aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/supervisor/shared/external_flash/external_flash.c
diff options
context:
space:
mode:
authorRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
committerRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
commit4fd287655a72b9aea14cdac715ad5b90ed082ed2 (patch)
tree65d393bc0e699dd12d05b29ba568e04cea666207 /circuitpython/supervisor/shared/external_flash/external_flash.c
parent0150f70ce9c39e9e6dd878766c0620c85e47bed0 (diff)
add circuitpython code
Diffstat (limited to 'circuitpython/supervisor/shared/external_flash/external_flash.c')
-rw-r--r--circuitpython/supervisor/shared/external_flash/external_flash.c593
1 files changed, 593 insertions, 0 deletions
diff --git a/circuitpython/supervisor/shared/external_flash/external_flash.c b/circuitpython/supervisor/shared/external_flash/external_flash.c
new file mode 100644
index 0000000..7da45fd
--- /dev/null
+++ b/circuitpython/supervisor/shared/external_flash/external_flash.c
@@ -0,0 +1,593 @@
+/*
+ * This file is part of the MicroPython project, http://micropython.org/
+ *
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2016, 2017 Scott Shawcroft for Adafruit Industries
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#include "supervisor/shared/external_flash/external_flash.h"
+
+#include <stdint.h>
+#include <string.h>
+#include "genhdr/devices.h"
+#include "supervisor/flash.h"
+#include "supervisor/spi_flash_api.h"
+#include "supervisor/shared/external_flash/common_commands.h"
+#include "extmod/vfs.h"
+#include "extmod/vfs_fat.h"
+#include "py/misc.h"
+#include "py/obj.h"
+#include "py/runtime.h"
+#include "lib/oofatfs/ff.h"
+#include "shared-bindings/microcontroller/__init__.h"
+#include "supervisor/memory.h"
+
+#define NO_SECTOR_LOADED 0xFFFFFFFF
+
+// The currently cached sector in the cache, ram or flash based.
+static uint32_t current_sector;
+
+STATIC const external_flash_device possible_devices[] = {EXTERNAL_FLASH_DEVICES};
+#define EXTERNAL_FLASH_DEVICE_COUNT MP_ARRAY_SIZE(possible_devices)
+
+static const external_flash_device *flash_device = NULL;
+
+// Track which blocks (up to 32) in the current sector currently live in the
+// cache.
+static uint32_t dirty_mask;
+
+static supervisor_allocation *supervisor_cache = NULL;
+
+// Wait until both the write enable and write in progress bits have cleared.
+static bool wait_for_flash_ready(void) {
+ bool ok = true;
+ // Both the write enable and write in progress bits should be low.
+ if (flash_device->no_ready_bit) {
+ // For NVM without a ready bit in status register
+ return ok;
+ }
+ uint8_t read_status_response[1] = {0x00};
+ do {
+ ok = spi_flash_read_command(CMD_READ_STATUS, read_status_response, 1);
+ } while (ok && (read_status_response[0] & 0x3) != 0);
+ return ok;
+}
+
+// Turn on the write enable bit so we can program and erase the flash.
+static bool write_enable(void) {
+ return spi_flash_command(CMD_ENABLE_WRITE);
+}
+
+// Read data_length's worth of bytes starting at address into data.
+static bool read_flash(uint32_t address, uint8_t *data, uint32_t data_length) {
+ if (flash_device == NULL) {
+ return false;
+ }
+ if (!wait_for_flash_ready()) {
+ return false;
+ }
+ return spi_flash_read_data(address, data, data_length);
+}
+
+// Writes data_length's worth of bytes starting at address from data. Assumes
+// that the sector that address resides in has already been erased. So make sure
+// to run erase_sector.
+static bool write_flash(uint32_t address, const uint8_t *data, uint32_t data_length) {
+ if (flash_device == NULL) {
+ return false;
+ }
+ // Don't bother writing if the data is all 1s. Thats equivalent to the flash
+ // state after an erase.
