diff options
Diffstat (limited to 'circuitpython/py/parse.c')
-rw-r--r-- | circuitpython/py/parse.c | 1256 |
1 files changed, 1256 insertions, 0 deletions
diff --git a/circuitpython/py/parse.c b/circuitpython/py/parse.c new file mode 100644 index 0000000..dee662b --- /dev/null +++ b/circuitpython/py/parse.c @@ -0,0 +1,1256 @@ +/* + * This file is part of the MicroPython project, http://micropython.org/ + * + * The MIT License (MIT) + * + * SPDX-FileCopyrightText: Copyright (c) 2013-2017 Damien P. George + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include <stdbool.h> +#include <stdint.h> +#include <stdio.h> +#include <unistd.h> // for ssize_t +#include <assert.h> +#include <string.h> + +#include "py/lexer.h" +#include "py/parse.h" +#include "py/parsenum.h" +#include "py/runtime.h" +#include "py/objint.h" +#include "py/objstr.h" +#include "py/builtin.h" + +#include "supervisor/shared/translate.h" + +#if MICROPY_ENABLE_COMPILER + +#define RULE_ACT_ARG_MASK (0x0f) +#define RULE_ACT_KIND_MASK (0x30) +#define RULE_ACT_ALLOW_IDENT (0x40) +#define RULE_ACT_ADD_BLANK (0x80) +#define RULE_ACT_OR (0x10) +#define RULE_ACT_AND (0x20) +#define RULE_ACT_LIST (0x30) + +#define RULE_ARG_KIND_MASK (0xf000) +#define RULE_ARG_ARG_MASK (0x0fff) +#define RULE_ARG_TOK (0x1000) +#define RULE_ARG_RULE (0x2000) +#define RULE_ARG_OPT_RULE (0x3000) + +// *FORMAT-OFF* + +enum { +// define rules with a compile function +#define DEF_RULE(rule, comp, kind, ...) RULE_##rule, +#define DEF_RULE_NC(rule, kind, ...) + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC + RULE_const_object, // special node for a constant, generic Python object + +// define rules without a compile function +#define DEF_RULE(rule, comp, kind, ...) +#define DEF_RULE_NC(rule, kind, ...) RULE_##rule, + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC +}; + +// Define an array of actions corresponding to each rule +STATIC const uint8_t rule_act_table[] = { +#define or(n) (RULE_ACT_OR | n) +#define and(n) (RULE_ACT_AND | n) +#define and_ident(n) (RULE_ACT_AND | n | RULE_ACT_ALLOW_IDENT) +#define and_blank(n) (RULE_ACT_AND | n | RULE_ACT_ADD_BLANK) +#define one_or_more (RULE_ACT_LIST | 2) +#define list (RULE_ACT_LIST | 1) +#define list_with_end (RULE_ACT_LIST | 3) + +#define DEF_RULE(rule, comp, kind, ...) kind, +#define DEF_RULE_NC(rule, kind, ...) + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC + + 0, // RULE_const_object + +#define DEF_RULE(rule, comp, kind, ...) +#define DEF_RULE_NC(rule, kind, ...) kind, + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC + +#undef or +#undef and +#undef and_ident +#undef and_blank +#undef one_or_more +#undef list +#undef list_with_end +}; + +// Define the argument data for each rule, as a combined array +STATIC const uint16_t rule_arg_combined_table[] = { +#define tok(t) (RULE_ARG_TOK | MP_TOKEN_##t) +#define rule(r) (RULE_ARG_RULE | RULE_##r) +#define opt_rule(r) (RULE_ARG_OPT_RULE | RULE_##r) + +#define DEF_RULE(rule, comp, kind, ...) __VA_ARGS__, +#define DEF_RULE_NC(rule, kind, ...) + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC + +#define DEF_RULE(rule, comp, kind, ...) +#define DEF_RULE_NC(rule, kind, ...) __VA_ARGS__, + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC + +#undef tok +#undef rule +#undef opt_rule +}; + +// Macro to create a list of N identifiers where N is the number of variable arguments to the macro +#define RULE_EXPAND(x) x +#define RULE_PADDING(rule, ...) RULE_PADDING2(rule, __VA_ARGS__, RULE_PADDING_IDS(rule)) +#define RULE_PADDING2(rule, ...) RULE_EXPAND(RULE_PADDING3(rule, __VA_ARGS__)) +#define RULE_PADDING3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, ...) __VA_ARGS__ +#define RULE_PADDING_IDS(r) PAD13_##r, PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r, + +// Use an enum to create constants specifying how much room a rule takes in rule_arg_combined_table +enum { +#define DEF_RULE(rule, comp, kind, ...) RULE_PADDING(rule, __VA_ARGS__) +#define DEF_RULE_NC(rule, kind, ...) + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC +#define DEF_RULE(rule, comp, kind, ...) +#define DEF_RULE_NC(rule, kind, ...) RULE_PADDING(rule, __VA_ARGS__) + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC +}; + +// Macro to compute the start of a rule in rule_arg_combined_table +#define RULE_ARG_OFFSET(rule, ...) RULE_ARG_OFFSET2(rule, __VA_ARGS__, RULE_ARG_OFFSET_IDS(rule)) +#define RULE_ARG_OFFSET2(rule, ...) RULE_EXPAND(RULE_ARG_OFFSET3(rule, __VA_ARGS__)) +#define RULE_ARG_OFFSET3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, ...) _14 +#define RULE_ARG_OFFSET_IDS(r) PAD13_##r, PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r, PAD0_##r, + +// Use the above enum values to create a table of offsets for each rule's arg +// data, which indexes rule_arg_combined_table. The offsets require 9 bits of +// storage but only the lower 8 bits are stored here. The 9th bit is computed +// in get_rule_arg using the FIRST_RULE_WITH_OFFSET_ABOVE_255 constant. +STATIC const uint8_t rule_arg_offset_table[] = { +#define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff, +#define DEF_RULE_NC(rule, kind, ...) + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC + 0, // RULE_const_object +#define DEF_RULE(rule, comp, kind, ...) +#define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff, + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC +}; + +// Define a constant that's used to determine the 9th bit of the values in rule_arg_offset_table +static const size_t FIRST_RULE_WITH_OFFSET_ABOVE_255 = +#define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule : +#define DEF_RULE_NC(rule, kind, ...) +#include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC +#define DEF_RULE(rule, comp, kind, ...) +#define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule : +#include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC + 0; + +#if MICROPY_DEBUG_PARSE_RULE_NAME +// Define an array of rule names corresponding to each rule +STATIC const char *const rule_name_table[] = { +#define DEF_RULE(rule, comp, kind, ...) #rule, +#define DEF_RULE_NC(rule, kind, ...) + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC + "", // RULE_const_object +#define DEF_RULE(rule, comp, kind, ...) +#define DEF_RULE_NC(rule, kind, ...) #rule, + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC +}; +#endif + +// *FORMAT-ON* + +typedef struct _rule_stack_t { + size_t src_line : (8 * sizeof(size_t) - 8); // maximum bits storing source line number + size_t rule_id : 8; // this must be large enough to fit largest rule number + size_t arg_i; // this dictates the maximum nodes in a "list" of things +} rule_stack_t; + +typedef struct _mp_parse_chunk_t { + size_t alloc; + union { + size_t used; + struct _mp_parse_chunk_t *next; + } union_; + byte data[]; +} mp_parse_chunk_t; + +typedef struct _parser_t { + size_t rule_stack_alloc; + size_t rule_stack_top; + rule_stack_t *rule_stack; + + size_t result_stack_alloc; + size_t result_stack_top; + mp_parse_node_t *result_stack; + + mp_lexer_t *lexer; + + mp_parse_tree_t tree; + mp_parse_chunk_t *cur_chunk; + + #if MICROPY_COMP_CONST + mp_map_t consts; + #endif +} parser_t; + +STATIC const uint16_t *get_rule_arg(uint8_t r_id) { + size_t off = rule_arg_offset_table[r_id]; + if (r_id >= FIRST_RULE_WITH_OFFSET_ABOVE_255) { + off |= 0x100; + } + return &rule_arg_combined_table[off]; +} + +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wcast-align" + +STATIC void *parser_alloc(parser_t *parser, size_t num_bytes) { + // use a custom memory allocator to store parse nodes sequentially in large chunks + + mp_parse_chunk_t *chunk = parser->cur_chunk; + + if (chunk != NULL && chunk->union_.used + num_bytes > chunk->alloc) { + // not enough room at end of previously allocated chunk so try to grow + mp_parse_chunk_t *new_data = (mp_parse_chunk_t *)m_renew_maybe(byte, chunk, + sizeof(mp_parse_chunk_t) + chunk->alloc, + sizeof(mp_parse_chunk_t) + chunk->alloc + num_bytes, false); + if (new_data == NULL) { + // could not grow existing memory; shrink it to fit previous + (void)m_renew_maybe(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc, + sizeof(mp_parse_chunk_t) + chunk->union_.used, false); + chunk->alloc = chunk->union_.used; + chunk->union_.next = parser->tree.chunk; + parser->tree.chunk = chunk; + chunk = NULL; + } else { + // could grow existing memory + chunk->alloc += num_bytes; + } + } + + if (chunk == NULL) { + // no previous chunk, allocate a new chunk + size_t alloc = MICROPY_ALLOC_PARSE_CHUNK_INIT; + if (alloc < num_bytes) { + alloc = num_bytes; + } + chunk = (mp_parse_chunk_t *)m_new(byte, sizeof(mp_parse_chunk_t) + alloc); + chunk->alloc = alloc; + chunk->union_.used = 0; + parser->cur_chunk = chunk; + } + + byte *ret = chunk->data + chunk->union_.used; + chunk->union_.used += num_bytes; + return ret; +} +#pragma GCC diagnostic pop + +STATIC void push_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t arg_i) { + if (parser->rule_stack_top >= parser->rule_stack_alloc) { + rule_stack_t *rs = m_renew(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC); + parser->rule_stack = rs; + parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC; + } + rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++]; + rs->src_line = src_line; + rs->rule_id = rule_id; + rs->arg_i = arg_i; +} + +STATIC void push_rule_from_arg(parser_t *parser, size_t arg) { + assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE); + size_t rule_id = arg & RULE_ARG_ARG_MASK; + push_rule(parser, parser->lexer->tok_line, rule_id, 0); +} + +STATIC uint8_t pop_rule(parser_t *parser, size_t *arg_i, size_t *src_line) { + parser->rule_stack_top -= 1; + uint8_t rule_id = parser->rule_stack[parser->rule_stack_top].rule_id; + *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i; + *src_line = parser->rule_stack[parser->rule_stack_top].src_line; + return rule_id; +} + +bool mp_parse_node_is_const_false(mp_parse_node_t pn) { + return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_FALSE) + || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) == 0); +} + +bool mp_parse_node_is_const_true(mp_parse_node_t pn) { + return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_TRUE) + || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) != 0); +} + +bool mp_parse_node_get_int_maybe(mp_parse_node_t pn, mp_obj_t *o) { + if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { + *o = MP_OBJ_NEW_SMALL_INT(MP_PARSE_NODE_LEAF_SMALL_INT(pn)); + return true; + } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) { + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D + // nodes are 32-bit pointers, but need to extract 64-bit object + *o = (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32); + #else + *o = (mp_obj_t)pns->nodes[0]; + #endif + return mp_obj_is_int(*o); + } else { + return false; + } +} + +size_t mp_parse_node_extract_list(mp_parse_node_t *pn, size_t pn_kind, mp_parse_node_t **nodes) { + if (MP_PARSE_NODE_IS_NULL(*pn)) { + *nodes = NULL; + return 0; + } else if (MP_PARSE_NODE_IS_LEAF(*pn)) { + *nodes = pn; + return 1; + } else { + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)(*pn); + if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) { + *nodes = pn; + return 1; + } else { + *nodes = pns->nodes; + return MP_PARSE_NODE_STRUCT_NUM_NODES(pns); + } + } +} + +#if MICROPY_DEBUG_PRINTERS +void mp_parse_node_print(const mp_print_t *print, mp_parse_node_t pn, size_t indent) { + if (MP_PARSE_NODE_IS_STRUCT(pn)) { + mp_printf(print, "[% 4d] ", (int)((mp_parse_node_struct_t *)pn)->source_line); + } else { + mp_printf(print, " "); + } + for (size_t i = 0; i < indent; i++) { + mp_printf(print, " "); + } + if (MP_PARSE_NODE_IS_NULL(pn)) { + mp_printf(print, "NULL\n"); + } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { + mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn); + mp_printf(print, "int(" INT_FMT ")\n", arg); + } else if (MP_PARSE_NODE_IS_LEAF(pn)) { + uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn); + switch (MP_PARSE_NODE_LEAF_KIND(pn)) { + case MP_PARSE_NODE_ID: + mp_printf(print, "id(%s)\n", qstr_str(arg)); + break; + case MP_PARSE_NODE_STRING: + mp_printf(print, "str(%s)\n", qstr_str(arg)); + break; + case MP_PARSE_NODE_BYTES: + mp_printf(print, "bytes(%s)\n", qstr_str(arg)); + break; + default: + assert(MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN); + mp_printf(print, "tok(%u)\n", (uint)arg); + break; + } + } else { + // node must be a mp_parse_node_struct_t + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_const_object) { + #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D + mp_printf(print, "literal const(%016llx)\n", (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32)); + #else + mp_printf(print, "literal const(%p)\n", (mp_obj_t)pns->nodes[0]); + #endif + } else { + size_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); + #if MICROPY_DEBUG_PARSE_RULE_NAME + mp_printf(print, "%s(%u) (n=%u)\n", rule_name_table[MP_PARSE_NODE_STRUCT_KIND(pns)], (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n); + #else + mp_printf(print, "rule(%u) (n=%u)\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n); + #endif + for (size_t i = 0; i < n; i++) { + mp_parse_node_print(print, pns->nodes[i], indent + 2); + } + } + } +} +#endif // MICROPY_DEBUG_PRINTERS + +/* +STATIC void result_stack_show(const mp_print_t *print, parser_t *parser) { + mp_printf(print, "result stack, most recent first\n"); + for (ssize_t i = parser->result_stack_top - 1; i >= 0; i--) { + mp_parse_node_print(print, parser->result_stack[i], 0); + } +} +*/ + +STATIC mp_parse_node_t pop_result(parser_t *parser) { + assert(parser->result_stack_top > 0); + return parser->result_stack[--parser->result_stack_top]; +} + +STATIC mp_parse_node_t peek_result(parser_t *parser, size_t pos) { + assert(parser->result_stack_top > pos); + return parser->result_stack[parser->result_stack_top - 1 - pos]; +} + +STATIC void push_result_node(parser_t *parser, mp_parse_node_t pn) { + if (parser->result_stack_top >= parser->result_stack_alloc) { + mp_parse_node_t *stack = m_renew(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc + MICROPY_ALLOC_PARSE_RESULT_INC); + parser->result_stack = stack; + parser->result_stack_alloc += MICROPY_ALLOC_PARSE_RESULT_INC; + } + parser->result_stack[parser->result_stack_top++] = pn; +} + +STATIC mp_parse_node_t make_node_const_object(parser_t *parser, size_t src_line, mp_obj_t obj) { + mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_obj_t)); + pn->source_line = src_line; + #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D + // nodes are 32-bit pointers, but need to store 64-bit object + pn->kind_num_nodes = RULE_const_object | (2 << 