; + mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP); + if (elem != NULL) { + mp_convert_member_lookup(obj, type, elem->value, dest); + } + return; + } +} + +void mp_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) { + DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr)); + + mp_load_method_maybe(base, attr, dest); + + if (dest[0] == MP_OBJ_NULL) { + // no attribute/method called attr + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + mp_raise_AttributeError(MP_ERROR_TEXT("no such attribute")); + #else + // following CPython, we give a more detailed error message for type objects + if (mp_obj_is_type(base, &mp_type_type)) { + mp_raise_msg_varg(&mp_type_AttributeError, + MP_ERROR_TEXT("type object '%q' has no attribute '%q'"), + ((mp_obj_type_t *)MP_OBJ_TO_PTR(base))->name, attr); + } else { + mp_raise_msg_varg(&mp_type_AttributeError, + MP_ERROR_TEXT("'%s' object has no attribute '%q'"), + mp_obj_get_type_str(base), attr); + } + #endif + } +} + +// Acts like mp_load_method_maybe but catches AttributeError, and all other exceptions if requested +void mp_load_method_protected(mp_obj_t obj, qstr attr, mp_obj_t *dest, bool catch_all_exc) { + nlr_buf_t nlr; + if (nlr_push(&nlr) == 0) { + mp_load_method_maybe(obj, attr, dest); + nlr_pop(); + } else { + if (!catch_all_exc + && !mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t *)nlr.ret_val)->type), + MP_OBJ_FROM_PTR(&mp_type_AttributeError))) { + // Re-raise the exception + nlr_raise(MP_OBJ_FROM_PTR(nlr.ret_val)); + } + } +} + +void mp_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) { + DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value); + const mp_obj_type_t *type = mp_obj_get_type(base); + mp_attr_fun_t attr_fun = mp_type_get_attr_slot(type); + if (attr_fun != NULL) { + mp_obj_t dest[2] = {MP_OBJ_SENTINEL, value}; + attr_fun(base, attr, dest); + if (dest[0] == MP_OBJ_NULL) { + // success + return; + } + #if MICROPY_PY_BUILTINS_PROPERTY + } else if (type->locals_dict != NULL) { + // generic method lookup + // this is a lookup in the object (ie not class or type) + assert(type->locals_dict->base.type == &mp_type_dict); // Micro Python restriction, for now + mp_map_t *locals_map = &type->locals_dict->map; + mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP); + // If base is MP_OBJ_NULL, we looking at the class itself, not an instance. + if (elem != NULL && mp_obj_is_type(elem->value, &mp_type_property) && base != MP_OBJ_NULL) { + // attribute exists and is a property; delegate the store/delete + // Note: This is an optimisation for code size and execution time. + // The proper way to do it is have the functionality just below in + // a __set__/__delete__ method of the property object, and then it + // would be called by the descriptor code down below. But that way + // requires overhead for the nested mp_call's and overhead for + // the code. + size_t n_proxy; + const mp_obj_t *proxy = mp_obj_property_get(elem->value, &n_proxy); + mp_obj_t dest[2] = {base, value}; + if (value == MP_OBJ_NULL) { + // delete attribute + if (n_proxy == 3 && proxy[2] != mp_const_none) { + mp_call_function_n_kw(proxy[2], 1, 0, dest); + return; + } + } else if (n_proxy > 1 && proxy[1] != mp_const_none) { + mp_call_function_n_kw(proxy[1], 2, 0, dest); + return; + } + } + #endif + } + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + mp_raise_AttributeError(MP_ERROR_TEXT("no such