+ if (!flash_device->no_erase_cmd) {
+ // Only do this if the device has an erase command
+ bool all_ones = true;
+ for (uint16_t i = 0; i < data_length; i++) {
+ if (data[i] != 0xff) {
+ all_ones = false;
+ break;
+ }
+ }
+ if (all_ones) {
+ return true;
+ }
+ }
+
+ for (uint32_t bytes_written = 0;
+ bytes_written < data_length;
+ bytes_written += SPI_FLASH_PAGE_SIZE) {
+ if (!wait_for_flash_ready() || !write_enable()) {
+ return false;
+ }
+
+ if (!spi_flash_write_data(address + bytes_written, (uint8_t *)data + bytes_written,
+ SPI_FLASH_PAGE_SIZE)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+static bool page_erased(uint32_t sector_address) {
+ // Check the first few bytes to catch the common case where there is data
+ // without using a bunch of memory.
+ if (flash_device->no_erase_cmd) {
+ // skip this if device doesn't have an erase command.
+ return true;
+ }
+ uint8_t short_buffer[4];
+ if (read_flash(sector_address, short_buffer, 4)) {
+ for (uint16_t i = 0; i < 4; i++) {
+ if (short_buffer[i] != 0xff) {
+ return false;
+ }
+ }
+ } else {
+ return false;
+ }
+
+ // Now check the full length.
+ uint8_t full_buffer[FILESYSTEM_BLOCK_SIZE];
+ if (read_flash(sector_address, full_buffer, FILESYSTEM_BLOCK_SIZE)) {
+ for (uint16_t i = 0; i < FILESYSTEM_BLOCK_SIZE; i++) {
+ if (short_buffer[i] != 0xff) {
+ return false;
+ }
+ }
+ } else {
+ return false;
+ }
+ return true;
+}
+
+// Erases the given sector. Make sure you copied all of the data out of it you
+// need! Also note, sector_address is really 24 bits.
+static bool erase_sector(uint32_t sector_address) {
+ // Before we erase the sector we need to wait for any writes to finish and
+ // and then enable the write again.
+ if (flash_device->no_erase_cmd) {
+ // skip this if device doesn't have an erase command.
+ return true;
+ }
+ if (!wait_for_flash_ready() || !write_enable()) {
+ return false;
+ }
+ if (flash_device->no_erase_cmd) {
+ return true;
+ }
+ spi_flash_sector_command(CMD_SECTOR_ERASE, sector_address);
+ return true;
+}
+
+// Sector is really 24 bits.
+static bool copy_block(uint32_t src_address, uint32_t dest_address) {
+ // Copy page by page to minimize RAM buffer.
+ uint16_t page_size = SPI_FLASH_PAGE_SIZE;
+ uint8_t buffer[page_size];
+ for (uint32_t i = 0; i < FILESYSTEM_BLOCK_SIZE / page_size; i++) {
+ if (!read_flash(src_address + i * page_size, buffer, page_size)) {
+ return false;
+ }
+ if (!write_flash(dest_address + i * page_size, buffer, page_size)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+void supervisor_flash_init(void) {
+ if (flash_device != NULL) {
+ return;
+ }
+
+ // Delay to give the SPI Flash time to get going.
+ // TODO(tannewt): Only do this when we know power was applied vs a reset.
+ uint16_t max_start_up_delay_us = 0;
+ for (uint8_t i = 0; i < EXTERNAL_FLASH_DEVICE_COUNT; i++) {
+ if (possible_devices[i].start_up_time_us > max_start_up_delay_us) {
+ max_start_up_delay_us = possible_devices[i].start_up_time_us;
+ }
+ }
+ common_hal_mcu_delay_us(max_start_up_delay_us);
+
+ spi_flash_init();
+
+ #ifdef EXTERNAL_FLASH_NO_JEDEC
+ // For NVM that don't have JEDEC response
+ spi_flash_command(CMD_WAKE);
+ for (uint8_t i = 0; i < EXTERNAL_FLASH_DEVICE_COUNT; i++) {
+ const external_flash_device *possible_device = &possible_devices[i];
+ flash_device = possible_device;
+ break;
+ }
+ #else
+ // The response will be 0xff if the flash needs more time to start up.