8); + pn->nodes[0] = (uint64_t)obj; + pn->nodes[1] = (uint64_t)obj >> 32; + #else + pn->kind_num_nodes = RULE_const_object | (1 << 8); + pn->nodes[0] = (uintptr_t)obj; + #endif + return (mp_parse_node_t)pn; +} + +STATIC mp_parse_node_t mp_parse_node_new_small_int_checked(parser_t *parser, mp_obj_t o_val) { + (void)parser; + mp_int_t val = MP_OBJ_SMALL_INT_VALUE(o_val); + #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D + // A parse node is only 32-bits and the small-int value must fit in 31-bits + if (((val ^ (val << 1)) & 0xffffffff80000000) != 0) { + return make_node_const_object(parser, 0, o_val); + } + #endif + return mp_parse_node_new_small_int(val); +} + +STATIC void push_result_token(parser_t *parser, uint8_t rule_id) { + mp_parse_node_t pn; + mp_lexer_t *lex = parser->lexer; + if (lex->tok_kind == MP_TOKEN_NAME) { + qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len); + #if MICROPY_COMP_CONST + // if name is a standalone identifier, look it up in the table of dynamic constants + mp_map_elem_t *elem; + if (rule_id == RULE_atom + && (elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP)) != NULL) { + if (mp_obj_is_small_int(elem->value)) { + pn = mp_parse_node_new_small_int_checked(parser, elem->value); + } else { + pn = make_node_const_object(parser, lex->tok_line, elem->value); + } + } else { + pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id); + } + #else + (void)rule_id; + pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id); + #endif + } else if (lex->tok_kind == MP_TOKEN_INTEGER) { + mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex); + if (mp_obj_is_small_int(o)) { + pn = mp_parse_node_new_small_int_checked(parser, o); + } else { + pn = make_node_const_object(parser, lex->tok_line, o); + } + } else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) { + mp_obj_t o = mp_parse_num_decimal(lex->vstr.buf, lex->vstr.len, true, false, lex); + pn = make_node_const_object(parser, lex->tok_line, o); + } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) { + // Don't automatically intern all strings/bytes. doc strings (which are usually large) + // will be discarded by the compiler, and so we shouldn't intern them. + qstr qst = MP_QSTRnull; + if (lex->vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) { + // intern short strings + qst = qstr_from_strn(lex->vstr.buf, lex->vstr.len); + } else { + // check if this string is already interned + qst = qstr_find_strn(lex->vstr.buf, lex->vstr.len); + } + if (qst != MP_QSTRnull) { + // qstr exists, make a leaf node + pn = mp_parse_node_new_leaf(lex->tok_kind == MP_TOKEN_STRING ? MP_PARSE_NODE_STRING : MP_PARSE_NODE_BYTES, qst); + } else { + // not interned, make a node holding a pointer to the string/bytes object + mp_obj_t o = mp_obj_new_str_copy( + lex->tok_kind == MP_TOKEN_STRING ? &mp_type_str : &mp_type_bytes, + (const byte *)lex->vstr.buf, lex->vstr.len); + pn = make_node_const_object(parser, lex->tok_line, o); + } + } else { + pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, lex->tok_kind); + } + push_result_node(parser, pn); +} + +#if MICROPY_COMP_MODULE_CONST +STATIC const mp_rom_map_elem_t mp_constants_table[] = { + #if MICROPY_PY_UERRNO + { MP_ROM_QSTR(MP_QSTR_errno), MP_ROM_PTR(&mp_module_uerrno) }, + #endif + #if MICROPY_PY_UCTYPES + { MP_ROM_QSTR(MP_QSTR_uctypes), MP_ROM_PTR(&mp_module_uctypes) }, + #endif + // Extra constants as defined by a port + MICROPY_PORT_CONSTANTS +}; +STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table); +#endif + +STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args); + +#if MICROPY_COMP_CONST_FOLDING +STATIC bool fold_logical_constants(parser_t *parser, uint8_t rule_id, size_t *num_args) { + if (rule_id == RULE_or_test + || rule_id == RULE_and_test) { + // folding for binary logical ops: or and + size_t copy_to = *num_args; + for (size_t i = copy_to; i > 0;) { + mp_parse_node_t pn = peek_result(parser, --i); + parser->result_stack[parser->result_stack_top - copy_to] = pn; + if (i == 0) { + // always need to keep the last value + break; + } + if (rule_id == RULE_or_test) { + if (mp_parse_node_is_const_true(pn)) { + // + break; + } else if (!mp_parse_node_is_const_false(pn)) { + copy_to -= 1; + } + } else { + // RULE_and_test + if (mp_parse_node_is_const_false(pn)) { + break; + } else if (!mp_parse_node_is_const_true(pn)) { + copy_to -= 1; + } + } + } + copy_to -= 1; // copy_to now contains number of args to pop + + // pop and discard all the short-circuited expressions + for (size_t i = 0; i < copy_to; ++i) { + pop_result(parser); + } + *num_args -= copy_to; + + // we did a complete folding if there's only 1 arg left + return *num_args == 1; + + } else if (rule_id == RULE_not_test_2) { + // folding for unary logical op: not + mp_parse_node_t pn = peek_result(parser, 0); + if (mp_parse_node_is_const_false(pn)) { + pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_TRUE); + } else if (mp_parse_node_is_const_true(pn)) { + pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_FALSE); + } else { + return false; + } + pop_result(parser); + push_result_node(parser, pn); + return true; + } + + return false; +} + +STATIC bool fold_constants(parser_t *parser, uint8_t rule_id, size_t num_args) { + // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4 + // it does not do partial folding, eg 1 + 2 + x -> 3 + x + + mp_obj_t arg0; + if (rule_id == RULE_expr + || rule_id == RULE_xor_expr + || rule_id == RULE_and_expr + || rule_id == RULE_power) { + // folding for binary ops: | ^ & ** + mp_parse_node_t pn = peek_result(parser, num_args - 1); + if (!mp_parse_node_get_int_maybe(pn, &arg0)) { + return false; + } + mp_binary_op_t op; + if (rule_id == RULE_expr) { + op = MP_BINARY_OP_OR; + } else if (rule_id == RULE_xor_expr) { + op = MP_BINARY_OP_XOR; + } else if (rule_id == RULE_and_expr) { + op = MP_BINARY_OP_AND; + } else { + op = MP_BINARY_OP_POWER; + } + for (ssize_t i = num_args - 2; i >= 0; --i) { + pn = peek_result(parser, i); + mp_obj_t arg1; + if (!mp_parse_node_get_int_maybe(pn, &arg1)) { + return false; + } + if (op == MP_BINARY_OP_POWER && mp_obj_int_sign(arg1) < 0) { + // ** can't have negative rhs + return false; + } + arg0 = mp_binary_op(op, arg0, arg1); + } + } else if (rule_id == RULE_shift_expr + || rule_id == RULE_arith_expr + || rule_id == RULE_term) { + // folding for binary ops: << >> + - * @ / % // + mp_parse_node_t pn = peek_result(parser, num_args - 1); + if (!mp_parse_node_get_int_maybe(pn, &arg0)) { + return false; + } + for (ssize_t i = num_args - 2; i >= 1; i -= 2) { + pn = peek_result(parser, i - 1); + mp_obj_t arg1; + if (!mp_parse_node_get_int_maybe(pn, &arg1)) { + return false; + } + mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i)); + if (tok == MP_TOKEN_OP_AT || tok == MP_TOKEN_OP_SLASH) { + // Can't fold @ or / + return false; + } + mp_binary_op_t op = MP_BINARY_OP_LSHIFT + (tok - MP_TOKEN_OP_DBL_LESS); + int rhs_sign = mp_obj_int_sign(arg1); + if (op <= MP_BINARY_OP_RSHIFT) { + // << and >> can't have negative rhs + if (rhs_sign < 0) { + return false; + } + } else if (op >= MP_BINARY_OP_FLOOR_DIVIDE) { + // % and // can't have zero rhs + if (rhs_sign == 0) { + return false; + } + } + arg0 = mp_binary_op(op, arg0, arg1); + } + } else if (rule_id == RULE_factor_2) { + // folding for unary ops: + - ~ + mp_parse_node_t pn = peek_result(parser, 0); + if (!mp_parse_node_get_int_maybe(pn, &arg0)) { + return false; + } + mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1)); + mp_unary_op_t op; + if (tok == MP_TOKEN_OP_TILDE) { + op = MP_UNARY_OP_INVERT; + } else { + assert(tok == MP_TOKEN_OP_PLUS || tok == MP_TOKEN_OP_MINUS); // should be + op = MP_UNARY_OP_POSITIVE + (tok - MP_TOKEN_OP_PLUS); + } + arg0 = mp_unary_op(op, arg0); + + #if MICROPY_COMP_CONST + } else if (rule_id == RULE_expr_stmt) { + mp_parse_node_t pn1 = peek_result(parser, 0); + if (!MP_PARSE_NODE_IS_NULL(pn1) + && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign) + || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) { + // this node is of the form <x> = <y> + mp_parse_node_t pn0 = peek_result(parser, 1); + if (MP_PARSE_NODE_IS_ID(pn0) + && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_atom_expr_normal) + && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t *)pn1)->nodes[0]) + && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t *)pn1)->nodes[0]) == MP_QSTR_const + && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t *)pn1)->nodes[1], RULE_trailer_paren) + ) { + // code to assign dynamic constants: id = const(value) + + // get the id + qstr id = MP_PARSE_NODE_LEAF_ARG(pn0); + + // get the value + mp_parse_node_t pn_value = ((mp_parse_node_struct_t *)((mp_parse_node_struct_t *)pn1)->nodes[1])->nodes[0]; + mp_obj_t value; + if (!mp_parse_node_get_int_maybe(pn_value, &value)) { + mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, + MP_ERROR_TEXT("constant must be an integer")); + mp_obj_exception_add_traceback(exc, parser->lexer->source_name, + ((mp_parse_node_struct_t *)pn1)->source_line, MP_QSTRnull); + nlr_raise(exc); + } + + // store the value in the table of dynamic constants + mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); + assert(elem->value == MP_OBJ_NULL); + elem->value = value; + + // If the constant starts with an underscore then treat it as a private + // variable and don't emit any code to store the value to the id. + if (qstr_str(id)[0] == '_') { + pop_result(parser); // pop const(value) + pop_result(parser); // pop id + push_result_rule(parser, 0, RULE_pass_stmt, 0); // replace with "pass" + return true; + } + + // replace const(value) with value + pop_result(parser); + push_result_node(parser, pn_value); + + // finished folding this assignment, but we still want it to be part of the tree + return false; + } + } + return false; + #endif + + #if MICROPY_COMP_MODULE_CONST + } else if (rule_id == RULE_atom_expr_normal) { + mp_parse_node_t pn0 = peek_result(parser, 1); + mp_parse_node_t pn1 = peek_result(parser, 0); + if (!