aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/ports/raspberrypi/audio_dma.c
diff options
context:
space:
mode:
Diffstat (limited to 'circuitpython/ports/raspberrypi/audio_dma.c')
-rw-r--r--circuitpython/ports/raspberrypi/audio_dma.c469
1 files changed, 469 insertions, 0 deletions
diff --git a/circuitpython/ports/raspberrypi/audio_dma.c b/circuitpython/ports/raspberrypi/audio_dma.c
new file mode 100644
index 0000000..7fef1a5
--- /dev/null
+++ b/circuitpython/ports/raspberrypi/audio_dma.c
@@ -0,0 +1,469 @@
+/*
+ * This file is part of the MicroPython project, http://micropython.org/
+ *
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2021 Scott Shawcroft for Adafruit Industries
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "audio_dma.h"
+
+#include "shared-bindings/audiocore/RawSample.h"
+#include "shared-bindings/audiocore/WaveFile.h"
+#include "shared-bindings/microcontroller/__init__.h"
+#include "bindings/rp2pio/StateMachine.h"
+#include "supervisor/background_callback.h"
+
+#include "py/mpstate.h"
+#include "py/runtime.h"
+
+#include "src/rp2_common/hardware_irq/include/hardware/irq.h"
+
+#if CIRCUITPY_AUDIOPWMIO || CIRCUITPY_AUDIOBUSIO
+
+void audio_dma_reset(void) {
+ for (size_t channel = 0; channel < NUM_DMA_CHANNELS; channel++) {
+ if (MP_STATE_PORT(playing_audio)[channel] == NULL) {
+ continue;
+ }
+
+ audio_dma_stop(MP_STATE_PORT(playing_audio)[channel]);
+ }
+}
+
+
+STATIC size_t audio_dma_convert_samples(audio_dma_t *dma, uint8_t *input, uint32_t input_length, uint8_t *output, uint32_t output_length) {
+ #pragma GCC diagnostic push
+ #pragma GCC diagnostic ignored "-Wcast-align"
+
+ uint32_t output_length_used = input_length / dma->sample_spacing;
+
+ if (output_length_used > output_length) {
+ mp_raise_RuntimeError(translate("Internal audio buffer too small"));
+ }
+
+ uint32_t out_i = 0;
+ if (dma->sample_resolution <= 8 && dma->output_resolution > 8) {
+ // reading bytes, writing 16-bit words, so output buffer will be bigger.
+
+ output_length_used = output_length * 2;
+ if (output_length_used > output_length) {
+ mp_raise_RuntimeError(translate("Internal audio buffer too small"));
+ }
+
+ size_t shift = dma->output_resolution - dma->sample_resolution;
+
+ for (uint32_t i = 0; i < input_length; i += dma->sample_spacing) {
+ if (dma->signed_to_unsigned) {
+ ((uint16_t *)output)[out_i] = ((uint16_t)((int8_t *)input)[i] + 0x80) << shift;
+ } else if (dma->unsigned_to_signed) {
+ ((int16_t *)output)[out_i] = ((int16_t)((uint8_t *)input)[i] - 0x80) << shift;
+ } else {
+ ((uint16_t *)output)[out_i] = ((uint16_t)((uint8_t *)input)[i]) << shift;
+ }
+ out_i += 1;
+ }
+ } else if (dma->sample_resolution <= 8 && dma->output_resolution <= 8) {
+ for (uint32_t i = 0; i < input_length; i += dma->sample_spacing) {
+ if (dma->signed_to_unsigned) {
+ ((uint8_t *)output)[out_i] = ((int8_t *)input)[i] + 0x80;
+ } else if (dma->unsigned_to_signed) {
+ ((int8_t *)output)[out_i] = ((uint8_t *)input)[i] - 0x80;
+ } else {
+ ((uint8_t *)output)[out_i] = ((uint8_t *)input)[i];
+ }
+ out_i += 1;
+ }
+ } else if (dma->sample_resolution > 8 && dma->output_resolution > 8) {
+ size_t shift = 16 - dma->output_resolution;
+ for (uint32_t i = 0; i < input_length / 2; i += dma->sample_spacing) {
+ if (dma->signed_to_unsigned) {
+ ((uint16_t *)output)[out_i] = ((int16_t *)input)[i] + 0x8000;
+ } else if (dma->unsigned_to_signed) {
+ ((int16_t *)output)[out_i] = ((uint16_t *)input)[i] - 0x8000;
+ } else {
+ ((uint16_t *)output)[out_i] = ((uint16_t *)input)[i];
+ }
+ if (dma->output_resolution < 16) {
+ if (dma->output_signed) {
+ ((int16_t *)output)[out_i] = ((int16_t *)output)[out_i] >> shift;
+ } else {
+ ((uint16_t *)output)[out_i] = ((uint16_t *)output)[out_i] >> shift;
+ }
+ }
+ out_i += 1;
+ }
+ } else {
+ // (dma->sample_resolution > 8 && dma->output_resolution <= 8)
+ // Not currently used, but might be in the future.