attribute")); + #else + mp_raise_msg_varg(&mp_type_AttributeError, + MP_ERROR_TEXT("'%s' object has no attribute '%q'"), + mp_obj_get_type_str(base), attr); + #endif +} + +mp_obj_t mp_getiter(mp_obj_t o_in, mp_obj_iter_buf_t *iter_buf) { + assert(o_in); + const mp_obj_type_t *type = mp_obj_get_type(o_in); + mp_getiter_fun_t getiter = mp_type_get_getiter_slot(type); + // Check for native getiter which is the identity. We handle this case explicitly + // so we don't unnecessarily allocate any RAM for the iter_buf, which won't be used. + if (getiter == mp_identity_getiter) { + return o_in; + } + + // check for native getiter (corresponds to __iter__) + if (getiter != NULL) { + if (iter_buf == NULL && getiter != mp_obj_instance_getiter) { + // if caller did not provide a buffer then allocate one on the heap + // mp_obj_instance_getiter is special, it will allocate only if needed + iter_buf = m_new_obj(mp_obj_iter_buf_t); + } + mp_obj_t iter = getiter(o_in, iter_buf); + if (iter != MP_OBJ_NULL) { + return iter; + } + } + + // check for __getitem__ + mp_obj_t dest[2]; + mp_load_method_maybe(o_in, MP_QSTR___getitem__, dest); + if (dest[0] != MP_OBJ_NULL) { + // __getitem__ exists, create and return an iterator + if (iter_buf == NULL) { + // if caller did not provide a buffer then allocate one on the heap + iter_buf = m_new_obj(mp_obj_iter_buf_t); + } + return mp_obj_new_getitem_iter(dest, iter_buf); + } + + // object not iterable + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + mp_raise_TypeError(MP_ERROR_TEXT("object not iterable")); + #else + mp_raise_TypeError_varg( + MP_ERROR_TEXT("'%q' object is not iterable"), mp_obj_get_type_qstr(o_in)); + #endif +} + +// may return MP_OBJ_STOP_ITERATION as an optimisation instead of raise StopIteration() +// may also raise StopIteration() +mp_obj_t mp_iternext_allow_raise(mp_obj_t o_in) { + const mp_obj_type_t *type = mp_obj_get_type(o_in); + mp_fun_1_t iternext = mp_type_get_iternext_slot(type); + if (iternext != NULL) { + MP_STATE_THREAD(stop_iteration_arg) = MP_OBJ_NULL; + return iternext(o_in); + } else { + // check for __next__ method + mp_obj_t dest[2]; + mp_load_method_maybe(o_in, MP_QSTR___next__, dest); + if (dest[0] != MP_OBJ_NULL) { + // __next__ exists, call it and return its result + return mp_call_method_n_kw(0, 0, dest); + } else { + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + mp_raise_TypeError(MP_ERROR_TEXT("object not an iterator")); + #else + mp_raise_TypeError_varg(MP_ERROR_TEXT("'%q' object is not an iterator"), + mp_obj_get_type_qstr(o_in)); + #endif + } + } +} + +// will always return MP_OBJ_STOP_ITERATION instead of raising StopIteration() (or any subclass thereof) +// may raise other exceptions +mp_obj_t mp_iternext(mp_obj_t o_in) { + MP_STACK_CHECK(); // enumerate, filter, map and zip can recursively call mp_iternext + const mp_obj_type_t *type = mp_obj_get_type(o_in); + mp_fun_1_t iternext = mp_type_get_iternext_slot(type); + if (iternext != NULL) { + MP_STATE_THREAD(stop_iteration_arg) = MP_OBJ_NULL; + return iternext(o_in); + } else { + // check for __next__ method + mp_obj_t dest[2]; + mp_load_method_maybe(o_in, MP_QSTR___next__, dest); + if (dest[0] != MP_OBJ_NULL) { + // __next__ exists, call it and return its result + nlr_buf_t nlr; + if (nlr_push(&nlr) == 0) { + mp_obj_t ret = mp_call_method_n_kw(0, 0, dest); + nlr_pop(); + return ret; + } else { + if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t *)nlr.ret_val)->type), MP_OBJ_FROM_PTR(&mp_type_StopIteration))) { + return mp_make_stop_iteration(mp_obj_exception_get_value(MP_OBJ_FROM_PTR(nlr.ret_val))); + } else { + nlr_jump(nlr.ret_val); + } + } + } else { + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + mp_raise_TypeError(MP_ERROR_TEXT("object not an iterator")); + #else + mp_raise_TypeError_varg(MP_ERROR_TEXT("'%q' object is not an iterator"), + mp_obj_get_type_qstr(o_in)); + #endif + } + } +} + +mp_vm_return_kind_t mp_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) { + assert((send_value != MP_OBJ_NULL) ^ (throw_value != MP_OBJ_NULL)); + const mp_obj_type_t *type = mp_obj_get_type(self_in); + + if (type == &mp_type_gen_instance) { + return mp_obj_gen_resume(self_in, send_value, throw_value, ret_val); + } + + mp_fun_1_t iternext = mp_type_get_iternext_slot(type); + if (iternext != NULL && send_value == mp_const_none) { + MP_STATE_THREAD(stop_iteration_arg) = MP_OBJ_NULL; + mp_obj_t ret = iternext(self_in); + *ret_val = ret; + if (ret != MP_OBJ_STOP_ITERATION) { + return MP_VM_RETURN_YIELD; + } else { + // The generator is finished. + // This is an optimised "raise StopIteration(*ret_val)". + *ret_val = MP_STATE_THREAD(stop_iteration_arg); + if (*ret_val == MP_OBJ_NULL) { + *ret_val = mp_const_none; + } + return MP_VM_RETURN_NORMAL; + } + } + + mp_obj_t dest[3]; // Reserve slot for send() arg + + // Python instance iterator protocol + if (send_value == mp_const_none) { + mp_load_method_maybe(self_in, MP_QSTR___next__, dest); + if (dest[0] != MP_OBJ_NULL) { + *ret_val = mp_call_method_n_kw(0, 0, dest); + return MP_VM_RETURN_YIELD; + } + } + + // Either python instance generator protocol, or native object + // generator protocol. + if (send_value != MP_OBJ_NULL) { + mp_load_method(self_in, MP_QSTR_send, dest); + dest[2] = send_value; + *ret_val = mp_call_method_n_kw(1, 0, dest); + return MP_VM_RETURN_YIELD; + } + + assert(throw_value != MP_OBJ_NULL); + { + if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(mp_obj_get_type(throw_value)), MP_OBJ_FROM_PTR(&mp_type_GeneratorExit))) { + mp_load_method_maybe(self_in, MP_QSTR_close, dest); + if (dest[0] != MP_OBJ_NULL) { + // TODO: Exceptions raised in close() are not propagated, + // printed to sys.stderr + *ret_val = mp_call_method_n_kw(0, 0, dest); + // We assume one can't "yield" from close() + return MP_VM_RETURN_NORMAL; + } + } else { + mp_load_method_maybe(self_in, MP_QSTR_throw, dest); + if (dest[0] != MP_OBJ_NULL) { + dest[2] = throw_value; + *ret_val = mp_call_method_n_kw(1, 0, dest); + // If .throw() method returned, we assume it's value to yield + // - any exception would be thrown with nlr_raise(). + return MP_VM_RETURN_YIELD; + } + } + // If there's nowhere to throw exception into, then we assume that object + // is just incapable to handle it, so any exception thrown into it + // will be propagated up. This behavior is approved by test_pep380.py + // test_delegation_of_close_to_non_generator(), + // test_delegating_throw_to_non_generator() + if (mp_obj_exception_match(throw_value, MP_OBJ_FROM_PTR(&mp_type_StopIteration))) { + // PEP479: if StopIteration is raised inside a generator it is replaced with RuntimeError + *ret_val = mp_obj_new_exception_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("generator raised StopIteration")); + } else { + *ret_val = mp_make_raise_obj(throw_value); + } + return