(MP_PARSE_NODE_IS_ID(pn0) + && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period))) { + return false; + } + // id1.id2 + // look it up in constant table, see if it can be replaced with an integer + mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pn1; + assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); + qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0); + qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]); + mp_map_elem_t *elem = mp_map_lookup((mp_map_t *)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP); + if (elem == NULL) { + return false; + } + mp_obj_t dest[2]; + mp_load_method_maybe(elem->value, q_attr, dest); + if (!(dest[0] != MP_OBJ_NULL && mp_obj_is_int(dest[0]) && dest[1] == MP_OBJ_NULL)) { + return false; + } + arg0 = dest[0]; + #endif + + } else { + return false; + } + + // success folding this rule + + for (size_t i = num_args; i > 0; i--) { + pop_result(parser); + } + if (mp_obj_is_small_int(arg0)) { + push_result_node(parser, mp_parse_node_new_small_int_checked(parser, arg0)); + } else { + // TODO reuse memory for parse node struct? + push_result_node(parser, make_node_const_object(parser, 0, arg0)); + } + + return true; +} +#endif + +STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args) { + // Simplify and optimise certain rules, to reduce memory usage and simplify the compiler. + if (rule_id == RULE_atom_paren) { + // Remove parenthesis around a single expression if possible. + // This atom_paren rule always has a single argument, and after this + // optimisation that argument is either NULL or testlist_comp. + mp_parse_node_t pn = peek_result(parser, 0); + if (MP_PARSE_NODE_IS_NULL(pn)) { + // need to keep parenthesis for () + } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_testlist_comp)) { + // need to keep parenthesis for (a, b, ...) + } else { + // parenthesis around a single expression, so it's just the expression + return; + } + } else if (rule_id == RULE_testlist_comp) { + // The testlist_comp rule can be the sole argument to either atom_parent + // or atom_bracket, for (...) and [...] respectively. + assert(num_args == 2); + mp_parse_node_t pn = peek_result(parser, 0); + if (MP_PARSE_NODE_IS_STRUCT(pn)) { + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_testlist_comp_3b) { + // tuple of one item, with trailing comma + pop_result(parser); + --num_args; + } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_testlist_comp_3c) { + // tuple of many items, convert testlist_comp_3c to testlist_comp + pop_result(parser); + assert(pn == peek_result(parser, 0)); + pns->kind_num_nodes = rule_id | MP_PARSE_NODE_STRUCT_NUM_NODES(pns) << 8; + return; + } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_comp_for) { + // generator expression + } else { + // tuple with 2 items + } + } else { + // tuple with 2 items + } + } else if (rule_id == RULE_testlist_comp_3c) { + // steal first arg of outer testlist_comp rule + ++num_args; + } + + #if MICROPY_COMP_CONST_FOLDING + if (fold_logical_constants(parser, rule_id, &num_args)) { + // we folded this rule so return straight away + return; + } + if (fold_constants(parser, rule_id, num_args)) { + // we folded this rule so return straight away + return; + } + #endif + + mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * num_args); + pn->source_line = src_line; + pn->kind_num_nodes = (rule_id & 0xff) | (num_args << 8); + for (size_t i = num_args; i > 0; i--) { + pn->nodes[i - 1] = pop_result(parser); + } + if (rule_id == RULE_testlist_comp_3c) { + // need to push something non-null to replace stolen first arg of testlist_comp + push_result_node(parser, (mp_parse_node_t)pn); + } + push_result_node(parser, (mp_parse_node_t)pn); +} + +mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) { + + // initialise parser and allocate memory for its stacks + + parser_t parser; + + parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT; + parser.rule_stack_top = 0; + parser.rule_stack = NULL; + while (parser.rule_stack_alloc > 1) { + parser.rule_stack = m_new_maybe(rule_stack_t, parser.rule_stack_alloc); + if (parser.rule_stack != NULL) { + break; + } else { + parser.rule_stack_alloc /= 2; + } + } + + parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT; + parser.result_stack_top = 0; + parser.result_stack = NULL; + while (parser.result_stack_alloc > 1) { + parser.result_stack = m_new_maybe(mp_parse_node_t, parser.result_stack_alloc); + if (parser.result_stack != NULL) { + break; + } else { + parser.result_stack_alloc /= 2; + } + } + if (parser.rule_stack == NULL || parser.result_stack == NULL) { + mp_raise_msg(&mp_type_MemoryError, MP_ERROR_TEXT("Unable to init parser")); + } + + parser.lexer = lex; + + parser.tree.chunk = NULL; + parser.cur_chunk = NULL; + + #if MICROPY_COMP_CONST + mp_map_init(&parser.consts, 0); + #endif + + // work out the top-level rule to use, and push it on the stack + size_t top_level_rule; + switch (input_kind) { + case MP_PARSE_SINGLE_INPUT: + top_level_rule = RULE_single_input; + break; + case MP_PARSE_EVAL_INPUT: + top_level_rule = RULE_eval_input; + break; + default: + top_level_rule = RULE_file_input; + } + push_rule(&parser, lex->tok_line, top_level_rule, 0); + + // parse! + + bool backtrack = false; + + for (;;) { + next_rule: + if (parser.rule_stack_top == 0) { + break; + } + + // Pop the next rule to process it + size_t i; // state for the current rule + size_t rule_src_line; // source line for the first token matched by the current rule + uint8_t rule_id = pop_rule(&parser, &i, &rule_src_line); + uint8_t rule_act = rule_act_table[rule_id]; + const uint16_t *rule_arg = get_rule_arg(rule_id); + size_t n = rule_act & RULE_ACT_ARG_MASK; + + #if 0 + // debugging + printf("depth=" UINT_FMT " ", parser.rule_stack_top); + for (int j = 0; j < parser.rule_stack_top; ++j) { + printf(" "); + } + printf("%s n=" UINT_FMT " i=" UINT_FMT " bt=%d\n", rule_name_table[rule_id], n, i, backtrack); + #endif + + switch (rule_act & RULE_ACT_KIND_MASK) { + case RULE_ACT_OR: + if (i > 0 && !backtrack) { + goto next_rule; + } else { + backtrack = false; + } + for (; i < n; ++i) { + // printf("--> inside for @L924\n"); + uint16_t kind = rule_arg[i] & RULE_ARG_KIND_MASK; + if (kind == RULE_ARG_TOK) { + if (lex->tok_kind == (rule_arg[i] & RULE_ARG_ARG_MASK)) { + push_result_token(&parser, rule_id); + mp_lexer_to_next(lex); + goto next_rule; + } + } else { + assert(kind == RULE_ARG_RULE); + if (i + 1 < n) { + push_rule(&parser, rule_src_line, rule_id, i + 1); // save this or-rule + } + push_rule_from_arg(&parser, rule_arg[i]); // push child of or-rule + goto next_rule; + } + } + backtrack = true; + break; + + case RULE_ACT_AND: { + + // failed, backtrack if we can, else syntax error + if (backtrack) { + assert(i > 0); + if ((rule_arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) { + // an optional rule that failed, so continue with next arg + push_result_node(&parser, MP_PARSE_NODE_NULL); + backtrack = false; + } else { + // a mandatory rule that failed, so propagate backtrack + if (i > 1) { + // already eaten tokens so can't backtrack + goto syntax_error; + } else { + goto next_rule; + } + } + } + + // progress through the rule + for (; i < n; ++i) { + if ((rule_arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { + // need to match a token + mp_token_kind_t tok_kind = rule_arg[i] & RULE_ARG_ARG_MASK; + if (lex->tok_kind == tok_kind) { + // matched token + if (tok_kind == MP_TOKEN_NAME) { + push_result_token(&parser, rule_id); + } + mp_lexer_to_next(lex); + } else { + // failed to match token + if (i > 0) { + // already eaten tokens so can't backtrack + goto syntax_error; + } else { + // this rule failed, so backtrack + backtrack = true; + goto next_rule; + } + } + } else { + push_rule(&parser, rule_src_line, rule_id, i + 1); // save this and-rule + push_rule_from_arg(&parser, rule_arg[i]); // push child of and-rule + goto next_rule; + } + } + + assert(i == n); + + // matched the rule, so now build the corresponding parse_node + + #if !MICROPY_ENABLE_DOC_STRING + // this code discards lonely statements, such as doc strings + if (input_kind != MP_PARSE_SINGLE_INPUT && rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) { + mp_parse_node_t p = peek_result(&parser, 1); + if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) + || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_const_object)) { + pop_result(&parser); // MP_PARSE_NODE_NULL + pop_result(&parser); // const expression (leaf or RULE_const_object) + // Pushing the "pass" rule here will overwrite any RULE_const_object + // entry that was on the result stack, allowing the GC to reclaim + // the memory from the const object when needed. + push_result_rule(&parser, rule_src_line, RULE_pass_stmt, 0); + break; + } + } + #endif + + // count number of arguments for the parse node + i = 0; + size_t num_not_nil = 0; + for (size_t x = n; x > 0;) { + --x; + if ((rule_arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { + mp_token_kind_t tok_kind = rule_arg[x] & RULE_ARG_ARG_MASK; + if (tok_kind == MP_TOKEN_NAME) { + // only tokens which were names are pushed to stack + i += 1; + num_not_nil += 1; + } + } else { + // rules are always pushed + if (peek_result(&parser, i) != MP_PARSE_NODE_NULL) { + num_not_nil += 1; + } + i += 1; + } + } + + if (num_not_nil == 1 && (rule_act & RULE_ACT_ALLOW_IDENT)) { + // this rule has only 1 argument and should not be emitted + mp_parse_node_t pn = MP_PARSE_NODE_NULL; + for (size_t x = 0; x < i; ++x) { + mp_parse_node_t pn2 = pop_result(&parser); + if (pn2 != MP_PARSE_NODE_NULL) { + pn = pn2; + } + } + push_result_node(&parser, pn); + } else { + // this rule must be emitted + + if (rule_act & RULE_ACT_ADD_BLANK) { + // and