diff options
Diffstat (limited to 'circuitpython/extmod/ulab/code/scipy/linalg/linalg.c')
-rw-r--r-- | circuitpython/extmod/ulab/code/scipy/linalg/linalg.c | 280 |
1 files changed, 280 insertions, 0 deletions
diff --git a/circuitpython/extmod/ulab/code/scipy/linalg/linalg.c b/circuitpython/extmod/ulab/code/scipy/linalg/linalg.c new file mode 100644 index 0000000..d211f72 --- /dev/null +++ b/circuitpython/extmod/ulab/code/scipy/linalg/linalg.c @@ -0,0 +1,280 @@ + +/* + * This file is part of the micropython-ulab project, + * + * https://github.com/v923z/micropython-ulab + * + * The MIT License (MIT) + * + * Copyright (c) 2021 Vikas Udupa + * +*/ + +#include <stdlib.h> +#include <string.h> +#include <math.h> +#include "py/obj.h" +#include "py/runtime.h" +#include "py/misc.h" + +#include "../../ulab.h" +#include "../../ulab_tools.h" +#include "../../numpy/linalg/linalg_tools.h" +#include "linalg.h" + +#if ULAB_SCIPY_HAS_LINALG_MODULE +//| +//| import ulab.scipy +//| import ulab.numpy +//| +//| """Linear algebra functions""" +//| + +#if ULAB_MAX_DIMS > 1 + +//| def solve_triangular(A: ulab.numpy.ndarray, b: ulab.numpy.ndarray, lower: bool) -> ulab.numpy.ndarray: +//| """ +//| :param ~ulab.numpy.ndarray A: a matrix +//| :param ~ulab.numpy.ndarray b: a vector +//| :param ~bool lower: if true, use only data contained in lower triangle of A, else use upper triangle of A +//| :return: solution to the system A x = b. Shape of return matches b +//| :raises TypeError: if A and b are not of type ndarray and are not dense +//| :raises ValueError: if A is a singular matrix +//| +//| Solve the equation A x = b for x, assuming A is a triangular matrix""" +//| ... +//| + +static mp_obj_t solve_triangular(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { + + size_t i, j; + + static const mp_arg_t allowed_args[] = { + { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none} } , + { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none} } , + { MP_QSTR_lower, MP_ARG_OBJ, { .u_rom_obj = mp_const_false } }, + }; + + mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; + mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); + + if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type) || !mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) { + mp_raise_TypeError(translate("first two arguments must be ndarrays")); + } + + ndarray_obj_t *A = MP_OBJ_TO_PTR(args[0].u_obj); + ndarray_obj_t *b = MP_OBJ_TO_PTR(args[1].u_obj); + + if(!ndarray_is_dense(A) || !ndarray_is_dense(b)) { + mp_raise_TypeError(translate("input must be a dense ndarray")); + } + + size_t A_rows = A->shape[ULAB_MAX_DIMS - 2]; + size_t A_cols = A->shape[ULAB_MAX_DIMS - 1]; + + uint8_t *A_arr = (uint8_t *)A->array; + uint8_t *b_arr = (uint8_t *)b->array; + + mp_float_t (*get_A_ele)(void *) = ndarray_get_float_function(A->dtype); + mp_float_t (*get_b_ele)(void *) = ndarray_get_float_function(b->dtype); + + uint8_t *temp_A = A_arr; + + // check if input matrix A is singular + for (i = 0; i < A_rows; i++) { + if (MICROPY_FLOAT_C_FUN(fabs)(get_A_ele(A_arr)) < LINALG_EPSILON) + mp_raise_ValueError(translate("input matrix is