aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/py/runtime.c
diff options
context:
space:
mode:
authorRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
committerRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
commit4fd287655a72b9aea14cdac715ad5b90ed082ed2 (patch)
tree65d393bc0e699dd12d05b29ba568e04cea666207 /circuitpython/py/runtime.c
parent0150f70ce9c39e9e6dd878766c0620c85e47bed0 (diff)
add circuitpython code
Diffstat (limited to 'circuitpython/py/runtime.c')
-rw-r--r--circuitpython/py/runtime.c1771
1 files changed, 1771 insertions, 0 deletions
diff --git a/circuitpython/py/runtime.c b/circuitpython/py/runtime.c
new file mode 100644
index 0000000..f2ad872
--- /dev/null
+++ b/circuitpython/py/runtime.c
@@ -0,0 +1,1771 @@
+/*
+ * This file is part of the MicroPython project, http://micropython.org/
+ *
+ * The MIT License (MIT)
+ *
+ * SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George
+ * SPDX-FileCopyrightText: Copyright (c) 2014-2018 Paul Sokolovsky
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include <stdarg.h>
+#include <stdio.h>
+#include <string.h>
+#include <assert.h>
+
+#include "py/parsenum.h"
+#include "py/compile.h"
+#include "py/mperrno.h"
+#include "py/objstr.h"
+#include "py/objtuple.h"
+#include "py/objlist.h"
+#include "py/objtype.h"
+#include "py/objmodule.h"
+#include "py/objgenerator.h"
+#include "py/smallint.h"
+#include "py/runtime.h"
+#include "py/builtin.h"
+#include "py/stackctrl.h"
+#include "py/gc.h"
+
+#include "supervisor/shared/translate.h"
+
+#if MICROPY_DEBUG_VERBOSE // print debugging info
+#define DEBUG_PRINT (1)
+#define DEBUG_printf DEBUG_printf
+#define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__)
+#else // don't print debugging info
+#define DEBUG_printf(...) (void)0
+#define DEBUG_OP_printf(...) (void)0
+#endif
+
+const mp_obj_module_t mp_module___main__ = {
+ .base = { &mp_type_module },
+ .globals = (mp_obj_dict_t *)&MP_STATE_VM(dict_main),
+};
+
+void mp_init(void) {
+ qstr_init();
+
+ // no pending exceptions to start with
+ MP_STATE_THREAD(mp_pending_exception) = MP_OBJ_NULL;
+ #if MICROPY_ENABLE_SCHEDULER
+ MP_STATE_VM(sched_state) = MP_SCHED_IDLE;
+ MP_STATE_VM(sched_idx) = 0;
+ MP_STATE_VM(sched_len) = 0;
+ #endif
+
+ #if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF
+ mp_init_emergency_exception_buf();
+ #endif
+
+ #if MICROPY_KBD_EXCEPTION
+ // initialise the exception object for raising KeyboardInterrupt
+ MP_STATE_VM(mp_kbd_exception).base.type = &mp_type_KeyboardInterrupt;
+ MP_STATE_VM(mp_kbd_exception).args = (mp_obj_tuple_t *)&mp_const_empty_tuple_obj;
+ MP_STATE_VM(mp_kbd_exception).traceback = (mp_obj_traceback_t *)&mp_const_empty_traceback_obj;
+ #endif
+
+ MP_STATE_VM(mp_reload_exception).base.type = &mp_type_ReloadException;
+ MP_STATE_VM(mp_reload_exception).args = (mp_obj_tuple_t *)&mp_const_empty_tuple_obj;
+ MP_STATE_VM(mp_reload_exception).traceback = (mp_obj_traceback_t *)&mp_const_empty_traceback_obj;
+
+ // call port specific initialization if any
+ #ifdef MICROPY_PORT_INIT_FUNC
+ MICROPY_PORT_INIT_FUNC;
+ #endif
+
+ #if MICROPY_ENABLE_COMPILER
+ // optimization disabled by default
+ MP_STATE_VM(mp_optimise_value) = 0;
+ #if MICROPY_EMIT_NATIVE
+ MP_STATE_VM(default_emit_opt) = MP_EMIT_OPT_NONE;
+ #endif
+ #endif
+
+ // init global module dict
+ mp_obj_dict_init(&MP_STATE_VM(mp_loaded_modules_dict), MICROPY_LOADED_MODULES_DICT_SIZE);
+
+ // initialise the __main__ module
+ mp_obj_dict_init(&MP_STATE_VM(dict_main), 1);
+ mp_obj_dict_store(MP_OBJ_FROM_PTR(&MP_STATE_VM(dict_main)), MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
+
+ // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
+ mp_locals_set(&MP_STATE_VM(dict_main));
+ mp_globals_set(&MP_STATE_VM(dict_main));
+
+ #if MICROPY_CAN_OVERRIDE_BUILTINS
+ // start with no extensions to builtins
+ MP_STATE_VM(mp_module_builtins_override_dict) = NULL;
+ #endif
+
+ #if MICROPY_PERSISTENT_CODE_TRACK_RELOC_CODE
+ MP_STATE_VM(track_reloc_code_list) = MP_OBJ_NULL;
+ #endif
+
+ #ifdef MICROPY_FSUSERMOUNT
+ // zero out the pointers to the user-mounted devices
+ memset(MP_STATE_VM(fs_user_mount) + MICROPY_FATFS_NUM_PERSISTENT, 0,
+ sizeof(MP_STATE_VM(fs_user_mount)) - MICROPY_FATFS_NUM_PERSISTENT);
+ #endif
+
+ #if MICROPY_PY_SYS_PATH_ARGV_DEFAULTS
+ mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_path), 0);
+ mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
+ #if MICROPY_MODULE_FROZEN
+ mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__dot_frozen));
+ #endif
+ mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_argv), 0);
+ #endif
+
+ #if MICROPY_PY_SYS_ATEXIT
+ MP_STATE_VM(sys_exitfunc) = mp_const_none;
+ #endif
+
+ #if MICROPY_PY_SYS_SETTRACE
+ MP_STATE_THREAD(prof_trace_callback) = MP_OBJ_NULL;
+ MP_STATE_THREAD(prof_callback_is_executing) = false;
+ MP_STATE_THREAD(current_code_state) = NULL;
+ #endif
+
+ #if MICROPY_PY_THREAD_GIL
+ mp_thread_mutex_init(&MP_STATE_VM(gil_mutex));
+ #endif
+
+ // call port specific initialization if any
+ #ifdef MICROPY_PORT_INIT_FUNC
+ MICROPY_PORT_INIT_FUNC;
+ #endif
+
+ MP_THREAD_GIL_ENTER();
+}
+
+void mp_deinit(void) {
+ MP_THREAD_GIL_EXIT();
+
+ // call port specific deinitialization if any
+ #ifdef MICROPY_PORT_DEINIT_FUNC
+ MICROPY_PORT_DEINIT_FUNC;
+ #endif
+}
+
+mp_obj_t MICROPY_WRAP_MP_LOAD_NAME(mp_load_name)(qstr qst) {
+ // logic: search locals, globals, builtins
+ DEBUG_OP_printf("load name %s\n", qstr_str(qst));
+ // If we're at the outer scope (locals == globals), dispatch to load_global right away
+ if (mp_locals_get() != mp_globals_get()) {
+ mp_map_elem_t *elem = mp_map_lookup(&mp_locals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
+ if (elem != NULL) {
+ return elem->value;
+ }
+ }
+ return mp_load_global(qst);
+}
+
+mp_obj_t MICROPY_WRAP_MP_LOAD_GLOBAL(mp_load_global)(qstr qst) {
+ // logic: search globals, builtins
+ DEBUG_OP_printf("load global %s\n", qstr_str(qst));
+ mp_map_elem_t *elem = mp_map_lookup(&mp_globals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
+ if (elem == NULL) {
+ #if MICROPY_CAN_OVERRIDE_BUILTINS
+ if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
+ // lookup in additional dynamic table of builtins first
+ elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
+ if (elem != NULL) {
+ return elem->value;
+ }
+ }
+ #endif
+ elem = mp_map_lookup((mp_map_t *)&mp_module_builtins_globals.map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
+ if (elem == NULL) {
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ mp_raise_msg(&mp_type_NameError, MP_ERROR_TEXT("name not defined"));
+ #else
+ mp_raise_msg_varg(&mp_type_NameError, MP_ERROR_TEXT("name '%q' is not defined"), qst);
+ #endif
+ }
+ }
+ return elem->value;
+}
+
+mp_obj_t mp_load_build_class(void) {
+ DEBUG_OP_printf("load_build_class\n");
+ #if MICROPY_CAN_OVERRIDE_BUILTINS
+ if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
+ // lookup in additional dynamic table of builtins first
+ mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP);
+ if (elem != NULL) {
+ return elem->value;
+ }
+ }
+ #endif
+ return MP_OBJ_FROM_PTR(&mp_builtin___build_class___obj);
+}
+
+void PLACE_IN_ITCM(mp_store_name)(qstr qst, mp_obj_t obj) {
+ DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qst), obj);