add an extra blank node at the end (used by the compiler to store data) + push_result_node(&parser, MP_PARSE_NODE_NULL); + i += 1; + } + + push_result_rule(&parser, rule_src_line, rule_id, i); + } + break; + } + + default: { + assert((rule_act & RULE_ACT_KIND_MASK) == RULE_ACT_LIST); + + // n=2 is: item item* + // n=1 is: item (sep item)* + // n=3 is: item (sep item)* [sep] + bool had_trailing_sep; + if (backtrack) { + list_backtrack: + had_trailing_sep = false; + if (n == 2) { + if (i == 1) { + // fail on item, first time round; propagate backtrack + goto next_rule; + } else { + // fail on item, in later rounds; finish with this rule + backtrack = false; + } + } else { + if (i == 1) { + // fail on item, first time round; propagate backtrack + goto next_rule; + } else if ((i & 1) == 1) { + // fail on item, in later rounds; have eaten tokens so can't backtrack + if (n == 3) { + // list allows trailing separator; finish parsing list + had_trailing_sep = true; + backtrack = false; + } else { + // list doesn't allowing trailing separator; fail + goto syntax_error; + } + } else { + // fail on separator; finish parsing list + backtrack = false; + } + } + } else { + for (;;) { + size_t arg = rule_arg[i & 1 & n]; + if ((arg & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { + if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) { + if (i & 1 & n) { + // separators which are tokens are not pushed to result stack + } else { + push_result_token(&parser, rule_id); + } + mp_lexer_to_next(lex); + // got element of list, so continue parsing list + i += 1; + } else { + // couldn't get element of list + i += 1; + backtrack = true; + goto list_backtrack; + } + } else { + assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE); + push_rule(&parser, rule_src_line, rule_id, i + 1); // save this list-rule + push_rule_from_arg(&parser, arg); // push child of list-rule + goto next_rule; + } + } + } + assert(i >= 1); + + // compute number of elements in list, result in i + i -= 1; + if ((n & 1) && (rule_arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { + // don't count separators when they are tokens + i = (i + 1) / 2; + } + + if (i == 1) { + // list matched single item + if (had_trailing_sep) { + // if there was a trailing separator, make a list of a single item + push_result_rule(&parser, rule_src_line, rule_id, i); + } else { + // just leave single item on stack (ie don't wrap in a list) + } + } else { + push_result_rule(&parser, rule_src_line, rule_id, i); + } + break; + } + } + } + + #if MICROPY_COMP_CONST + mp_map_deinit(&parser.consts); + #endif + + // truncate final chunk and link into chain of chunks + if (parser.cur_chunk != NULL) { + (void)m_renew_maybe(byte, parser.cur_chunk, + sizeof(mp_parse_chunk_t) + parser.cur_chunk->alloc, + sizeof(mp_parse_chunk_t) + parser.cur_chunk->union_.used, + false); + parser.cur_chunk->alloc = parser.cur_chunk->union_.used; + parser.cur_chunk->union_.next = parser.tree.chunk; + parser.tree.chunk = parser.cur_chunk; + } + + if ( + lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream + || parser.result_stack_top == 0 // check that we got a node (can fail on empty input) + ) { + syntax_error:; + mp_obj_t exc; + if (lex->tok_kind == MP_TOKEN_INDENT) { + exc = mp_obj_new_exception_msg(&mp_type_IndentationError, + MP_ERROR_TEXT("unexpected indent")); + } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) { + exc = mp_obj_new_exception_msg(&mp_type_IndentationError, + MP_ERROR_TEXT("unindent doesn't match any outer indent level")); + #if MICROPY_PY_FSTRINGS + } else if (lex->tok_kind == MP_TOKEN_MALFORMED_FSTRING) { + exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, + MP_ERROR_TEXT("malformed f-string")); + } else if (lex->tok_kind == MP_TOKEN_FSTRING_RAW) { + exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, + MP_ERROR_TEXT("raw f-strings are not supported")); + #endif + } else { + exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, + MP_ERROR_TEXT("invalid syntax")); + } + // add traceback to give info about file name and location + // we don't have a 'block' name, so just pass the NULL qstr to indicate this + mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTRnull); + nlr_raise(exc); + } + + // get the root parse node that we created + assert(parser.result_stack_top == 1); + parser.tree.root = parser.result_stack[0]; + + // free the memory that we don't need anymore + m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc); + m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc); + + // we also free the lexer on behalf of the caller + mp_lexer_free(lex); + + return parser.tree; +} + +void mp_parse_tree_clear(mp_parse_tree_t *tree) { + mp_parse_chunk_t *chunk = tree->chunk; + while (chunk != NULL) { + mp_parse_chunk_t *next = chunk->union_.next; + m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc); + chunk = next; + } +} + +#endif // MICROPY_ENABLE_COMPILER |