+ mp_raise_RuntimeError(translate("Audio conversion not implemented"));
+ }
+ #pragma GCC diagnostic pop
+ return output_length_used;
+}
+
+// buffer_idx is 0 or 1.
+STATIC void audio_dma_load_next_block(audio_dma_t *dma, size_t buffer_idx) {
+ size_t dma_channel = dma->channel[buffer_idx];
+
+ audioio_get_buffer_result_t get_buffer_result;
+ uint8_t *sample_buffer;
+ uint32_t sample_buffer_length;
+ get_buffer_result = audiosample_get_buffer(dma->sample,
+ dma->single_channel_output, dma->audio_channel, &sample_buffer, &sample_buffer_length);
+
+ if (get_buffer_result == GET_BUFFER_ERROR) {
+ audio_dma_stop(dma);
+ return;
+ }
+
+ // Convert the sample format resolution and signedness, as necessary.
+ // The input sample buffer is what was read from a file, Mixer, or a raw sample buffer.
+ // The output buffer is one of the DMA buffers (passed in).
+
+ size_t output_length_used = audio_dma_convert_samples(
+ dma, sample_buffer, sample_buffer_length,
+ dma->buffer[buffer_idx], dma->buffer_length[buffer_idx]);
+
+ dma_channel_set_read_addr(dma_channel, dma->buffer[buffer_idx], false /* trigger */);
+ dma_channel_set_trans_count(dma_channel, output_length_used / dma->output_size, false /* trigger */);
+
+ if (get_buffer_result == GET_BUFFER_DONE) {
+ if (dma->loop) {
+ audiosample_reset_buffer(dma->sample, dma->single_channel_output, dma->audio_channel);
+ } else {
+ // Set channel trigger to ourselves so we don't keep going.
+ dma_channel_hw_t *c = &dma_hw->ch[dma_channel];
+ c->al1_ctrl =
+ (c->al1_ctrl & ~DMA_CH0_CTRL_TRIG_CHAIN_TO_BITS) |
+ (dma_channel << DMA_CH0_CTRL_TRIG_CHAIN_TO_LSB);
+
+ if (output_length_used == 0 &&
+ !dma_channel_is_busy(dma->channel[0]) &&
+ !dma_channel_is_busy(dma->channel[1])) {
+ // No data has been read, and both DMA channels have now finished, so it's safe to stop.
+ audio_dma_stop(dma);
+ dma->playing_in_progress = false;
+ }
+ }
+ }
+}
+
+// Playback should be shutdown before calling this.
+audio_dma_result audio_dma_setup_playback(
+ audio_dma_t *dma,
+ mp_obj_t sample,
+ bool loop,
+ bool single_channel_output,
+ uint8_t audio_channel,
+ bool output_signed,
+ uint8_t output_resolution,
+ uint32_t output_register_address,
+ uint8_t dma_trigger_source) {
+
+ // Use two DMA channels to play because the DMA can't wrap to itself without the
+ // buffer being power of two aligned.