+ mp_obj_dict_store(MP_OBJ_FROM_PTR(mp_locals_get()), MP_OBJ_NEW_QSTR(qst), obj);
+}
+
+void mp_delete_name(qstr qst) {
+ DEBUG_OP_printf("delete name %s\n", qstr_str(qst));
+ // TODO convert KeyError to NameError if qst not found
+ mp_obj_dict_delete(MP_OBJ_FROM_PTR(mp_locals_get()), MP_OBJ_NEW_QSTR(qst));
+}
+
+void PLACE_IN_ITCM(mp_store_global)(qstr qst, mp_obj_t obj) {
+ DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qst), obj);
+ mp_obj_dict_store(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(qst), obj);
+}
+
+void mp_delete_global(qstr qst) {
+ DEBUG_OP_printf("delete global %s\n", qstr_str(qst));
+ // TODO convert KeyError to NameError if qst not found
+ mp_obj_dict_delete(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(qst));
+}
+
+mp_obj_t mp_unary_op(mp_unary_op_t op, mp_obj_t arg) {
+ DEBUG_OP_printf("unary " UINT_FMT " %q %p\n", op, mp_unary_op_method_name[op], arg);
+
+ if (op == MP_UNARY_OP_NOT) {
+ // "not x" is the negative of whether "x" is true per Python semantics
+ return mp_obj_new_bool(mp_obj_is_true(arg) == 0);
+ } else if (mp_obj_is_small_int(arg)) {
+ mp_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
+ switch (op) {
+ case MP_UNARY_OP_BOOL:
+ return mp_obj_new_bool(val != 0);
+ case MP_UNARY_OP_HASH:
+ return arg;
+ case MP_UNARY_OP_POSITIVE:
+ case MP_UNARY_OP_INT:
+ return arg;
+ case MP_UNARY_OP_NEGATIVE:
+ // check for overflow
+ if (val == MP_SMALL_INT_MIN) {
+ return mp_obj_new_int(-val);
+ } else {
+ return MP_OBJ_NEW_SMALL_INT(-val);
+ }
+ case MP_UNARY_OP_ABS:
+ if (val >= 0) {
+ return arg;
+ } else if (val == MP_SMALL_INT_MIN) {
+ // check for overflow
+ return mp_obj_new_int(-val);
+ } else {
+ return MP_OBJ_NEW_SMALL_INT(-val);
+ }
+ default:
+ assert(op == MP_UNARY_OP_INVERT);
+ return MP_OBJ_NEW_SMALL_INT(~val);
+ }
+ } else if (op == MP_UNARY_OP_HASH && mp_obj_is_str_or_bytes(arg)) {
+ // fast path for hashing str/bytes
+ GET_STR_HASH(arg, h);
+ if (h == 0) {
+ GET_STR_DATA_LEN(arg, data, len);
+ h = qstr_compute_hash(data, len);
+ }
+ return MP_OBJ_NEW_SMALL_INT(h);
+ } else {
+ const mp_obj_type_t *type = mp_obj_get_type(arg);
+ mp_unary_op_fun_t unary_op = mp_type_get_unary_op_slot(type);
+ if (unary_op != NULL) {
+ mp_obj_t result = unary_op(op, arg);
+ if (result != MP_OBJ_NULL) {
+ return result;
+ }
+ }
+ if (op == MP_UNARY_OP_BOOL) {
+ // Type doesn't have unary_op (or didn't handle MP_UNARY_OP_BOOL),
+ // so is implicitly True as this code path is impossible to reach
+ // if arg==mp_const_none.
+ return mp_const_true;
+ }
+ // With MP_UNARY_OP_INT, mp_unary_op() becomes a fallback for mp_obj_get_int().
+ // In this case provide a more focused error message to not confuse, e.g. chr(1.0)
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ if (op == MP_UNARY_OP_INT) {
+ mp_raise_TypeError(MP_ERROR_TEXT("can't convert to int"));
+ } else {
+ mp_raise_TypeError(MP_ERROR_TEXT("unsupported type for operator"));
+ }
+ #else
+ if (op == MP_UNARY_OP_INT) {
+ mp_raise_TypeError_varg(MP_ERROR_TEXT("can't convert %q to int"), mp_obj_get_type_qstr(arg));
+ } else {
+ mp_raise_TypeError_varg(MP_ERROR_TEXT("unsupported type for %q: '%q'"),
+ mp_unary_op_method_name[op], mp_obj_get_type_qstr(arg));
+ }
+ #endif
+ }
+}
+
+mp_obj_t MICROPY_WRAP_MP_BINARY_OP(mp_binary_op)(mp_binary_op_t op, mp_obj_t lhs, mp_obj_t rhs) {
+ DEBUG_OP_printf("binary " UINT_FMT " %q %p %p\n", op, mp_binary_op_method_name[op], lhs, rhs);
+
+ // TODO correctly distinguish inplace operators for mutable objects
+ // lookup logic that CPython uses for +=:
+ // check for implemented +=
+ // then check for implemented +
+ // then check for implemented seq.inplace_concat
+ // then check for implemented seq.concat
+ // then fail
+ // note that list does not implement + or +=, so that inplace_concat is reached first for +=
+
+ // deal with is
+ if (op == MP_BINARY_OP_IS) {
+ return mp_obj_new_bool(lhs == rhs);
+ }
+
+ // deal with == and != for all types
+ if (op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) {
+ // mp_obj_equal_not_equal supports a bunch of shortcuts
+ return mp_obj_equal_not_equal(op, lhs, rhs);
+ }
+
+ // deal with exception_match for all types
+ if (op == MP_BINARY_OP_EXCEPTION_MATCH) {
+ // rhs must be issubclass(rhs, BaseException)
+ if (mp_obj_is_exception_type(rhs)) {
+ if (mp_obj_exception_match(lhs, rhs)) {
+ return mp_const_true;
+ } else {
+ return mp_const_false;
+ }
+ } else if (mp_obj_is_type(rhs, &mp_type_tuple)) {
+ mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(rhs);
+ for (size_t i = 0; i < tuple->len; i++) {
+ rhs = tuple->items[i];
+ if (!mp_obj_is_exception_type(rhs)) {
+ goto unsupported_op;
+ }
+ if (mp_obj_exception_match(lhs, rhs)) {
+ return mp_const_true;
+ }
+ }
+ return mp_const_false;
+ }
+ goto unsupported_op;
+ }
+
+ if (mp_obj_is_small_int(lhs)) {
+ mp_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
+ if (mp_obj_is_small_int(rhs)) {
+ mp_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
+ // This is a binary operation: lhs_val op rhs_val
+ // We need to be careful to handle overflow; see CERT INT32-C
+ // Operations that can overflow:
+ // + result always fits in mp_int_t, then handled by SMALL_INT check
+ // - result always fits in mp_int_t, then handled by SMALL_INT check
+ // * checked explicitly
+ // / if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
+ // % if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
+ // << checked explicitly
+ switch (op) {
+ case MP_BINARY_OP_OR:
+ case MP_BINARY_OP_INPLACE_OR:
+ lhs_val |= rhs_val;
+ break;
+ case MP_BINARY_OP_XOR:
+ case MP_BINARY_OP_INPLACE_XOR:
+ lhs_val ^= rhs_val;
+ break;
+ case MP_BINARY_OP_AND:
+ case MP_BINARY_OP_INPLACE_AND:
+ lhs_val &= rhs_val;
+ break;
+ case MP_BINARY_OP_LSHIFT:
+ case MP_BINARY_OP_INPLACE_LSHIFT: {
+ if (rhs_val < 0) {
+ // negative shift not allowed
+ mp_raise_ValueError(MP_ERROR_TEXT("negative shift count"));
+ } else if (rhs_val >= (mp_int_t)(sizeof(lhs_val) * MP_BITS_PER_BYTE)
+ || lhs_val > (MP_SMALL_INT_MAX >> rhs_val)
+ || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) {
+ // left-shift will overflow, so use higher precision integer
+ lhs = mp_obj_new_int_from_ll(lhs_val);
+ goto generic_binary_op;
+ } else {
+ // use standard precision
+ lhs_val = (mp_uint_t)lhs_val << rhs_val;
+ }
+ break;
+ }
+ case MP_BINARY_OP_RSHIFT:
+ case MP_BINARY_OP_INPLACE_RSHIFT:
+ if (rhs_val < 0) {
+ // negative shift not allowed
+ mp_raise_ValueError(MP_ERROR_TEXT("negative shift count"));
+ } else {
+ // standard precision is enough for right-shift
+ if (rhs_val >= (mp_int_t)(sizeof(lhs_val) * MP_BITS_PER_BYTE)) {
+ // Shifting to big amounts is underfined behavior
+ // in C and is CPU-dependent; propagate sign bit.
+ rhs_val = sizeof(lhs_val) * MP_BITS_PER_BYTE - 1;
+ }
+ lhs_val >>= rhs_val;
+ }
+ break;
+ case MP_BINARY_OP_ADD:
+ case MP_BINARY_OP_INPLACE_ADD:
+ lhs_val += rhs_val;
+ break;
+ case MP_BINARY_OP_SUBTRACT:
+ case MP_BINARY_OP_INPLACE_SUBTRACT:
+ lhs_val -= rhs_val;
+ break;
+ case MP_BINARY_OP_MULTIPLY:
+ case MP_BINARY_OP_INPLACE_MULTIPLY: {
+
+ // If long long type exists and is larger than mp_int_t, then
+ // we can use the following code to perform overflow-checked multiplication.