singular")); + A_arr += A->strides[ULAB_MAX_DIMS - 2]; + A_arr += A->strides[ULAB_MAX_DIMS - 1]; + } + + A_arr = temp_A; + + ndarray_obj_t *x = ndarray_new_dense_ndarray(b->ndim, b->shape, NDARRAY_FLOAT); + mp_float_t *x_arr = (mp_float_t *)x->array; + + if (mp_obj_is_true(args[2].u_obj)) { + // Solve the lower triangular matrix by iterating each row of A. + // Start by finding the first unknown using the first row. + // On finding this unknown, find the second unknown using the second row. + // Continue the same till the last unknown is found using the last row. + + for (i = 0; i < A_rows; i++) { + mp_float_t sum = 0.0; + for (j = 0; j < i; j++) { + sum += (get_A_ele(A_arr) * (*x_arr++)); + A_arr += A->strides[ULAB_MAX_DIMS - 1]; + } + + sum = (get_b_ele(b_arr) - sum) / (get_A_ele(A_arr)); + *x_arr = sum; + + x_arr -= j; + A_arr -= A->strides[ULAB_MAX_DIMS - 1] * j; + A_arr += A->strides[ULAB_MAX_DIMS - 2]; + b_arr += b->strides[ULAB_MAX_DIMS - 1]; + } + } else { + // Solve the upper triangular matrix by iterating each row of A. + // Start by finding the last unknown using the last row. + // On finding this unknown, find the last-but-one unknown using the last-but-one row. + // Continue the same till the first unknown is found using the first row. + + A_arr += (A->strides[ULAB_MAX_DIMS - 2] * A_rows); + b_arr += (b->strides[ULAB_MAX_DIMS - 1] * A_cols); + x_arr += A_cols; + + for (i = A_rows - 1; i < A_rows; i--) { + mp_float_t sum = 0.0; + for (j = i + 1; j < A_cols; j++) { + sum += (get_A_ele(A_arr) * (*x_arr++)); + A_arr += A->strides[ULAB_MAX_DIMS - 1]; + } + + x_arr -= (j - i); + A_arr -= (A->strides[ULAB_MAX_DIMS - 1] * (j - i)); + b_arr -= b->strides[ULAB_MAX_DIMS - 1]; + + sum = (get_b_ele(b_arr) - sum) / get_A_ele(A_arr); + *x_arr = sum; + + A_arr -= A->strides[ULAB_MAX_DIMS - 2]; + } + } + + return MP_OBJ_FROM_PTR(x); +} + +MP_DEFINE_CONST_FUN_OBJ_KW(linalg_solve_triangular_obj, 2, solve_triangular); + +//| def cho_solve(L: ulab.numpy.ndarray, b: ulab.numpy.ndarray) -> ulab.numpy.ndarray: +//| """ +//| :param ~ulab.numpy.ndarray L: the lower triangular, Cholesky factorization of A +//| :param ~ulab.numpy.ndarray b: right-hand-side vector b +//| :return: solution to the system A x = b. Shape of return matches b +//| :raises TypeError: if L and b are not of type ndarray and are not dense +//| +//| Solve the linear equations A x = b, given the Cholesky factorization of A as input""" +//| ... +//| + +static mp_obj_t cho_solve(mp_obj_t _L, mp_obj_t _b) { + + if(!mp_obj_is_type(_L, &ulab_ndarray_type) || !mp_obj_is_type(_b, &ulab_ndarray_type)) { + mp_raise_TypeError(translate("first two arguments must be ndarrays")); + } + + ndarray_obj_t *L = MP_OBJ_TO_PTR(_L); + ndarray_obj_t *b = MP_OBJ_TO_PTR(_b); + + if(!ndarray_is_dense(L) || !ndarray_is_dense(b)) { + mp_raise_TypeError(translate("input must be a dense ndarray")); + } + + mp_float_t (*get_L_ele)(void *) = ndarray_get_float_function(L->dtype); + mp_float_t (*get_b_ele)(void *) = ndarray_get_float_function(b->dtype); + void (*set_L_ele)(void *, mp_float_t) = ndarray_set_float_function(L->dtype); + + size_t L_rows = L->shape[ULAB_MAX_DIMS - 2]; + size_t L_cols = L->shape[ULAB_MAX_DIMS - 1]; + + // Obtain transpose of the input matrix L in L_t + size_t L_t_shape[ULAB_MAX_DIMS]; + size_t L_t_rows = L_t_shape[ULAB_MAX_DIMS - 2] = L_cols; + size_t L_t_cols = L_t_shape[ULAB_MAX_DIMS - 1] = L_rows; + ndarray_obj_t *L_t = ndarray_new_dense_ndarray(L->ndim, L_t_shape, L->dtype); + + uint8_t *L_arr = (uint8_t *)L->array; + uint8_t *L_t_arr = (uint8_t *)L_t->array; + uint8_t *b_arr = (uint8_t *)b->array; + + size_t i, j; + + uint8_t *L_ptr = L_arr; + uint8_t *L_t_ptr = L_t_arr; + for (i = 0; i < L_rows; i++) { + for (j = 0; j < L_cols; j++) { + set_L_ele(L_t_ptr, get_L_ele(L_ptr)); + L_t_ptr += L_t->strides[ULAB_MAX_DIMS - 2]; + L_ptr += L->strides[ULAB_MAX_DIMS - 1]; + } + + L_t_ptr -= j * L_t->strides[ULAB_MAX_DIMS - 2]; + L_t_ptr += L_t->strides[ULAB_MAX_DIMS - 1]; + L_ptr -= j * L->strides[ULAB_MAX_DIMS - 1]; + L_ptr += L->strides[ULAB_MAX_DIMS - 2]; + } + + ndarray_obj_t *x = ndarray_new_dense_ndarray(b->ndim, b->shape, NDARRAY_FLOAT); + mp_float_t *x_arr = (mp_float_t *)x->array; + + ndarray_obj_t *y = ndarray_new_dense_ndarray(b->ndim, b->shape, NDARRAY_FLOAT); + mp_float_t *y_arr = (mp_float_t *)y->array; + + // solve L y = b to obtain y, where L_t x = y + for (i = 0; i < L_rows; i++) { + mp_float_t sum = 0.0; + for (j = 0; j < i; j++) { + sum += (get_L_ele(L_arr) * (*y_arr++)); + L_arr += L->strides[ULAB_MAX_DIMS - 1]; + } + + sum = (get_b_ele(b_arr) - sum) / (get_L_ele(L_arr)); + *y_arr = sum; + + y_arr -= j; + L_arr -= L->strides[ULAB_MAX_DIMS - 1] * j; + L_arr += L->strides[ULAB_MAX_DIMS - 2]; + b_arr += b->strides[ULAB_MAX_DIMS - 1]; + } + + // using y, solve L_t x = y to obtain x + L_t_arr += (L_t->strides[ULAB_MAX_DIMS - 2] * L_t_rows); + y_arr += L_t_cols; + x_arr += L_t_cols; + + for (i = L_t_rows - 1; i < L_t_rows; i--) { + mp_float_t sum = 0.0; + for (j = i + 1; j < L_t_cols; j++) { + sum += (get_L_ele(L_t_arr) * (*x_arr++)); + L_t_arr += L_t->strides[ULAB_MAX_DIMS - 1]; + } + + x_arr -= (j - i); + L_t_arr -= (L_t->strides[ULAB_MAX_DIMS - 1] * (j - i)); + y_arr--; + + sum = ((*y_arr) - sum) / get_L_ele(L_t_arr); + *x_arr = sum; + + L_t_arr -= L_t->strides[ULAB_MAX_DIMS - 2]; + } + + return MP_OBJ_FROM_PTR(x); +} + +MP_DEFINE_CONST_FUN_OBJ_2(linalg_cho_solve_obj, cho_solve); + +#endif + +static const mp_rom_map_elem_t ulab_scipy_linalg_globals_table[] = { + { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_linalg) }, + #if ULAB_MAX_DIMS > 1 + #if ULAB_SCIPY_LINALG_HAS_SOLVE_TRIANGULAR + { MP_ROM_QSTR(MP_QSTR_solve_triangular), (mp_obj_t)&linalg_solve_triangular_obj }, + #endif + #if ULAB_SCIPY_LINALG_HAS_CHO_SOLVE + { MP_ROM_QSTR(MP_QSTR_cho_solve), (mp_obj_t)&linalg_cho_solve_obj }, + #endif + #endif +}; + +static MP_DEFINE_CONST_DICT(mp_module_ulab_scipy_linalg_globals, ulab_scipy_linalg_globals_table); + +const mp_obj_module_t ulab_scipy_linalg_module = { + .base = { &mp_type_module }, + .globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_linalg_globals, +}; +MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_linalg, ulab_scipy_linalg_module, MODULE_ULAB_ENABLED && CIRCUITPY_ULAB); + +#endif |