+ int dma_channel_0_maybe = dma_claim_unused_channel(false);
+ if (dma_channel_0_maybe < 0) {
+ return AUDIO_DMA_DMA_BUSY;
+ }
+
+ int dma_channel_1_maybe = dma_claim_unused_channel(false);
+ if (dma_channel_1_maybe < 0) {
+ dma_channel_unclaim((uint)dma_channel_0_maybe);
+ return AUDIO_DMA_DMA_BUSY;
+ }
+
+ dma->channel[0] = (uint8_t)dma_channel_0_maybe;
+ dma->channel[1] = (uint8_t)dma_channel_1_maybe;
+
+ dma->sample = sample;
+ dma->loop = loop;
+ dma->single_channel_output = single_channel_output;
+ dma->audio_channel = audio_channel;
+ dma->signed_to_unsigned = false;
+ dma->unsigned_to_signed = false;
+ dma->output_signed = output_signed;
+ dma->sample_spacing = 1;
+ dma->output_resolution = output_resolution;
+ dma->sample_resolution = audiosample_bits_per_sample(sample);
+ dma->output_register_address = output_register_address;
+
+ audiosample_reset_buffer(sample, single_channel_output, audio_channel);
+
+
+ bool single_buffer; // True if data fits in one single buffer.
+
+ bool samples_signed;
+ uint32_t max_buffer_length;
+ audiosample_get_buffer_structure(sample, single_channel_output, &single_buffer, &samples_signed,
+ &max_buffer_length, &dma->sample_spacing);
+
+ // Check to see if we have to scale the resolution up.
+ if (dma->sample_resolution <= 8 && dma->output_resolution > 8) {
+ max_buffer_length *= 2;
+ }
+ if (output_signed != samples_signed ||
+ dma->sample_spacing > 1 ||
+ (dma->sample_resolution != dma->output_resolution)) {
+ max_buffer_length /= dma->sample_spacing;
+ }
+
+ dma->buffer[0] = (uint8_t *)m_realloc(dma->buffer[0], max_buffer_length);
+ dma->buffer_length[0] = max_buffer_length;
+ if (dma->buffer[0] == NULL) {
+ return AUDIO_DMA_MEMORY_ERROR;
+ }
+
+ if (!single_buffer) {
+ dma->buffer[1] = (uint8_t *)m_realloc(dma->buffer[1], max_buffer_length);
+ dma->buffer_length[1] = max_buffer_length;
+ if (dma->buffer[1] == NULL) {
+ return AUDIO_DMA_MEMORY_ERROR;
+ }
+ }
+
+ dma->signed_to_unsigned = !output_signed && samples_signed;
+ dma->unsigned_to_signed = output_signed && !samples_signed;
+
+ if (output_resolution > 8) {
+ dma->output_size = 2;
+ } else {
+ dma->output_size = 1;
+ }
+ // Transfer both channels at once.
+ if (!single_channel_output && audiosample_channel_count(sample) == 2) {
+ dma->output_size *= 2;
+ }
+ enum dma_channel_transfer_size dma_size = DMA_SIZE_8;
+ if (dma->output_size == 2) {
+ dma_size = DMA_SIZE_16;
+ } else if (dma->output_size == 4) {
+ dma_size = DMA_SIZE_32;
+ }
+
+ for (size_t i = 0; i < 2; i++) {
+ dma_channel_config c = dma_channel_get_default_config(dma->channel[i]);
+ channel_config_set_transfer_data_size(&c, dma_size);
+ channel_config_set_dreq(&c, dma_trigger_source);
+ channel_config_set_read_increment(&c, true);
+ channel_config_set_write_increment(&c, false);
+
+ // Chain to the other channel by default.
+ channel_config_set_chain_to(&c, dma->channel[(i + 1) % 2]);
+ dma_channel_set_config(dma->channel[i], &c, false /* trigger */);
+
+ dma_channel_set_write_addr(dma->channel[i], (void *)output_register_address, false /* trigger */);
+ }
+
+ // We keep the audio_dma_t for internal use and the sample as a root pointer because it
+ // contains the audiodma structure.
+ MP_STATE_PORT(playing_audio)[dma->channel[0]] = dma;
+ MP_STATE_PORT(playing_audio)[dma->channel[1]] = dma;
+
+ // Load the first two blocks up front.