+ // Otherwise (eg in x64 case) we must use mp_small_int_mul_overflow.
+ #if 0
+ // compute result using long long precision
+ long long res = (long long)lhs_val * (long long)rhs_val;
+ if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) {
+ // result overflowed SMALL_INT, so return higher precision integer
+ return mp_obj_new_int_from_ll(res);
+ } else {
+ // use standard precision
+ lhs_val = (mp_int_t)res;
+ }
+ #endif
+
+ if (mp_small_int_mul_overflow(lhs_val, rhs_val)) {
+ // use higher precision
+ lhs = mp_obj_new_int_from_ll(lhs_val);
+ goto generic_binary_op;
+ } else {
+ // use standard precision
+ return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val);
+ }
+ }
+ case MP_BINARY_OP_FLOOR_DIVIDE:
+ case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
+ if (rhs_val == 0) {
+ goto zero_division;
+ }
+ lhs_val = mp_small_int_floor_divide(lhs_val, rhs_val);
+ break;
+
+ #if MICROPY_PY_BUILTINS_FLOAT
+ case MP_BINARY_OP_TRUE_DIVIDE:
+ case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
+ if (rhs_val == 0) {
+ goto zero_division;
+ }
+ return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
+ #endif
+
+ case MP_BINARY_OP_MODULO:
+ case MP_BINARY_OP_INPLACE_MODULO: {
+ if (rhs_val == 0) {
+ goto zero_division;
+ }
+ lhs_val = mp_small_int_modulo(lhs_val, rhs_val);
+ break;
+ }
+
+ case MP_BINARY_OP_POWER:
+ case MP_BINARY_OP_INPLACE_POWER:
+ if (rhs_val < 0) {
+ #if MICROPY_PY_BUILTINS_FLOAT
+ return mp_obj_float_binary_op(op, (mp_float_t)lhs_val, rhs);
+ #else
+ mp_raise_ValueError(MP_ERROR_TEXT("negative power with no float support"));
+ #endif
+ } else {
+ mp_int_t ans = 1;
+ while (rhs_val > 0) {
+ if (rhs_val & 1) {
+ if (mp_small_int_mul_overflow(ans, lhs_val)) {
+ goto power_overflow;
+ }
+ ans *= lhs_val;
+ }
+ if (rhs_val == 1) {
+ break;
+ }
+ rhs_val /= 2;
+ if (mp_small_int_mul_overflow(lhs_val, lhs_val)) {
+ goto power_overflow;
+ }
+ lhs_val *= lhs_val;
+ }
+ lhs_val = ans;
+ }
+ break;
+
+ power_overflow:
+ // use higher precision
+ lhs = mp_obj_new_int_from_ll(MP_OBJ_SMALL_INT_VALUE(lhs));
+ goto generic_binary_op;
+
+ case MP_BINARY_OP_DIVMOD: {
+ if (rhs_val == 0) {
+ goto zero_division;
+ }
+ // to reduce stack usage we don't pass a temp array of the 2 items
+ mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL));
+ tuple->items[0] = MP_OBJ_NEW_SMALL_INT(mp_small_int_floor_divide(lhs_val, rhs_val));
+ tuple->items[1] = MP_OBJ_NEW_SMALL_INT(mp_small_int_modulo(lhs_val, rhs_val));
+ return MP_OBJ_FROM_PTR(tuple);
+ }
+
+ case MP_BINARY_OP_LESS:
+ return mp_obj_new_bool(lhs_val < rhs_val);
+ case MP_BINARY_OP_MORE:
+ return mp_obj_new_bool(lhs_val > rhs_val);
+ case MP_BINARY_OP_LESS_EQUAL:
+ return mp_obj_new_bool(lhs_val <= rhs_val);
+ case MP_BINARY_OP_MORE_EQUAL:
+ return mp_obj_new_bool(lhs_val >= rhs_val);
+
+ default:
+ goto unsupported_op;
+ }
+ // This is an inlined version of mp_obj_new_int, for speed
+ if (MP_SMALL_INT_FITS(lhs_val)) {
+ return MP_OBJ_NEW_SMALL_INT(lhs_val);
+ } else {
+ return mp_obj_new_int_from_ll(lhs_val);
+ }
+ #if MICROPY_PY_BUILTINS_FLOAT
+ } else if (mp_obj_is_float(rhs)) {
+ mp_obj_t res = mp_obj_float_binary_op(op, (mp_float_t)lhs_val, rhs);
+ if (res == MP_OBJ_NULL) {
+ goto unsupported_op;
+ } else {
+ return res;
+ }
+ #endif
+ #if MICROPY_PY_BUILTINS_COMPLEX
+ } else if (mp_obj_is_type(rhs, &mp_type_complex)) {
+ mp_obj_t res = mp_obj_complex_binary_op(op, (mp_float_t)lhs_val, 0, rhs);
+ if (res == MP_OBJ_NULL) {
+ goto unsupported_op;
+ } else {
+ return res;
+ }
+ #endif
+ }
+ }
+
+ // Convert MP_BINARY_OP_IN to MP_BINARY_OP_CONTAINS with swapped args.
+ if (op == MP_BINARY_OP_IN) {
+ op = MP_BINARY_OP_CONTAINS;
+ mp_obj_t temp = lhs;
+ lhs = rhs;
+ rhs = temp;
+ }
+
+ // generic binary_op supplied by type
+ const mp_obj_type_t *type;
+generic_binary_op:
+ type = mp_obj_get_type(lhs);
+ mp_binary_op_fun_t binary_op = mp_type_get_binary_op_slot(type);
+ if (binary_op != NULL) {
+ mp_obj_t result = binary_op(op, lhs, rhs);
+ if (result != MP_OBJ_NULL) {
+ return result;
+ }
+ }
+
+ #if MICROPY_PY_REVERSE_SPECIAL_METHODS
+ if (op >= MP_BINARY_OP_OR && op <= MP_BINARY_OP_POWER) {
+ mp_obj_t t = rhs;
+ rhs = lhs;
+ lhs = t;
+ op += MP_BINARY_OP_REVERSE_OR - MP_BINARY_OP_OR;
+ goto generic_binary_op;
+ } else if (op >= MP_BINARY_OP_REVERSE_OR) {
+ // Convert __rop__ back to __op__ for error message
+ mp_obj_t t = rhs;
+ rhs = lhs;
+ lhs = t;
+ op -= MP_BINARY_OP_REVERSE_OR - MP_BINARY_OP_OR;
+ }
+ #endif
+
+ if (op == MP_BINARY_OP_CONTAINS) {
+ // If type didn't support containment then explicitly walk the iterator.
+ // mp_getiter will raise the appropriate exception if lhs is not iterable.
+ mp_obj_iter_buf_t iter_buf;
+ mp_obj_t iter = mp_getiter(lhs, &iter_buf);
+ mp_obj_t next;
+ while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) {
+ if (mp_obj_equal(next, rhs)) {
+ return mp_const_true;
+ }
+ }
+ return mp_const_false;
+ }
+
+unsupported_op:
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ mp_raise_TypeError(MP_ERROR_TEXT("unsupported type for operator"));
+ #else
+ mp_raise_TypeError_varg(
+ MP_ERROR_TEXT("unsupported types for %q: '%q', '%q'"),
+ mp_binary_op_method_name[op], mp_obj_get_type_qstr(lhs), mp_obj_get_type_qstr(rhs));
+ #endif
+
+zero_division:
+ mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("division by zero"));
+}
+
+mp_obj_t mp_call_function_0(mp_obj_t fun) {
+ return mp_call_function_n_kw(fun, 0, 0, NULL);
+}
+
+mp_obj_t mp_call_function_1(mp_obj_t fun, mp_obj_t arg) {
+ return mp_call_function_n_kw(fun, 1, 0, &arg);
+}
+
+mp_obj_t mp_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
+ mp_obj_t args[2];
+ args[0] = arg1;
+ args[1] = arg2;
+ return mp_call_function_n_kw(fun, 2, 0, args);
+}
+
+// args contains, eg: arg0 arg1 key0 value0 key1 value1
+mp_obj_t mp_call_function_n_kw(mp_obj_t fun_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
+ // TODO improve this: fun object can specify its type and we parse here the arguments,
+ // passing to the function arrays of fixed and keyword arguments
+
+ DEBUG_OP_printf("calling function %p(n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", fun_in, n_args, n_kw, args);
+
+ // get the type
+ const mp_obj_type_t *type = mp_obj_get_type(fun_in);
+
+ // do the call
+ mp_call_fun_t call = mp_type_get_call_slot(type);
+ if (call) {
+ return call(fun_in, n_args, n_kw, args);
+ }
+
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ mp_raise_TypeError(MP_ERROR_TEXT("object not callable"));
+ #else
+ mp_raise_TypeError_varg(MP_ERROR_TEXT("'%q' object is not callable"), mp_obj_get_type_qstr(fun_in));
+ #endif
+}
+
+// args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1)
+// if n_args==0 and n_kw==0 then there are only fun and self/NULL
+mp_obj_t mp_call_method_n_kw(size_t n_args, size_t n_kw, const mp_obj_t *args) {
+ DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", args[0], args[1], n_args, n_kw, args);
+ int adjust = (args[1] == MP_OBJ_NULL) ? 0 : 1;
+ return mp_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust);
+}
+
+// This function only needs to be exposed externally when in stackless mode.