+ uint8_t jedec_id_response[3] = {0xff, 0xff, 0xff};
+ while (jedec_id_response[0] == 0xff) {
+ spi_flash_read_command(CMD_READ_JEDEC_ID, jedec_id_response, 3);
+ }
+ for (uint8_t i = 0; i < EXTERNAL_FLASH_DEVICE_COUNT; i++) {
+ const external_flash_device *possible_device = &possible_devices[i];
+ if (jedec_id_response[0] == possible_device->manufacturer_id &&
+ jedec_id_response[1] == possible_device->memory_type &&
+ jedec_id_response[2] == possible_device->capacity) {
+ flash_device = possible_device;
+ break;
+ }
+ }
+ #endif
+ if (flash_device == NULL) {
+ return;
+ }
+
+ // We don't know what state the flash is in so wait for any remaining writes and then reset.
+ uint8_t read_status_response[1] = {0x00};
+ // The write in progress bit should be low.
+ do {
+ spi_flash_read_command(CMD_READ_STATUS, read_status_response, 1);
+ } while ((read_status_response[0] & 0x1) != 0);
+ if (!flash_device->single_status_byte) {
+ // The suspended write/erase bit should be low.
+ do {
+ spi_flash_read_command(CMD_READ_STATUS2, read_status_response, 1);
+ } while ((read_status_response[0] & 0x80) != 0);
+ }
+
+ if (!(flash_device->no_reset_cmd)) {
+ spi_flash_command(CMD_ENABLE_RESET);
+ spi_flash_command(CMD_RESET);
+ }
+
+ // Wait 30us for the reset
+ common_hal_mcu_delay_us(30);
+
+ spi_flash_init_device(flash_device);
+
+ // Activity LED for flash writes.
+ #ifdef MICROPY_HW_LED_MSC
+ gpio_set_pin_function(SPI_FLASH_CS_PIN, GPIO_PIN_FUNCTION_OFF);
+ gpio_set_pin_direction(MICROPY_HW_LED_MSC, GPIO_DIRECTION_OUT);
+ // There's already a pull-up on the board.
+ gpio_set_pin_level(MICROPY_HW_LED_MSC, false);
+ #endif
+
+ if (flash_device->has_sector_protection) {
+ write_enable();
+
+ // Turn off sector protection
+ uint8_t data[1] = {0x00};
+ spi_flash_write_command(CMD_WRITE_STATUS_BYTE1, data, 1);
+ }
+
+ // Turn off writes in case this is a microcontroller only reset.
+ spi_flash_command(CMD_DISABLE_WRITE);
+
+ wait_for_flash_ready();
+
+ current_sector = NO_SECTOR_LOADED;
+ dirty_mask = 0;
+ MP_STATE_VM(flash_ram_cache) = NULL;
+}
+
+// The size of each individual block.
+uint32_t supervisor_flash_get_block_size(void) {
+ return FILESYSTEM_BLOCK_SIZE;
+}
+
+// The total number of available blocks.
+uint32_t supervisor_flash_get_block_count(void) {
+ // We subtract one erase sector size because we may use it as a staging area
+ // for writes.
+ return (flash_device->total_size - SPI_FLASH_ERASE_SIZE) / FILESYSTEM_BLOCK_SIZE;
+}
+
+// Flush the cache that was written to the scratch portion of flash. Only used
+// when ram is tight.
+static bool flush_scratch_flash(void) {
+ if (current_sector == NO_SECTOR_LOADED) {
+ return true;
+ }
+ // First, copy out any blocks that we haven't touched from the sector we've
+ // cached.