+ audio_dma_load_next_block(dma, 0);
+ if (!single_buffer) {
+ audio_dma_load_next_block(dma, 1);
+ }
+
+ // Special case the DMA for a single buffer. It's commonly used for a single wave length of sound
+ // and may be short. Therefore, we use DMA chaining to loop quickly without involving interrupts.
+ // On the RP2040 we chain by having a second DMA writing to the config registers of the first.
+ // Read and write addresses change with DMA so we need to reset the read address back to the
+ // start of the sample.
+ if (single_buffer) {
+ dma_channel_config c = dma_channel_get_default_config(dma->channel[1]);
+ channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
+ channel_config_set_dreq(&c, 0x3f); // dma as fast as possible
+ channel_config_set_read_increment(&c, false);
+ channel_config_set_write_increment(&c, false);
+ channel_config_set_chain_to(&c, dma->channel[1]); // Chain to ourselves so we stop.
+ dma_channel_configure(dma->channel[1], &c,
+ &dma_hw->ch[dma->channel[0]].al3_read_addr_trig, // write address
+ &dma->buffer[0], // read address
+ 1, // transaction count
+ false); // trigger
+ } else {
+ // Enable our DMA channels on DMA_IRQ_0 to the CPU. This will wake us up when
+ // we're WFI.
+ dma_hw->inte0 |= (1 << dma->channel[0]) | (1 << dma->channel[1]);
+ irq_set_mask_enabled(1 << DMA_IRQ_0, true);
+ }
+
+ dma->playing_in_progress = true;
+ dma_channel_start(dma->channel[0]);
+
+ return AUDIO_DMA_OK;
+}
+
+void audio_dma_stop(audio_dma_t *dma) {
+ // Disable our interrupts.
+ uint32_t channel_mask = 0;
+ if (dma->channel[0] < NUM_DMA_CHANNELS) {
+ channel_mask |= 1 << dma->channel[0];
+ }
+ if (dma->channel[1] < NUM_DMA_CHANNELS) {
+ channel_mask |= 1 << dma->channel[1];
+ }
+ dma_hw->inte0 &= ~channel_mask;
+ if (!dma_hw->inte0) {
+ irq_set_mask_enabled(1 << DMA_IRQ_0, false);
+ }
+
+ // Run any remaining audio tasks because we remove ourselves from
+ // playing_audio.
+ RUN_BACKGROUND_TASKS;
+
+ for (size_t i = 0; i < 2; i++) {
+ size_t channel = dma->channel[i];
+ if (channel == NUM_DMA_CHANNELS) {
+ // Channel not in use.
+ continue;
+ }
+
+ dma_channel_config c = dma_channel_get_default_config(dma->channel[i]);
+ channel_config_set_enable(&c, false);
+ dma_channel_set_config(channel, &c, false /* trigger */);
+
+ if (dma_channel_is_busy(channel)) {
+ dma_channel_abort(channel);
+ }
+
+ dma_channel_set_read_addr(channel, NULL, false /* trigger */);
+ dma_channel_set_write_addr(channel, NULL, false /* trigger */);
+ dma_channel_set_trans_count(channel, 0, false /* trigger */);
+ dma_channel_unclaim(channel);
+ MP_STATE_PORT(playing_audio)[channel] = NULL;
+ dma->channel[i] = NUM_DMA_CHANNELS;
+ }
+ dma->playing_in_progress = false;
+
+ // Hold onto our buffers.
+}
+
+// To pause we simply stop the DMA. It is the responsibility of the output peripheral
+// to hold the previous value.
+void audio_dma_pause(audio_dma_t *dma) {
+ dma_hw->ch[dma->channel[0]].al1_ctrl &= ~DMA_CH0_CTRL_TRIG_EN_BITS;
+ dma_hw->ch[dma->channel[1]].al1_ctrl &= ~DMA_CH1_CTRL_TRIG_EN_BITS;
+}
+
+void audio_dma_resume(audio_dma_t *dma) {
+ // Always re-enable the non-busy channel first so it's ready to continue when the busy channel
+ // finishes and chains to it. (An interrupt could make the time between enables long.)