+#if !MICROPY_STACKLESS
+STATIC
+#endif
+void PLACE_IN_ITCM(mp_call_prepare_args_n_kw_var)(bool have_self, size_t n_args_n_kw, const mp_obj_t *args, mp_call_args_t *out_args) {
+ mp_obj_t fun = *args++;
+ mp_obj_t self = MP_OBJ_NULL;
+ if (have_self) {
+ self = *args++; // may be MP_OBJ_NULL
+ }
+ uint n_args = n_args_n_kw & 0xff;
+ uint n_kw = (n_args_n_kw >> 8) & 0xff;
+ mp_obj_t pos_seq = args[n_args + 2 * n_kw]; // may be MP_OBJ_NULL
+ mp_obj_t kw_dict = args[n_args + 2 * n_kw + 1]; // may be MP_OBJ_NULL
+
+ DEBUG_OP_printf("call method var (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p, seq=%p, dict=%p)\n", fun, self, n_args, n_kw, args, pos_seq, kw_dict);
+
+ // We need to create the following array of objects:
+ // args[0 .. n_args] unpacked(pos_seq) args[n_args .. n_args + 2 * n_kw] unpacked(kw_dict)
+ // TODO: optimize one day to avoid constructing new arg array? Will be hard.
+
+ // The new args array
+ mp_obj_t *args2;
+ uint args2_alloc;
+ uint args2_len = 0;
+
+ // Try to get a hint for the size of the kw_dict
+ uint kw_dict_len = 0;
+ if (kw_dict != MP_OBJ_NULL && mp_obj_is_type(kw_dict, &mp_type_dict)) {
+ kw_dict_len = mp_obj_dict_len(kw_dict);
+ }
+
+ // Extract the pos_seq sequence to the new args array.
+ // Note that it can be arbitrary iterator.
+ if (pos_seq == MP_OBJ_NULL) {
+ // no sequence
+
+ // allocate memory for the new array of args
+ args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len);
+ args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t));
+
+ // copy the self
+ if (self != MP_OBJ_NULL) {
+ args2[args2_len++] = self;
+ }
+
+ // copy the fixed pos args
+ mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
+ args2_len += n_args;
+
+ } else if (mp_obj_is_type(pos_seq, &mp_type_tuple) || mp_obj_is_type(pos_seq, &mp_type_list)) {
+ // optimise the case of a tuple and list
+
+ // get the items
+ size_t len;
+ mp_obj_t *items;
+ mp_obj_get_array(pos_seq, &len, &items);
+
+ // allocate memory for the new array of args
+ args2_alloc = 1 + n_args + len + 2 * (n_kw + kw_dict_len);
+ args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t));
+
+ // copy the self
+ if (self != MP_OBJ_NULL) {
+ args2[args2_len++] = self;
+ }
+
+ // copy the fixed and variable position args
+ mp_seq_cat(args2 + args2_len, args, n_args, items, len, mp_obj_t);
+ args2_len += n_args + len;
+
+ } else {
+ // generic iterator
+
+ // allocate memory for the new array of args
+ args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len) + 3;
+ args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t));
+
+ // copy the self
+ if (self != MP_OBJ_NULL) {
+ args2[args2_len++] = self;
+ }
+
+ // copy the fixed position args
+ mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
+ args2_len += n_args;
+
+ // extract the variable position args from the iterator
+ mp_obj_iter_buf_t iter_buf;
+ mp_obj_t iterable = mp_getiter(pos_seq, &iter_buf);
+ mp_obj_t item;
+ while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
+ if (args2_len >= args2_alloc) {
+ args2 = mp_nonlocal_realloc(args2, args2_alloc * sizeof(mp_obj_t), args2_alloc * 2 * sizeof(mp_obj_t));
+ args2_alloc *= 2;
+ }
+ args2[args2_len++] = item;
+ }
+ }
+
+ // The size of the args2 array now is the number of positional args.
+ uint pos_args_len = args2_len;
+
+ // Copy the fixed kw args.
+ mp_seq_copy(args2 + args2_len, args + n_args, 2 * n_kw, mp_obj_t);
+ args2_len += 2 * n_kw;
+
+ // Extract (key,value) pairs from kw_dict dictionary and append to args2.
+ // Note that it can be arbitrary iterator.
+ if (kw_dict == MP_OBJ_NULL) {
+ // pass
+ } else if (mp_obj_is_type(kw_dict, &mp_type_dict)) {
+ // dictionary
+ mp_map_t *map = mp_obj_dict_get_map(kw_dict);
+ assert(args2_len + 2 * map->used <= args2_alloc); // should have enough, since kw_dict_len is in this case hinted correctly above
+ for (size_t i = 0; i < map->alloc; i++) {
+ if (mp_map_slot_is_filled(map, i)) {
+ // the key must be a qstr, so intern it if it's a string
+ mp_obj_t key = map->table[i].key;
+ if (!mp_obj_is_qstr(key)) {
+ key = mp_obj_str_intern_checked(key);
+ }
+ args2[args2_len++] = key;
+ args2[args2_len++] = map->table[i].value;
+ }
+ }
+ } else {
+ // generic mapping:
+ // - call keys() to get an iterable of all keys in the mapping
+ // - call __getitem__ for each key to get the corresponding value
+
+ // get the keys iterable
+ mp_obj_t dest[3];
+ mp_load_method(kw_dict, MP_QSTR_keys, dest);
+ mp_obj_t iterable = mp_getiter(mp_call_method_n_kw(0, 0, dest), NULL);
+
+ mp_obj_t key;
+ while ((key = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
+ // expand size of args array if needed
+ if (args2_len + 1 >= args2_alloc) {
+ uint new_alloc = args2_alloc * 2;
+ if (new_alloc < 4) {
+ new_alloc = 4;
+ }
+ args2 = mp_nonlocal_realloc(args2, args2_alloc * sizeof(mp_obj_t), new_alloc * sizeof(mp_obj_t));
+ args2_alloc = new_alloc;
+ }
+
+ // the key must be a qstr, so intern it if it's a string
+ if (!mp_obj_is_qstr(key)) {
+ key = mp_obj_str_intern_checked(key);
+ }
+
+ // get the value corresponding to the key
+ mp_load_method(kw_dict, MP_QSTR___getitem__, dest);
+ dest[2] = key;
+ mp_obj_t value = mp_call_method_n_kw(1, 0, dest);
+
+ // store the key/value pair in the argument array
+ args2[args2_len++] = key;
+ args2[args2_len++] = value;
+ }
+ }
+
+ out_args->fun = fun;
+ out_args->args = args2;
+ out_args->n_args = pos_args_len;
+ out_args->n_kw = (args2_len - pos_args_len) / 2;
+ out_args->n_alloc = args2_alloc;
+}
+
+mp_obj_t mp_call_method_n_kw_var(bool have_self, size_t n_args_n_kw, const mp_obj_t *args) {
+ mp_call_args_t out_args;
+ mp_call_prepare_args_n_kw_var(have_self, n_args_n_kw, args, &out_args);
+
+ mp_obj_t res = mp_call_function_n_kw(out_args.fun, out_args.n_args, out_args.n_kw, out_args.args);
+ mp_nonlocal_free(out_args.args, out_args.n_alloc * sizeof(mp_obj_t));
+
+ return res;
+}
+
+// unpacked items are stored in reverse order into the array pointed to by items
+void mp_unpack_sequence(mp_obj_t seq_in, size_t num, mp_obj_t *items) {
+ size_t seq_len;
+ if (mp_obj_is_type(seq_in, &mp_type_tuple) || mp_obj_is_type(seq_in, &mp_type_list)) {
+ mp_obj_t *seq_items;
+ mp_obj_get_array(seq_in, &seq_len, &seq_items);
+ if (seq_len < num) {
+ goto too_short;
+ } else if (seq_len > num) {
+ goto too_long;
+ }
+ for (size_t i = 0; i < num; i++) {
+ items[i] = seq_items[num - 1 - i];
+ }
+ } else {
+ mp_obj_iter_buf_t iter_buf;
+ mp_obj_t iterable = mp_getiter(seq_in, &iter_buf);
+
+ for (seq_len = 0; seq_len < num; seq_len++) {
+ mp_obj_t el = mp_iternext(iterable);
+ if (el == MP_OBJ_STOP_ITERATION) {
+ goto too_short;
+ }
+ items[num - 1 - seq_len] = el;
+ }
+ if (mp_iternext(iterable) != MP_OBJ_STOP_ITERATION) {
+ goto too_long;
+ }
+ }
+ return;
+
+too_short:
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ mp_raise_ValueError(MP_ERROR_TEXT("wrong number of values to unpack"));
+ #else
+ mp_raise_ValueError_varg(MP_ERROR_TEXT("need more than %d values to unpack"),
+ (int)seq_len);
+ #endif
+too_long:
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ mp_raise_ValueError(MP_ERROR_TEXT("wrong number of values to unpack"));
+ #else
+ mp_raise_ValueError_varg(MP_ERROR_TEXT("too many values to unpack (expected %d)"),
+ (int)num);
+ #endif
+}
+
+// unpacked items are stored in reverse order into the array pointed to by items
+void mp_unpack_ex(mp_obj_t seq_in, size_t num_in, mp_obj_t *items) {
+ size_t num_left = num_in & 0xff;
+ size_t num_right = (num_in >> 8) & 0xff;
+ DEBUG_OP_printf("unpack ex " UINT_FMT " " UINT_FMT "\n", num_left, num_right);
+ size_t seq_len;
+ if (mp_obj_is_type(seq_in, &mp_type_tuple) || mp_obj_is_type(seq_in, &mp_type_list)) {
+ // Make the seq variable volatile so the compiler keeps a reference to it,
+ // since if it's a tuple then seq_items points to the interior of the GC cell
+ // and mp_obj_new_list may trigger a GC which doesn't trace this and reclaims seq.