+ bool copy_to_scratch_ok = true;
+ uint32_t scratch_sector = flash_device->total_size - SPI_FLASH_ERASE_SIZE;
+ for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
+ if ((dirty_mask & (1 << i)) == 0) {
+ copy_to_scratch_ok = copy_to_scratch_ok &&
+ copy_block(current_sector + i * FILESYSTEM_BLOCK_SIZE,
+ scratch_sector + i * FILESYSTEM_BLOCK_SIZE);
+ }
+ }
+ if (!copy_to_scratch_ok) {
+ // TODO(tannewt): Do more here. We opted to not erase and copy bad data
+ // in. We still risk losing the data written to the scratch sector.
+ return false;
+ }
+ // Second, erase the current sector.
+ erase_sector(current_sector);
+ // Finally, copy the new version into it.
+ for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
+ copy_block(scratch_sector + i * FILESYSTEM_BLOCK_SIZE,
+ current_sector + i * FILESYSTEM_BLOCK_SIZE);
+ }
+ return true;
+}
+
+// Attempts to allocate a new set of page buffers for caching a full sector in
+// ram. Each page is allocated separately so that the GC doesn't need to provide
+// one huge block. We can free it as we write if we want to also.
+static bool allocate_ram_cache(void) {
+ uint8_t blocks_per_sector = SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE;
+ uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
+
+ uint32_t table_size = blocks_per_sector * pages_per_block * sizeof(uint32_t);
+ // Attempt to allocate outside the heap first.
+ supervisor_cache = allocate_memory(table_size + SPI_FLASH_ERASE_SIZE, false, false);
+ if (supervisor_cache != NULL) {
+ MP_STATE_VM(flash_ram_cache) = (uint8_t **)supervisor_cache->ptr;
+ uint8_t *page_start = (uint8_t *)supervisor_cache->ptr + table_size;
+
+ for (uint8_t i = 0; i < blocks_per_sector; i++) {
+ for (uint8_t j = 0; j < pages_per_block; j++) {
+ uint32_t offset = i * pages_per_block + j;
+ MP_STATE_VM(flash_ram_cache)[offset] = page_start + offset * SPI_FLASH_PAGE_SIZE;
+ }
+ }
+ return true;
+ }
+
+ if (MP_STATE_MEM(gc_pool_start) == 0) {
+ return false;
+ }
+
+ MP_STATE_VM(flash_ram_cache) = m_malloc_maybe(blocks_per_sector * pages_per_block * sizeof(uint32_t), false);
+ if (MP_STATE_VM(flash_ram_cache) == NULL) {
+ return false;
+ }
+ // Declare i and j outside the loops in case we fail to allocate everything
+ // we need. In that case we'll give it back.
+ uint8_t i = 0;
+ uint8_t j = 0;
+ bool success = true;
+ for (i = 0; i < blocks_per_sector; i++) {
+ for (j = 0; j < pages_per_block; j++) {
+ uint8_t *page_cache = m_malloc_maybe(SPI_FLASH_PAGE_SIZE, false);
+ if (page_cache == NULL) {
+ success = false;
+ break;
+ }
+ MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j] = page_cache;
+ }
+ if (!success) {
+ break;
+ }
+ }
+ // We couldn't allocate enough so give back what we got.
+ if (!success) {
+ // We add 1 so that we delete 0 when i is 1. Going to zero (i >= 0)
+ // would never stop because i is unsigned.
+ i++;
+ for (; i > 0; i--) {
+ for (; j > 0; j--) {
+ m_free(MP_STATE_VM(flash_ram_cache)[(i - 1) * pages_per_block + (j - 1)]);
+ }
+ j = pages_per_block;
+ }
+ m_free(MP_STATE_VM(flash_ram_cache));
+ MP_STATE_VM(flash_ram_cache) = NULL;
+ }
+ return success;
+}
+
+static void release_ram_cache(void) {
+ if (supervisor_cache != NULL) {
+ free_memory(supervisor_cache);
+ supervisor_cache = NULL;
+ } else if (MP_STATE_MEM(gc_pool_start)) {
+ m_free(MP_STATE_VM(flash_ram_cache));
+ }
+ MP_STATE_VM(flash_ram_cache) = NULL;
+}
+
+// Flush the cached sector from ram onto the flash. We'll free the cache unless
+// keep_cache is true.