MP_VM_RETURN_EXCEPTION; + } +} + +mp_obj_t mp_make_raise_obj(mp_obj_t o) { + DEBUG_printf("raise %p\n", o); + if (mp_obj_is_exception_type(o)) { + // o is an exception type (it is derived from BaseException (or is BaseException)) + // create and return a new exception instance by calling o + // TODO could have an option to disable traceback, then builtin exceptions (eg TypeError) + // could have const instances in ROM which we return here instead + o = mp_call_function_n_kw(o, 0, 0, NULL); + } + + if (mp_obj_is_exception_instance(o)) { + // o is an instance of an exception, so use it as the exception + return o; + } else { + // o cannot be used as an exception, so return a type error (which will be raised by the caller) + return mp_obj_new_exception_msg(&mp_type_TypeError, MP_ERROR_TEXT("exceptions must derive from BaseException")); + } +} + +mp_obj_t mp_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) { + DEBUG_printf("import name '%s' level=%d\n", qstr_str(name), MP_OBJ_SMALL_INT_VALUE(level)); + + // build args array + mp_obj_t args[5]; + args[0] = MP_OBJ_NEW_QSTR(name); + args[1] = mp_const_none; // TODO should be globals + args[2] = mp_const_none; // TODO should be locals + args[3] = fromlist; + args[4] = level; + + #if MICROPY_CAN_OVERRIDE_BUILTINS + // Lookup __import__ and call that if it exists + mp_obj_dict_t *bo_dict = MP_STATE_VM(mp_module_builtins_override_dict); + if (bo_dict != NULL) { + mp_map_elem_t *import = mp_map_lookup(&bo_dict->map, MP_OBJ_NEW_QSTR(MP_QSTR___import__), MP_MAP_LOOKUP); + if (import != NULL) { + return mp_call_function_n_kw(import->value, 5, 0, args); + } + } + #endif + + return mp_builtin___import__(5, args); +} + +mp_obj_t mp_import_from(mp_obj_t module, qstr name) { + DEBUG_printf("import from %p %s\n", module, qstr_str(name)); + + mp_obj_t dest[2]; + + mp_load_method_maybe(module, name, dest); + + if (dest[1] != MP_OBJ_NULL) { + // Hopefully we can't import bound method from an object + mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("cannot import name %q"), name); + } + + if (dest[0] != MP_OBJ_NULL) { + return dest[0]; + } + + #if MICROPY_ENABLE_EXTERNAL_IMPORT + + // See if it's a package, then can try FS import + if (!mp_obj_is_package(module)) { + mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("cannot import name %q"), name); + } + + mp_load_method_maybe(module, MP_QSTR___name__, dest); + size_t pkg_name_len; + const char *pkg_name = mp_obj_str_get_data(dest[0], &pkg_name_len); + + const uint dot_name_len = pkg_name_len + 1 + qstr_len(name); + char *dot_name = mp_local_alloc(dot_name_len); + memcpy(dot_name, pkg_name, pkg_name_len); + dot_name[pkg_name_len] = '.'; + memcpy(dot_name + pkg_name_len + 1, qstr_str(name), qstr_len(name)); + qstr dot_name_q = qstr_from_strn(dot_name, dot_name_len); + mp_local_free(dot_name); + + // For fromlist, pass sentinel "non empty" value to force returning of leaf module + return mp_import_name(dot_name_q, mp_const_true, MP_OBJ_NEW_SMALL_INT(0)); + + #else + + // Package import not supported with external imports disabled + mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("cannot import name %q"), name); + + #endif +} + +void mp_import_all(mp_obj_t module) { + DEBUG_printf("import all %p\n", module); + + // TODO: Support __all__ + mp_map_t *map = &mp_obj_module_get_globals(module)->map; + for (size_t i = 0; i < map->alloc; i++) { + if (mp_map_slot_is_filled(map, i)) { + // Entry