+ volatile mp_obj_t seq = seq_in;
+ mp_obj_t *seq_items;
+ mp_obj_get_array(seq, &seq_len, &seq_items);
+ if (seq_len < num_left + num_right) {
+ goto too_short;
+ }
+ for (size_t i = 0; i < num_right; i++) {
+ items[i] = seq_items[seq_len - 1 - i];
+ }
+ items[num_right] = mp_obj_new_list(seq_len - num_left - num_right, seq_items + num_left);
+ for (size_t i = 0; i < num_left; i++) {
+ items[num_right + 1 + i] = seq_items[num_left - 1 - i];
+ }
+ seq = MP_OBJ_NULL;
+ } else {
+ // Generic iterable; this gets a bit messy: we unpack known left length to the
+ // items destination array, then the rest to a dynamically created list. Once the
+ // iterable is exhausted, we take from this list for the right part of the items.
+ // TODO Improve to waste less memory in the dynamically created list.
+ mp_obj_t iterable = mp_getiter(seq_in, NULL);
+ mp_obj_t item;
+ for (seq_len = 0; seq_len < num_left; seq_len++) {
+ item = mp_iternext(iterable);
+ if (item == MP_OBJ_STOP_ITERATION) {
+ goto too_short;
+ }
+ items[num_left + num_right + 1 - 1 - seq_len] = item;
+ }
+ mp_obj_list_t *rest = MP_OBJ_TO_PTR(mp_obj_new_list(0, NULL));
+ while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
+ mp_obj_list_append(MP_OBJ_FROM_PTR(rest), item);
+ }
+ if (rest->len < num_right) {
+ goto too_short;
+ }
+ items[num_right] = MP_OBJ_FROM_PTR(rest);
+ for (size_t i = 0; i < num_right; i++) {
+ items[num_right - 1 - i] = rest->items[rest->len - num_right + i];
+ }
+ mp_obj_list_set_len(MP_OBJ_FROM_PTR(rest), rest->len - num_right);
+ }
+ return;
+
+too_short:
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ mp_raise_ValueError(MP_ERROR_TEXT("wrong number of values to unpack"));
+ #else
+ mp_raise_ValueError_varg(MP_ERROR_TEXT("need more than %d values to unpack"),
+ (int)seq_len);
+ #endif
+}
+
+mp_obj_t mp_load_attr(mp_obj_t base, qstr attr) {
+ DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
+ // use load_method
+ mp_obj_t dest[2];
+ mp_load_method(base, attr, dest);
+ if (dest[1] == MP_OBJ_NULL) {
+ // load_method returned just a normal attribute
+ return dest[0];
+ } else {
+ // load_method returned a method, so build a bound method object
+ return mp_obj_new_bound_meth(dest[0], dest[1]);
+ }
+}
+
+#if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
+
+// The following "checked fun" type is local to the mp_convert_member_lookup
+// function, and serves to check that the first argument to a builtin function
+// has the correct type.
+
+typedef struct _mp_obj_checked_fun_t {
+ mp_obj_base_t base;
+ const mp_obj_type_t *type;
+ mp_obj_t fun;
+} mp_obj_checked_fun_t;
+
+STATIC mp_obj_t checked_fun_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
+ mp_obj_checked_fun_t *self = MP_OBJ_TO_PTR(self_in);
+ if (n_args > 0) {
+ const mp_obj_type_t *arg0_type = mp_obj_get_type(args[0]);
+ if (arg0_type != self->type) {
+ if (MICROPY_ERROR_REPORTING != MICROPY_ERROR_REPORTING_DETAILED) {
+ mp_raise_TypeError(MP_ERROR_TEXT("argument has wrong type"));
+ } else {
+ mp_raise_TypeError_varg(MP_ERROR_TEXT("argument should be a '%q' not a '%q'"),
+ self->type->name, arg0_type->name);
+ }
+ }
+ }
+ return mp_call_function_n_kw(self->fun, n_args, n_kw, args);
+}
+
+STATIC const mp_obj_type_t mp_type_checked_fun = {
+ { &mp_type_type },
+ .flags = MP_TYPE_FLAG_BINDS_SELF | MP_TYPE_FLAG_EXTENDED,
+ .name = MP_QSTR_function,
+ MP_TYPE_EXTENDED_FIELDS(
+ .call = checked_fun_call,
+ )
+};
+
+STATIC mp_obj_t mp_obj_new_checked_fun(const mp_obj_type_t *type, mp_obj_t fun) {
+ mp_obj_checked_fun_t *o = m_new_obj(mp_obj_checked_fun_t);
+ o->base.type = &mp_type_checked_fun;
+ o->type = type;
+ o->fun = fun;
+ return MP_OBJ_FROM_PTR(o);
+}
+
+#endif // MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
+
+// Given a member that was extracted from an instance, convert it correctly
+// and put the result in the dest[] array for a possible method call.
+// Conversion means dealing with static/class methods, callables, and values.
+// see http://docs.python.org/3/howto/descriptor.html
+// and also https://mail.python.org/pipermail/python-dev/2015-March/138950.html
+void mp_convert_member_lookup(mp_obj_t self, const mp_obj_type_t *type, mp_obj_t member, mp_obj_t *dest) {
+ if (mp_obj_is_obj(member)) {
+ const mp_obj_type_t *m_type = ((mp_obj_base_t *)MP_OBJ_TO_PTR(member))->type;
+ if (m_type->flags & MP_TYPE_FLAG_BINDS_SELF) {
+ // `member` is a function that binds self as its first argument.
+ if (m_type->flags & MP_TYPE_FLAG_BUILTIN_FUN) {
+ // `member` is a built-in function, which has special behaviour.
+ if (mp_obj_is_instance_type(type)) {
+ // Built-in functions on user types always behave like a staticmethod.
+ dest[0] = member;
+ }
+ #if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
+ else if (self == MP_OBJ_NULL && type != &mp_type_object) {
+ // `member` is a built-in method without a first argument, so wrap
+ // it in a type checker that will check self when it's supplied.
+ // Note that object will do its own checking so shouldn't be wrapped.
+ dest[0] = mp_obj_new_checked_fun(type, member);
+ }
+ #endif
+ else {
+ // Return a (built-in) bound method, with self being this object.
+ dest[0] = member;
+ dest[1] = self;
+ }
+ } else {
+ // Return a bound method, with self being this object.
+ dest[0] = member;
+ dest[1] = self;
+ }
+ } else if (m_type == &mp_type_staticmethod) {
+ // `member` is a staticmethod, return the function that it wraps.
+ dest[0] = ((mp_obj_static_class_method_t *)MP_OBJ_TO_PTR(member))->fun;
+ } else if (m_type == &mp_type_classmethod) {
+ // `member` is a classmethod, return a bound method with self being the type of
+ // this object. This type should be the type of the original instance, not the
+ // base type (which is what is passed in the `type` argument to this function).
+ if (self != MP_OBJ_NULL) {
+ type = mp_obj_get_type(self);
+ }
+ dest[0] = ((mp_obj_static_class_method_t *)MP_OBJ_TO_PTR(member))->fun;
+ dest[1] = MP_OBJ_FROM_PTR(type);
+ #if MICROPY_PY_BUILTINS_PROPERTY
+ // If self is MP_OBJ_NULL, we looking at the class itself, not an instance.
+ } else if (mp_obj_is_type(member, &mp_type_property) && mp_obj_is_native_type(type) && self != MP_OBJ_NULL) {
+ // object member is a property; delegate the load to the property
+ // Note: This is an optimisation for code size and execution time.
+ // The proper way to do it is have the functionality just below
+ // in a __get__ method of the property object, and then it would
+ // be called by the descriptor code down below. But that way
+ // requires overhead for the nested mp_call's and overhead for
+ // the code.
+ size_t n_proxy;
+ const mp_obj_t *proxy = mp_obj_property_get(member, &n_proxy);
+ if (proxy[0] == mp_const_none) {
+ mp_raise_AttributeError(MP_ERROR_TEXT("unreadable attribute"));
+ } else {
+ dest[0] = mp_call_function_n_kw(proxy[0], 1, 0, &self);
+ }
+ #endif
+ } else {
+ // `member` is a value, so just return that value.
+ dest[0] = member;
+ }
+ } else {
+ // `member` is a value, so just return that value.
+ dest[0] = member;
+ }
+}
+
+// no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL
+// normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL
+// method attribute found, returns: dest[0] == <method>, dest[1] == <self>
+void mp_load_method_maybe(mp_obj_t obj, qstr attr, mp_obj_t *dest) {
+ // clear output to indicate no attribute/method found yet
+ dest[0] = MP_OBJ_NULL;
+ dest[1] = MP_OBJ_NULL;
+
+ // Note: the specific case of obj being an instance type is fast-path'ed in the VM
+ // for the MP_BC_LOAD_ATTR opcode. Instance types handle type->attr and look up directly
+ // in their member's map.