+static bool flush_ram_cache(bool keep_cache) {
+ if (current_sector == NO_SECTOR_LOADED) {
+ if (!keep_cache) {
+ release_ram_cache();
+ }
+ return true;
+ }
+ // First, copy out any blocks that we haven't touched from the sector
+ // we've cached. If we don't do this we'll erase the data during the sector
+ // erase below.
+ bool copy_to_ram_ok = true;
+ uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
+ for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
+ if ((dirty_mask & (1 << i)) == 0) {
+ for (uint8_t j = 0; j < pages_per_block; j++) {
+ copy_to_ram_ok = read_flash(
+ current_sector + (i * pages_per_block + j) * SPI_FLASH_PAGE_SIZE,
+ MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j],
+ SPI_FLASH_PAGE_SIZE);
+ if (!copy_to_ram_ok) {
+ break;
+ }
+ }
+ }
+ if (!copy_to_ram_ok) {
+ break;
+ }
+ }
+
+ if (!copy_to_ram_ok) {
+ return false;
+ }
+ // Second, erase the current sector.
+ erase_sector(current_sector);
+ // Lastly, write all the data in ram that we've cached.
+ for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
+ for (uint8_t j = 0; j < pages_per_block; j++) {
+ write_flash(current_sector + (i * pages_per_block + j) * SPI_FLASH_PAGE_SIZE,
+ MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j],
+ SPI_FLASH_PAGE_SIZE);
+ if (!keep_cache && supervisor_cache == NULL && MP_STATE_MEM(gc_pool_start)) {
+ m_free(MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j]);
+ }
+ }
+ }
+ // We're done with the cache for now so give it back.
+ if (!keep_cache) {
+ release_ram_cache();
+ }
+ return true;
+}
+
+// Delegates to the correct flash flush method depending on the existing cache.
+// TODO Don't blink the status indicator if we don't actually do any writing (hard to tell right now).
+static void spi_flash_flush_keep_cache(bool keep_cache) {
+ #ifdef MICROPY_HW_LED_MSC
+ port_pin_set_output_level(MICROPY_HW_LED_MSC, true);
+ #endif
+ // If we've cached to the flash itself flush from there.
+ if (MP_STATE_VM(flash_ram_cache) == NULL) {
+ flush_scratch_flash();
+ } else {
+ flush_ram_cache(keep_cache);
+ }
+ current_sector = NO_SECTOR_LOADED;
+ #ifdef MICROPY_HW_LED_MSC
+ port_pin_set_output_level(MICROPY_HW_LED_MSC, false);
+ #endif
+}
+
+void supervisor_external_flash_flush(void) {
+ spi_flash_flush_keep_cache(true);
+}
+
+void supervisor_flash_release_cache(void) {
+ spi_flash_flush_keep_cache(false);
+}
+
+static int32_t convert_block_to_flash_addr(uint32_t block) {
+ if (0 <= block && block < supervisor_flash_get_block_count()) {
+ // a block in partition 1
+ return block * FILESYSTEM_BLOCK_SIZE;
+ }
+ // bad block
+ return -1;
+}
+
+static bool external_flash_read_block(uint8_t *dest, uint32_t block) {
+ int32_t address = convert_block_to_flash_addr(block);
+ if (address == -1) {
+ // bad block number
+ return false;
+ }
+
+ // Mask out the lower bits that designate the address within the sector.