in module global scope may be generated programmatically + // (and thus be not a qstr for longer names). Avoid turning it in + // qstr if it has '_' and was used exactly to save memory. + const char *name = mp_obj_str_get_str(map->table[i].key); + if (*name != '_') { + qstr qname = mp_obj_str_get_qstr(map->table[i].key); + mp_store_name(qname, map->table[i].value); + } + } + } +} + +#if MICROPY_ENABLE_COMPILER + +mp_obj_t mp_parse_compile_execute(mp_lexer_t *lex, mp_parse_input_kind_t parse_input_kind, mp_obj_dict_t *globals, mp_obj_dict_t *locals) { + // save context + mp_obj_dict_t *volatile old_globals = mp_globals_get(); + mp_obj_dict_t *volatile old_locals = mp_locals_get(); + + // set new context + mp_globals_set(globals); + mp_locals_set(locals); + + nlr_buf_t nlr; + if (nlr_push(&nlr) == 0) { + qstr source_name = lex->source_name; + mp_parse_tree_t parse_tree = mp_parse(lex, parse_input_kind); + mp_obj_t module_fun = mp_compile(&parse_tree, source_name, parse_input_kind == MP_PARSE_SINGLE_INPUT); + + mp_obj_t ret; + if (MICROPY_PY_BUILTINS_COMPILE && globals == NULL) { + // for compile only, return value is the module function + ret = module_fun; + } else { + // execute module function and get return value + ret = mp_call_function_0(module_fun); + } + + // finish nlr block, restore context and return value + nlr_pop(); + mp_globals_set(old_globals); + mp_locals_set(old_locals); + return ret; + } else { + // exception; restore context and re-raise same exception + mp_globals_set(old_globals); + mp_locals_set(old_locals); + nlr_jump(nlr.ret_val); + } +} + +#endif // MICROPY_ENABLE_COMPILER + +NORETURN void m_malloc_fail(size_t num_bytes) { + DEBUG_printf("memory allocation failed, allocating %u bytes\n", (uint)num_bytes); + #if MICROPY_ENABLE_GC + if (gc_is_locked()) { + mp_raise_msg(&mp_type_MemoryError, MP_ERROR_TEXT("memory allocation failed, heap is locked")); + } + #endif + mp_raise_msg_varg(&mp_type_MemoryError, + MP_ERROR_TEXT("memory allocation failed, allocating %u bytes"), (uint)num_bytes); +} + +#if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NONE + +NORETURN void mp_raise_type(const mp_obj_type_t *exc_type) { + nlr_raise(mp_obj_new_exception(exc_type)); +} + +NORETURN void mp_raise_ValueError_no_msg(void) { + mp_raise_type(&mp_type_ValueError); +} + +NORETURN void mp_raise_TypeError_no_msg(void) { + mp_raise_type(&mp_type_TypeError); +} + +NORETURN void mp_raise_NotImplementedError_no_msg(void) { + mp_raise_type(&mp_type_NotImplementedError); +} + +#else + +NORETURN void mp_raise_msg(const mp_obj_type_t *exc_type, const compressed_string_t *msg) { + if (msg == NULL) { + nlr_raise(mp_obj_new_exception(exc_type)); + } else { + nlr_raise(mp_obj_new_exception_msg(exc_type, msg)); + } +} + +NORETURN void mp_raise_msg_vlist(const mp_obj_type_t *exc_type, const compressed_string_t *fmt, va_list argptr) { + mp_obj_t exception = mp_obj_new_exception_msg_vlist(exc_type, fmt, argptr); + nlr_raise(exception); +} + +NORETURN void mp_raise_msg_varg(const mp_obj_type_t *exc_type, const compressed_string_t *fmt, ...) { + va_list argptr; + va_start(argptr,fmt); + mp_raise_msg_vlist(exc_type, fmt, argptr); + va_end(argptr); +} + +NORETURN void mp_raise_msg_str(const mp_obj_type_t *exc_type, const char *msg) { + if (msg == NULL) { + nlr_raise(mp_obj_new_exception(exc_type)); + } else { + nlr_raise(mp_obj_new_exception_msg_str(exc_type, msg)); + } +} + +NORETURN