+
+ // get the type
+ const mp_obj_type_t *type = mp_obj_get_type(obj);
+
+ // look for built-in names
+ #if MICROPY_CPYTHON_COMPAT
+ if (attr == MP_QSTR___class__) {
+ // a.__class__ is equivalent to type(a)
+ dest[0] = MP_OBJ_FROM_PTR(type);
+ return;
+ }
+ #endif
+
+ if (attr == MP_QSTR___next__ && mp_type_get_iternext_slot(type) != NULL) {
+ dest[0] = MP_OBJ_FROM_PTR(&mp_builtin_next_obj);
+ dest[1] = obj;
+ return;
+ }
+ mp_attr_fun_t attr_fun = mp_type_get_attr_slot(type);
+ if (attr_fun != NULL) {
+ // this type can do its own load, so call it
+ attr_fun(obj, attr, dest);
+
+ // If type->attr has set dest[1] = MP_OBJ_SENTINEL, we should proceed
+ // with lookups below (i.e. in locals_dict). If not, return right away.
+ if (dest[1] != MP_OBJ_SENTINEL) {
+ return;
+ }
+ // Clear the fail flag set by type->attr so it's like it never ran.
+ dest[1] = MP_OBJ_NULL;
+ }
+ if (type->locals_dict != NULL) {
+ // generic method lookup
+ // this is a lookup in the object (ie not class or type)
+ assert(type->locals_dict->base.type == &mp_type_dict); // MicroPython restriction, for now
+ mp_map_t *locals_map = &type->locals_dict->map;
+ mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
+ if (elem != NULL) {
+ mp_convert_member_lookup(obj, type, elem->value, dest);
+ }
+ return;
+ }
+}
+
+void mp_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
+ DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));
+
+ mp_load_method_maybe(base, attr, dest);
+
+ if (dest[0] == MP_OBJ_NULL) {
+ // no attribute/method called attr
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ mp_raise_AttributeError(MP_ERROR_TEXT("no such attribute"));
+ #else
+ // following CPython, we give a more detailed error message for type objects
+ if (mp_obj_is_type(base, &mp_type_type)) {
+ mp_raise_msg_varg(&mp_type_AttributeError,
+ MP_ERROR_TEXT("type object '%q' has no attribute '%q'"),
+ ((mp_obj_type_t *)MP_OBJ_TO_PTR(base))->name, attr);
+ } else {
+ mp_raise_msg_varg(&mp_type_AttributeError,
+ MP_ERROR_TEXT("'%s' object has no attribute '%q'"),
+ mp_obj_get_type_str(base), attr);
+ }
+ #endif
+ }
+}
+
+// Acts like mp_load_method_maybe but catches AttributeError, and all other exceptions if requested
+void mp_load_method_protected(mp_obj_t obj, qstr attr, mp_obj_t *dest, bool catch_all_exc) {
+ nlr_buf_t nlr;
+ if (nlr_push(&nlr) == 0) {
+ mp_load_method_maybe(obj, attr, dest);
+ nlr_pop();
+ } else {
+ if (!catch_all_exc
+ && !mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t *)nlr.ret_val)->type),
+ MP_OBJ_FROM_PTR(&mp_type_AttributeError))) {
+ // Re-raise the exception
+ nlr_raise(MP_OBJ_FROM_PTR(nlr.ret_val));
+ }
+ }
+}
+
+void mp_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
+ DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
+ const mp_obj_type_t *type = mp_obj_get_type(base);
+ mp_attr_fun_t attr_fun = mp_type_get_attr_slot(type);
+ if (attr_fun != NULL) {
+ mp_obj_t dest[2] = {MP_OBJ_SENTINEL, value};
+ attr_fun(base, attr, dest);
+ if (dest[0] == MP_OBJ_NULL) {
+ // success
+ return;
+ }
+ #if MICROPY_PY_BUILTINS_PROPERTY
+ } else if (type->locals_dict != NULL) {
+ // generic method lookup
+ // this is a lookup in the object (ie not class or type)
+ assert(type->locals_dict->base.type == &mp_type_dict); // Micro Python restriction, for now
+ mp_map_t *locals_map = &type->locals_dict->map;
+ mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
+ // If base is MP_OBJ_NULL, we looking at the class itself, not an instance.
+ if (elem != NULL && mp_obj_is_type(elem->value, &mp_type_property) && base != MP_OBJ_NULL) {
+ // attribute exists and is a property; delegate the store/delete
+ // Note: This is an optimisation for code size and execution time.
+ // The proper way to do it is have the functionality just below in
+ // a __set__/__delete__ method of the property object, and then it
+ // would be called by the descriptor code down below. But that way
+ // requires overhead for the nested mp_call's and overhead for
+ // the code.
+ size_t n_proxy;
+ const mp_obj_t *proxy = mp_obj_property_get(elem->value, &n_proxy);
+ mp_obj_t dest[2] = {base, value};
+ if (value == MP_OBJ_NULL) {
+ // delete attribute
+ if (n_proxy == 3 && proxy[2] != mp_const_none) {
+ mp_call_function_n_kw(proxy[2], 1, 0, dest);
+ return;
+ }
+ } else if (n_proxy > 1 && proxy[1] != mp_const_none) {
+ mp_call_function_n_kw(proxy[1], 2, 0, dest);
+ return;
+ }
+ }
+ #endif
+ }
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ mp_raise_AttributeError(MP_ERROR_TEXT("no such attribute"));
+ #else
+ mp_raise_msg_varg(&mp_type_AttributeError,
+ MP_ERROR_TEXT("'%s' object has no attribute '%q'"),
+ mp_obj_get_type_str(base), attr);
+ #endif
+}
+
+mp_obj_t mp_getiter(mp_obj_t o_in, mp_obj_iter_buf_t *iter_buf) {
+ assert(o_in);
+ const mp_obj_type_t *type = mp_obj_get_type(o_in);
+ mp_getiter_fun_t getiter = mp_type_get_getiter_slot(type);
+ // Check for native getiter which is the identity. We handle this case explicitly
+ // so we don't unnecessarily allocate any RAM for the iter_buf, which won't be used.
+ if (getiter == mp_identity_getiter) {
+ return o_in;
+ }
+
+ // check for native getiter (corresponds to __iter__)
+ if (getiter != NULL) {
+ if (iter_buf == NULL && getiter != mp_obj_instance_getiter) {
+ // if caller did not provide a buffer then allocate one on the heap
+ // mp_obj_instance_getiter is special, it will allocate only if needed
+ iter_buf = m_new_obj(mp_obj_iter_buf_t);
+ }
+ mp_obj_t iter = getiter(o_in, iter_buf);
+ if (iter != MP_OBJ_NULL) {
+ return iter;
+ }
+ }
+
+ // check for __getitem__
+ mp_obj_t dest[2];
+ mp_load_method_maybe(o_in, MP_QSTR___getitem__, dest);
+ if (dest[0] != MP_OBJ_NULL) {
+ // __getitem__ exists, create and return an iterator
+ if (iter_buf == NULL) {
+ // if caller did not provide a buffer then allocate one on the heap
+ iter_buf = m_new_obj(mp_obj_iter_buf_t);
+ }
+ return mp_obj_new_getitem_iter(dest, iter_buf);
+ }
+
+ // object not iterable
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ mp_raise_TypeError(MP_ERROR_TEXT("object not iterable"));
+ #else
+ mp_raise_TypeError_varg(
+ MP_ERROR_TEXT("'%q' object is not iterable"), mp_obj_get_type_qstr(o_in));
+ #endif
+}
+
+// may return MP_OBJ_STOP_ITERATION as an optimisation instead of raise StopIteration()
+// may also raise StopIteration()
+mp_obj_t mp_iternext_allow_raise(mp_obj_t o_in) {
+ const mp_obj_type_t *type = mp_obj_get_type(o_in);
+ mp_fun_1_t iternext = mp_type_get_iternext_slot(type);
+ if (iternext != NULL) {
+ MP_STATE_THREAD(stop_iteration_arg) = MP_OBJ_NULL;
+ return iternext(o_in);
+ } else {
+ // check for __next__ method
+ mp_obj_t dest[2];
+ mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
+ if (dest[0] != MP_OBJ_NULL) {
+ // __next__ exists, call it and return its result
+ return mp_call_method_n_kw(0, 0, dest);
+ } else {
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ mp_raise_TypeError(MP_ERROR_TEXT("object not an iterator"));
+ #else
+ mp_raise_TypeError_varg(MP_ERROR_TEXT("'%q' object is not an iterator"),
+ mp_obj_get_type_qstr(o_in));
+ #endif
+ }
+ }
+}
+
+// will always return MP_OBJ_STOP_ITERATION instead of raising StopIteration() (or any subclass thereof)
+// may raise other exceptions
+mp_obj_t mp_iternext(mp_obj_t o_in) {
+ MP_STACK_CHECK(); // enumerate, filter, map and zip can recursively call mp_iternext
+ const mp_obj_type_t *type = mp_obj_get_type(o_in);
+ mp_fun_1_t iternext = mp_type_get_iternext_slot(type);
+ if (iternext != NULL) {
+ MP_STATE_THREAD(stop_iteration_arg) = MP_OBJ_NULL;
+ return iternext(o_in);
+ } else {
+ // check for __next__ method
+ mp_obj_t dest[2];
+ mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
+ if (dest[0] != MP_OBJ_NULL) {
+ // __next__ exists, call it and return its result
+ nlr_buf_t nlr;
+ if (nlr_push(&nlr) == 0) {
+ mp_obj_t ret = mp_call_method_n_kw(0, 0, dest);
+ nlr_pop();
+ return ret;
+ } else {
+ if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t *)nlr.ret_val)->type), MP_OBJ_FROM_PTR(&mp_type_StopIteration))) {
+ return mp_make_stop_iteration(mp_obj_exception_get_value(MP_OBJ_FROM_PTR(nlr.ret_val)));
+ } else {
+ nlr_jump(nlr.ret_val);
+ }
+ }
+ } else {
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ mp_raise_TypeError(MP_ERROR_TEXT("object not an iterator"));
+ #else
+ mp_raise_TypeError_varg(MP_ERROR_TEXT("'%q' object is not an iterator"),
+ mp_obj_get_type_qstr(o_in));
+ #endif
+ }
+ }
+}
+
+mp_vm_return_kind_t mp_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) {
+ assert((send_value != MP_OBJ_NULL) ^ (throw_value != MP_OBJ_NULL));
+ const mp_obj_type_t *type = mp_obj_get_type(self_in);
+
+ if (type == &mp_type_gen_instance) {
+ return mp_obj_gen_resume(self_in, send_value, throw_value, ret_val);
+ }
+
+ mp_fun_1_t iternext = mp_type_get_iternext_slot(type);
+ if (iternext != NULL && send_value == mp_const_none) {
+ MP_STATE_THREAD(stop_iteration_arg) = MP_OBJ_NULL;
+ mp_obj_t ret = iternext(self_in);
+ *ret_val = ret;
+ if (ret != MP_OBJ_STOP_ITERATION) {
+ return MP_VM_RETURN_YIELD;
+ } else {
+ // The generator is finished.