+ if (dma_channel_is_busy(dma->channel[0])) {
+ dma_hw->ch[dma->channel[1]].al1_ctrl |= DMA_CH1_CTRL_TRIG_EN_BITS;
+ dma_hw->ch[dma->channel[0]].al1_ctrl |= DMA_CH0_CTRL_TRIG_EN_BITS;
+ } else {
+ dma_hw->ch[dma->channel[0]].al1_ctrl |= DMA_CH0_CTRL_TRIG_EN_BITS;
+ dma_hw->ch[dma->channel[1]].al1_ctrl |= DMA_CH1_CTRL_TRIG_EN_BITS;
+ }
+}
+
+bool audio_dma_get_paused(audio_dma_t *dma) {
+ if (dma->channel[0] >= NUM_DMA_CHANNELS) {
+ return false;
+ }
+ uint32_t control = dma_hw->ch[dma->channel[0]].ctrl_trig;
+
+ return (control & DMA_CH0_CTRL_TRIG_EN_BITS) == 0;
+}
+
+void audio_dma_init(audio_dma_t *dma) {
+ dma->buffer[0] = NULL;
+ dma->buffer[1] = NULL;
+
+ dma->channel[0] = NUM_DMA_CHANNELS;
+ dma->channel[1] = NUM_DMA_CHANNELS;
+}
+
+void audio_dma_deinit(audio_dma_t *dma) {
+ m_free(dma->buffer[0]);
+ dma->buffer[0] = NULL;
+
+ m_free(dma->buffer[1]);
+ dma->buffer[1] = NULL;
+}
+
+bool audio_dma_get_playing(audio_dma_t *dma) {
+ if (dma->channel[0] == NUM_DMA_CHANNELS) {
+ return false;
+ }
+ return dma->playing_in_progress;
+}
+
+// WARN(tannewt): DO NOT print from here, or anything it calls. Printing calls
+// background tasks such as this and causes a stack overflow.
+// NOTE(dhalbert): I successfully printed from here while debugging.
+// So it's possible, but be careful.
+STATIC void dma_callback_fun(void *arg) {
+ audio_dma_t *dma = arg;
+ if (dma == NULL) {
+ return;
+ }
+
+ common_hal_mcu_disable_interrupts();
+ uint32_t channels_to_load_mask = dma->channels_to_load_mask;
+ dma->channels_to_load_mask = 0;
+ common_hal_mcu_enable_interrupts();
+
+ // Load the blocks for the requested channels.
+ uint32_t channel = 0;
+ while (channels_to_load_mask) {
+ if (channels_to_load_mask & 1) {
+ if (dma->channel[0] == channel) {
+ audio_dma_load_next_block(dma, 0);
+ }
+ if (dma->channel[1] == channel) {
+ audio_dma_load_next_block(dma, 1);
+ }
+ }
+ channels_to_load_mask >>= 1;
+ channel++;
+ }
+}
+
+void isr_dma_0(void) {
+ for (size_t i = 0; i < NUM_DMA_CHANNELS; i++) {
+ uint32_t mask = 1 << i;
+ if ((dma_hw->intr & mask) == 0) {
+ continue;
+ }
+ // acknowledge interrupt early. Doing so late means that you could lose an
+ // interrupt if the buffer is very small and the DMA operation
+ // completed by the time callback_add() / dma_complete() returned. This
+ // affected PIO continuous write more than audio.
+ dma_hw->ints0 = mask;
+ if (MP_STATE_PORT(playing_audio)[i] != NULL) {
+ audio_dma_t *dma = MP_STATE_PORT(playing_audio)[i];
+ // Record all channels whose DMA has completed; they need loading.
+ dma->channels_to_load_mask |= mask;
+ background_callback_add(&dma->callback, dma_callback_fun, (void *)dma);
+ }
+ if (MP_STATE_PORT(background_pio)[i] != NULL) {
+ rp2pio_statemachine_obj_t *pio = MP_STATE_PORT(background_pio)[i];
+ rp2pio_statemachine_dma_complete(pio, i);
+ }
+ }
+}
+
+#endif