+ uint32_t this_sector = address & (~(SPI_FLASH_ERASE_SIZE - 1));
+ uint8_t block_index = (address / FILESYSTEM_BLOCK_SIZE) % (SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE);
+ uint8_t mask = 1 << (block_index);
+ // We're reading from the currently cached sector.
+ if (current_sector == this_sector && (mask & dirty_mask) > 0) {
+ if (MP_STATE_VM(flash_ram_cache) != NULL) {
+ uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
+ for (int i = 0; i < pages_per_block; i++) {
+ memcpy(dest + i * SPI_FLASH_PAGE_SIZE,
+ MP_STATE_VM(flash_ram_cache)[block_index * pages_per_block + i],
+ SPI_FLASH_PAGE_SIZE);
+ }
+ return true;
+ } else {
+ uint32_t scratch_address = flash_device->total_size - SPI_FLASH_ERASE_SIZE + block_index * FILESYSTEM_BLOCK_SIZE;
+ return read_flash(scratch_address, dest, FILESYSTEM_BLOCK_SIZE);
+ }
+ }
+ return read_flash(address, dest, FILESYSTEM_BLOCK_SIZE);
+}
+
+static bool external_flash_write_block(const uint8_t *data, uint32_t block) {
+ // Non-MBR block, copy to cache
+ int32_t address = convert_block_to_flash_addr(block);
+ if (address == -1) {
+ // bad block number
+ return false;
+ }
+ // Wait for any previous writes to finish.
+ wait_for_flash_ready();
+ // Mask out the lower bits that designate the address within the sector.
+ uint32_t this_sector = address & (~(SPI_FLASH_ERASE_SIZE - 1));
+ uint8_t block_index = (address / FILESYSTEM_BLOCK_SIZE) % (SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE);
+ uint8_t mask = 1 << (block_index);
+ // Flush the cache if we're moving onto a sector or we're writing the
+ // same block again.
+ if (current_sector != this_sector || (mask & dirty_mask) > 0) {
+ // Check to see if we'd write to an erased page. In that case we
+ // can write directly.
+ if (page_erased(address)) {
+ return write_flash(address, data, FILESYSTEM_BLOCK_SIZE);
+ }
+ if (current_sector != NO_SECTOR_LOADED) {
+ supervisor_flash_flush();
+ }
+ if (MP_STATE_VM(flash_ram_cache) == NULL && !allocate_ram_cache()) {
+ erase_sector(flash_device->total_size - SPI_FLASH_ERASE_SIZE);
+ wait_for_flash_ready();
+ }
+ current_sector = this_sector;
+ dirty_mask = 0;
+ }
+ dirty_mask |= mask;
+ // Copy the block to the appropriate cache.
+ if (MP_STATE_VM(flash_ram_cache) != NULL) {
+ uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
+ for (int i = 0; i < pages_per_block; i++) {
+ memcpy(MP_STATE_VM(flash_ram_cache)[block_index * pages_per_block + i],
+ data + i * SPI_FLASH_PAGE_SIZE,
+ SPI_FLASH_PAGE_SIZE);
+ }
+ return true;
+ } else {
+ uint32_t scratch_address = flash_device->total_size - SPI_FLASH_ERASE_SIZE + block_index * FILESYSTEM_BLOCK_SIZE;
+ return write_flash(scratch_address, data, FILESYSTEM_BLOCK_SIZE);
+ }
+}
+
+mp_uint_t supervisor_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
+ for (size_t i = 0; i < num_blocks; i++) {
+ if (!external_flash_read_block(dest + i * FILESYSTEM_BLOCK_SIZE, block_num + i)) {
+ return 1; // error
+ }
+ }
+ return 0; // success
+}
+
+mp_uint_t supervisor_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
+ for (size_t i = 0; i < num_blocks; i++) {
+ if (!external_flash_write_block(src + i * FILESYSTEM_BLOCK_SIZE, block_num + i)) {
+ return 1; // error
+ }
+ }
+ return 0; // success
+}
+
+void MP_WEAK external_flash_setup(void) {
+}