+ // This is an optimised "raise StopIteration(*ret_val)".
+ *ret_val = MP_STATE_THREAD(stop_iteration_arg);
+ if (*ret_val == MP_OBJ_NULL) {
+ *ret_val = mp_const_none;
+ }
+ return MP_VM_RETURN_NORMAL;
+ }
+ }
+
+ mp_obj_t dest[3]; // Reserve slot for send() arg
+
+ // Python instance iterator protocol
+ if (send_value == mp_const_none) {
+ mp_load_method_maybe(self_in, MP_QSTR___next__, dest);
+ if (dest[0] != MP_OBJ_NULL) {
+ *ret_val = mp_call_method_n_kw(0, 0, dest);
+ return MP_VM_RETURN_YIELD;
+ }
+ }
+
+ // Either python instance generator protocol, or native object
+ // generator protocol.
+ if (send_value != MP_OBJ_NULL) {
+ mp_load_method(self_in, MP_QSTR_send, dest);
+ dest[2] = send_value;
+ *ret_val = mp_call_method_n_kw(1, 0, dest);
+ return MP_VM_RETURN_YIELD;
+ }
+
+ assert(throw_value != MP_OBJ_NULL);
+ {
+ if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(mp_obj_get_type(throw_value)), MP_OBJ_FROM_PTR(&mp_type_GeneratorExit))) {
+ mp_load_method_maybe(self_in, MP_QSTR_close, dest);
+ if (dest[0] != MP_OBJ_NULL) {
+ // TODO: Exceptions raised in close() are not propagated,
+ // printed to sys.stderr
+ *ret_val = mp_call_method_n_kw(0, 0, dest);
+ // We assume one can't "yield" from close()
+ return MP_VM_RETURN_NORMAL;
+ }
+ } else {
+ mp_load_method_maybe(self_in, MP_QSTR_throw, dest);
+ if (dest[0] != MP_OBJ_NULL) {
+ dest[2] = throw_value;
+ *ret_val = mp_call_method_n_kw(1, 0, dest);
+ // If .throw() method returned, we assume it's value to yield
+ // - any exception would be thrown with nlr_raise().
+ return MP_VM_RETURN_YIELD;
+ }
+ }
+ // If there's nowhere to throw exception into, then we assume that object
+ // is just incapable to handle it, so any exception thrown into it
+ // will be propagated up. This behavior is approved by test_pep380.py
+ // test_delegation_of_close_to_non_generator(),
+ // test_delegating_throw_to_non_generator()
+ if (mp_obj_exception_match(throw_value, MP_OBJ_FROM_PTR(&mp_type_StopIteration))) {
+ // PEP479: if StopIteration is raised inside a generator it is replaced with RuntimeError
+ *ret_val = mp_obj_new_exception_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("generator raised StopIteration"));
+ } else {
+ *ret_val = mp_make_raise_obj(throw_value);
+ }
+ return MP_VM_RETURN_EXCEPTION;
+ }
+}
+
+mp_obj_t mp_make_raise_obj(mp_obj_t o) {
+ DEBUG_printf("raise %p\n", o);
+ if (mp_obj_is_exception_type(o)) {
+ // o is an exception type (it is derived from BaseException (or is BaseException))
+ // create and return a new exception instance by calling o
+ // TODO could have an option to disable traceback, then builtin exceptions (eg TypeError)
+ // could have const instances in ROM which we return here instead
+ o = mp_call_function_n_kw(o, 0, 0, NULL);
+ }
+
+ if (mp_obj_is_exception_instance(o)) {
+ // o is an instance of an exception, so use it as the exception
+ return o;
+ } else {
+ // o cannot be used as an exception, so return a type error (which will be raised by the caller)
+ return mp_obj_new_exception_msg(&mp_type_TypeError, MP_ERROR_TEXT("exceptions must derive from BaseException"));
+ }
+}
+
+mp_obj_t mp_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
+ DEBUG_printf("import name '%s' level=%d\n", qstr_str(name), MP_OBJ_SMALL_INT_VALUE(level));
+
+ // build args array
+ mp_obj_t args[5];
+ args[0] = MP_OBJ_NEW_QSTR(name);
+ args[1] = mp_const_none; // TODO should be globals
+ args[2] = mp_const_none; // TODO should be locals
+ args[3] = fromlist;
+ args[4] = level;
+
+ #if MICROPY_CAN_OVERRIDE_BUILTINS
+ // Lookup __import__ and call that if it exists
+ mp_obj_dict_t *bo_dict = MP_STATE_VM(mp_module_builtins_override_dict);
+ if (bo_dict != NULL) {
+ mp_map_elem_t *import = mp_map_lookup(&bo_dict->map, MP_OBJ_NEW_QSTR(MP_QSTR___import__), MP_MAP_LOOKUP);
+ if (import != NULL) {
+ return mp_call_function_n_kw(import->value, 5, 0, args);
+ }
+ }
+ #endif
+
+ return mp_builtin___import__(5, args);
+}
+
+mp_obj_t mp_import_from(mp_obj_t module, qstr name) {
+ DEBUG_printf("import from %p %s\n", module, qstr_str(name));
+
+ mp_obj_t dest[2];
+
+ mp_load_method_maybe(module, name, dest);
+
+ if (dest[1] != MP_OBJ_NULL) {
+ // Hopefully we can't import bound method from an object
+ mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("cannot import name %q"), name);
+ }
+
+ if (dest[0] != MP_OBJ_NULL) {
+ return dest[0];
+ }
+
+ #if MICROPY_ENABLE_EXTERNAL_IMPORT
+
+ // See if it's a package, then can try FS import
+ if (!mp_obj_is_package(module)) {
+ mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("cannot import name %q"), name);
+ }
+
+ mp_load_method_maybe(module, MP_QSTR___name__, dest);
+ size_t pkg_name_len;
+ const char *pkg_name = mp_obj_str_get_data(dest[0], &pkg_name_len);
+
+ const uint dot_name_len = pkg_name_len + 1 + qstr_len(name);
+ char *dot_name = mp_local_alloc(dot_name_len);
+ memcpy(dot_name, pkg_name, pkg_name_len);
+ dot_name[pkg_name_len] = '.';
+ memcpy(dot_name + pkg_name_len + 1, qstr_str(name), qstr_len(name));
+ qstr dot_name_q = qstr_from_strn(dot_name, dot_name_len);
+ mp_local_free(dot_name);
+
+ // For fromlist, pass sentinel "non empty" value to force returning of leaf module
+ return mp_import_name(dot_name_q, mp_const_true, MP_OBJ_NEW_SMALL_INT(0));
+
+ #else
+
+ // Package import not supported with external imports disabled
+ mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("cannot import name %q"), name);
+
+ #endif
+}
+
+void mp_import_all(mp_obj_t module) {
+ DEBUG_printf("import all %p\n", module);
+
+ // TODO: Support __all__
+ mp_map_t *map = &mp_obj_module_get_globals(module)->map;
+ for (size_t i = 0; i < map->alloc; i++) {
+ if (mp_map_slot_is_filled(map, i)) {
+ // Entry in module global scope may be generated programmatically
+ // (and thus be not a qstr for longer names). Avoid turning it in
+ // qstr if it has '_' and was used exactly to save memory.