void mp_raise_AttributeError(const compressed_string_t *msg) { + mp_raise_msg(&mp_type_AttributeError, msg); +} + +NORETURN void mp_raise_RuntimeError(const compressed_string_t *msg) { + mp_raise_msg(&mp_type_RuntimeError, msg); +} + +NORETURN void mp_raise_ImportError(const compressed_string_t *msg) { + mp_raise_msg(&mp_type_ImportError, msg); +} + +NORETURN void mp_raise_IndexError(const compressed_string_t *msg) { + mp_raise_msg(&mp_type_IndexError, msg); +} + +NORETURN void mp_raise_IndexError_varg(const compressed_string_t *fmt, ...) { + va_list argptr; + va_start(argptr,fmt); + mp_raise_msg_vlist(&mp_type_IndexError, fmt, argptr); + va_end(argptr); +} + +NORETURN void mp_raise_ValueError(const compressed_string_t *msg) { + mp_raise_msg(&mp_type_ValueError, msg); +} + +NORETURN void mp_raise_ValueError_varg(const compressed_string_t *fmt, ...) { + va_list argptr; + va_start(argptr,fmt); + mp_raise_msg_vlist(&mp_type_ValueError, fmt, argptr); + va_end(argptr); +} + +NORETURN void mp_raise_TypeError(const compressed_string_t *msg) { + mp_raise_msg(&mp_type_TypeError, msg); +} + +NORETURN void mp_raise_TypeError_varg(const compressed_string_t *fmt, ...) { + va_list argptr; + va_start(argptr,fmt); + mp_raise_msg_vlist(&mp_type_TypeError, fmt, argptr); + va_end(argptr); +} + +NORETURN void mp_raise_OSError_msg(const compressed_string_t *msg) { + mp_raise_msg(&mp_type_OSError, msg); +} + +NORETURN void mp_raise_OSError_errno_str(int errno_, mp_obj_t str) { + mp_obj_t args[2] = { + MP_OBJ_NEW_SMALL_INT(errno_), + str, + }; + nlr_raise(mp_obj_new_exception_args(&mp_type_OSError, 2, args)); +} + +NORETURN void mp_raise_OSError_msg_varg(const compressed_string_t *fmt, ...) { + va_list argptr; + va_start(argptr,fmt); + mp_raise_msg_vlist(&mp_type_OSError, fmt, argptr); + va_end(argptr); +} + +NORETURN void mp_raise_ConnectionError(const compressed_string_t *msg) { + mp_raise_msg(&mp_type_ConnectionError, msg); +} + +NORETURN void mp_raise_BrokenPipeError(void) { + mp_raise_type_arg(&mp_type_BrokenPipeError, MP_OBJ_NEW_SMALL_INT(MP_EPIPE)); +} + +NORETURN void mp_raise_NotImplementedError(const compressed_string_t *msg) { + mp_raise_msg(&mp_type_NotImplementedError, msg); +} + +NORETURN void mp_raise_NotImplementedError_varg(const compressed_string_t *fmt, ...) { + va_list argptr; + va_start(argptr,fmt); + mp_raise_msg_vlist(&mp_type_NotImplementedError, fmt, argptr); + va_end(argptr); +} + + +NORETURN void mp_raise_OverflowError_varg(const compressed_string_t *fmt, ...) { + va_list argptr; + va_start(argptr,fmt); + mp_raise_msg_vlist(&mp_type_OverflowError, fmt, argptr); + va_end(argptr); +} + +NORETURN void mp_raise_MpyError(const compressed_string_t *msg) { + mp_raise_msg(&mp_type_MpyError, msg); +} + +NORETURN void mp_raise_type_arg(const mp_obj_type_t *exc_type, mp_obj_t arg) { + nlr_raise(mp_obj_new_exception_arg1(exc_type, arg)); +} + +NORETURN void mp_raise_StopIteration(mp_obj_t arg) { + if (arg == MP_OBJ_NULL) { + mp_raise_type(&mp_type_StopIteration); + } else { + mp_raise_type_arg(&mp_type_StopIteration, arg); + } +} + +NORETURN void mp_raise_OSError(int errno_) { + mp_raise_type_arg(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(errno_)); +} + +#endif + +#if MICROPY_STACK_CHECK || MICROPY_ENABLE_PYSTACK +NORETURN void mp_raise_recursion_depth(void) { + mp_raise_RuntimeError(MP_ERROR_TEXT("maximum recursion depth exceeded")); +} +#endif |