+ const char *name = mp_obj_str_get_str(map->table[i].key);
+ if (*name != '_') {
+ qstr qname = mp_obj_str_get_qstr(map->table[i].key);
+ mp_store_name(qname, map->table[i].value);
+ }
+ }
+ }
+}
+
+#if MICROPY_ENABLE_COMPILER
+
+mp_obj_t mp_parse_compile_execute(mp_lexer_t *lex, mp_parse_input_kind_t parse_input_kind, mp_obj_dict_t *globals, mp_obj_dict_t *locals) {
+ // save context
+ mp_obj_dict_t *volatile old_globals = mp_globals_get();
+ mp_obj_dict_t *volatile old_locals = mp_locals_get();
+
+ // set new context
+ mp_globals_set(globals);
+ mp_locals_set(locals);
+
+ nlr_buf_t nlr;
+ if (nlr_push(&nlr) == 0) {
+ qstr source_name = lex->source_name;
+ mp_parse_tree_t parse_tree = mp_parse(lex, parse_input_kind);
+ mp_obj_t module_fun = mp_compile(&parse_tree, source_name, parse_input_kind == MP_PARSE_SINGLE_INPUT);
+
+ mp_obj_t ret;
+ if (MICROPY_PY_BUILTINS_COMPILE && globals == NULL) {
+ // for compile only, return value is the module function
+ ret = module_fun;
+ } else {
+ // execute module function and get return value
+ ret = mp_call_function_0(module_fun);
+ }
+
+ // finish nlr block, restore context and return value
+ nlr_pop();
+ mp_globals_set(old_globals);
+ mp_locals_set(old_locals);
+ return ret;
+ } else {
+ // exception; restore context and re-raise same exception
+ mp_globals_set(old_globals);
+ mp_locals_set(old_locals);
+ nlr_jump(nlr.ret_val);
+ }
+}
+
+#endif // MICROPY_ENABLE_COMPILER
+
+NORETURN void m_malloc_fail(size_t num_bytes) {
+ DEBUG_printf("memory allocation failed, allocating %u bytes\n", (uint)num_bytes);
+ #if MICROPY_ENABLE_GC
+ if (gc_is_locked()) {
+ mp_raise_msg(&mp_type_MemoryError, MP_ERROR_TEXT("memory allocation failed, heap is locked"));
+ }
+ #endif
+ mp_raise_msg_varg(&mp_type_MemoryError,
+ MP_ERROR_TEXT("memory allocation failed, allocating %u bytes"), (uint)num_bytes);
+}
+
+#if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NONE
+
+NORETURN void mp_raise_type(const mp_obj_type_t *exc_type) {
+ nlr_raise(mp_obj_new_exception(exc_type));
+}
+
+NORETURN void mp_raise_ValueError_no_msg(void) {
+ mp_raise_type(&mp_type_ValueError);
+}
+
+NORETURN void mp_raise_TypeError_no_msg(void) {
+ mp_raise_type(&mp_type_TypeError);
+}
+
+NORETURN void mp_raise_NotImplementedError_no_msg(void) {
+ mp_raise_type(&mp_type_NotImplementedError);
+}
+
+#else
+
+NORETURN void mp_raise_msg(const mp_obj_type_t *exc_type, const compressed_string_t *msg) {
+ if (msg == NULL) {
+ nlr_raise(mp_obj_new_exception(exc_type));
+ } else {
+ nlr_raise(mp_obj_new_exception_msg(exc_type, msg));
+ }
+}
+
+NORETURN void mp_raise_msg_vlist(const mp_obj_type_t *exc_type, const compressed_string_t *fmt, va_list argptr) {
+ mp_obj_t exception = mp_obj_new_exception_msg_vlist(exc_type, fmt, argptr);
+ nlr_raise(exception);
+}
+
+NORETURN void mp_raise_msg_varg(const mp_obj_type_t *exc_type, const compressed_string_t *fmt, ...) {
+ va_list argptr;
+ va_start(argptr,fmt);
+ mp_raise_msg_vlist(exc_type, fmt, argptr);
+ va_end(argptr);
+}
+
+NORETURN void mp_raise_msg_str(const mp_obj_type_t *exc_type, const char *msg) {
+ if (msg == NULL) {
+ nlr_raise(mp_obj_new_exception(exc_type));
+ } else {
+ nlr_raise(mp_obj_new_exception_msg_str(exc_type, msg));
+ }
+}
+
+NORETURN void mp_raise_AttributeError(const compressed_string_t *msg) {
+ mp_raise_msg(&mp_type_AttributeError, msg);
+}
+
+NORETURN void mp_raise_RuntimeError(const compressed_string_t *msg) {
+ mp_raise_msg(&mp_type_RuntimeError, msg);
+}
+
+NORETURN void mp_raise_ImportError(const compressed_string_t *msg) {
+ mp_raise_msg(&mp_type_ImportError, msg);
+}
+
+NORETURN void mp_raise_IndexError(const compressed_string_t *msg) {
+ mp_raise_msg(&mp_type_IndexError, msg);
+}
+
+NORETURN void mp_raise_IndexError_varg(const compressed_string_t *fmt, ...) {
+ va_list argptr;
+ va_start(argptr,fmt);
+ mp_raise_msg_vlist(&mp_type_IndexError, fmt, argptr);
+ va_end(argptr);
+}
+
+NORETURN void mp_raise_ValueError(const compressed_string_t *msg) {
+ mp_raise_msg(&mp_type_ValueError, msg);
+}
+
+NORETURN void mp_raise_ValueError_varg(const compressed_string_t *fmt, ...) {
+ va_list argptr;
+ va_start(argptr,fmt);
+ mp_raise_msg_vlist(&mp_type_ValueError, fmt, argptr);
+ va_end(argptr);
+}
+
+NORETURN void mp_raise_TypeError(const compressed_string_t *msg) {
+ mp_raise_msg(&mp_type_TypeError, msg);
+}
+
+NORETURN void mp_raise_TypeError_varg(const compressed_string_t *fmt, ...) {
+ va_list argptr;
+ va_start(argptr,fmt);
+ mp_raise_msg_vlist(&mp_type_TypeError, fmt, argptr);
+ va_end(argptr);
+}
+
+NORETURN void mp_raise_OSError_msg(const compressed_string_t *msg) {
+ mp_raise_msg(&mp_type_OSError, msg);
+}
+
+NORETURN void mp_raise_OSError_errno_str(int errno_, mp_obj_t str) {
+ mp_obj_t args[2] = {
+ MP_OBJ_NEW_SMALL_INT(errno_),
+ str,
+ };
+ nlr_raise(mp_obj_new_exception_args(&mp_type_OSError, 2, args));
+}
+
+NORETURN void mp_raise_OSError_msg_varg(const compressed_string_t *fmt, ...) {
+ va_list argptr;
+ va_start(argptr,fmt);
+ mp_raise_msg_vlist(&mp_type_OSError, fmt, argptr);
+ va_end(argptr);
+}
+
+NORETURN void mp_raise_ConnectionError(const compressed_string_t *msg) {
+ mp_raise_msg(&mp_type_ConnectionError, msg);
+}
+
+NORETURN void mp_raise_BrokenPipeError(void) {
+ mp_raise_type_arg(&mp_type_BrokenPipeError, MP_OBJ_NEW_SMALL_INT(MP_EPIPE));
+}
+
+NORETURN void mp_raise_NotImplementedError(const compressed_string_t *msg) {
+ mp_raise_msg(&mp_type_NotImplementedError, msg);
+}
+
+NORETURN void mp_raise_NotImplementedError_varg(const compressed_string_t *fmt, ...) {
+ va_list argptr;
+ va_start(argptr,fmt);
+ mp_raise_msg_vlist(&mp_type_NotImplementedError, fmt, argptr);
+ va_end(argptr);
+}
+
+
+NORETURN void mp_raise_OverflowError_varg(const compressed_string_t *fmt, ...) {
+ va_list argptr;
+ va_start(argptr,fmt);
+ mp_raise_msg_vlist(&mp_type_OverflowError, fmt, argptr);
+ va_end(argptr);
+}
+
+NORETURN void mp_raise_MpyError(const compressed_string_t *msg) {
+ mp_raise_msg(&mp_type_MpyError, msg);
+}
+
+NORETURN void mp_raise_type_arg(const mp_obj_type_t *exc_type, mp_obj_t arg) {
+ nlr_raise(mp_obj_new_exception_arg1(exc_type, arg));
+}
+
+NORETURN void mp_raise_StopIteration(mp_obj_t arg) {
+ if (arg == MP_OBJ_NULL) {
+ mp_raise_type(&mp_type_StopIteration);
+ } else {
+ mp_raise_type_arg(&mp_type_StopIteration, arg);
+ }
+}
+
+NORETURN void mp_raise_OSError(int errno_) {
+ mp_raise_type_arg(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(errno_));
+}
+
+#endif
+
+#if MICROPY_STACK_CHECK || MICROPY_ENABLE_PYSTACK
+NORETURN void mp_raise_recursion_depth(void) {
+ mp_raise_RuntimeError(MP_ERROR_TEXT("maximum recursion depth exceeded"));
+}
+#endif