diff options
author | Raghuram Subramani <raghus2247@gmail.com> | 2022-06-19 19:47:51 +0530 |
---|---|---|
committer | Raghuram Subramani <raghus2247@gmail.com> | 2022-06-19 19:47:51 +0530 |
commit | 4fd287655a72b9aea14cdac715ad5b90ed082ed2 (patch) | |
tree | 65d393bc0e699dd12d05b29ba568e04cea666207 /circuitpython/py/objint.c | |
parent | 0150f70ce9c39e9e6dd878766c0620c85e47bed0 (diff) |
add circuitpython code
Diffstat (limited to 'circuitpython/py/objint.c')
-rw-r--r-- | circuitpython/py/objint.c | 582 |
1 files changed, 582 insertions, 0 deletions
diff --git a/circuitpython/py/objint.c b/circuitpython/py/objint.c new file mode 100644 index 0000000..50bcbf5 --- /dev/null +++ b/circuitpython/py/objint.c @@ -0,0 +1,582 @@ +/* + * This file is part of the MicroPython project, http://micropython.org/ + * + * The MIT License (MIT) + * + * SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include <stdlib.h> +#include <assert.h> +#include <string.h> + +#include "py/parsenum.h" +#include "py/smallint.h" +#include "py/objint.h" +#include "py/objstr.h" +#include "py/runtime.h" +#include "py/binary.h" + +#include "supervisor/shared/translate.h" + +#if MICROPY_PY_BUILTINS_FLOAT +#include <math.h> +#endif + +// This dispatcher function is expected to be independent of the implementation of long int +STATIC mp_obj_t mp_obj_int_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { + (void)type_in; + mp_arg_check_num(n_args, n_kw, 0, 2, false); + + switch (n_args) { + case 0: + return MP_OBJ_NEW_SMALL_INT(0); + + case 1: + if (mp_obj_is_int(args[0])) { + // already an int (small or long), just return it + return args[0]; + } else if (mp_obj_is_str_or_bytes(args[0])) { + // a string, parse it + size_t l; + const char *s = mp_obj_str_get_data(args[0], &l); + return mp_parse_num_integer(s, l, 0, NULL); + #if MICROPY_PY_BUILTINS_FLOAT + } else if (mp_obj_is_float(args[0])) { + return mp_obj_new_int_from_float(mp_obj_float_get(args[0])); + #endif + } else { + return mp_unary_op(MP_UNARY_OP_INT, args[0]); + } + + case 2: + default: { + // should be a string, parse it + size_t l; + const char *s = mp_obj_str_get_data(args[0], &l); + return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]), NULL); + } + } +} + +#if MICROPY_PY_BUILTINS_FLOAT + +typedef enum { + MP_FP_CLASS_FIT_SMALLINT, + MP_FP_CLASS_FIT_LONGINT, + MP_FP_CLASS_OVERFLOW +} mp_fp_as_int_class_t; + +STATIC mp_fp_as_int_class_t mp_classify_fp_as_int(mp_float_t val) { + union { + mp_float_t f; + #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT + uint32_t i; + #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE + uint32_t i[2]; + #endif + } u = {val}; + + uint32_t e; + #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT + e = u.i; + #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE + e = u.i[MP_ENDIANNESS_LITTLE]; + #endif +#define MP_FLOAT_SIGN_SHIFT_I32 ((MP_FLOAT_FRAC_BITS + MP_FLOAT_EXP_BITS) % 32) +#define MP_FLOAT_EXP_SHIFT_I32 (MP_FLOAT_FRAC_BITS % 32) + + if (e & (1U << MP_FLOAT_SIGN_SHIFT_I32)) { + #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE + e |= u.i[MP_ENDIANNESS_BIG] != 0; + #endif + if ((e & ~(1U << MP_FLOAT_SIGN_SHIFT_I32)) == 0) { + // handle case of -0 (when sign is set but rest of bits are zero) + e = 0; + } else { + e += ((1U << MP_FLOAT_EXP_BITS) - 1) << MP_FLOAT_EXP_SHIFT_I32; + } + } else { + e &= ~((1U << MP_FLOAT_EXP_SHIFT_I32) - 1); + } + // 8 * sizeof(uintptr_t) counts the number of bits for a small int + // TODO provide a way to configure this properly + if (e <= ((8 * sizeof(uintptr_t) + MP_FLOAT_EXP_BIAS - 3) << MP_FLOAT_EXP_SHIFT_I32)) { + return MP_FP_CLASS_FIT_SMALLINT; + } + #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG + if (e <= (((sizeof(long long) * MP_BITS_PER_BYTE) + MP_FLOAT_EXP_BIAS - 2) << MP_FLOAT_EXP_SHIFT_I32)) { + return MP_FP_CLASS_FIT_LONGINT; + } + #endif + #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ + return MP_FP_CLASS_FIT_LONGINT; + #else + return MP_FP_CLASS_OVERFLOW; + #endif +} +#undef MP_FLOAT_SIGN_SHIFT_I32 +#undef MP_FLOAT_EXP_SHIFT_I32 + +mp_obj_t mp_obj_new_int_from_float(mp_float_t val) { + mp_float_union_t u = {val}; + // IEEE-754: if biased exponent is all 1 bits... + if (u.p.exp == ((1 << MP_FLOAT_EXP_BITS) - 1)) { + // ...then number is Inf (positive or negative) if fraction is 0, else NaN. + if (u.p.frc == 0) { + mp_raise_OverflowError_varg(MP_ERROR_TEXT("can't convert %q to %q"), MP_QSTR_inf, MP_QSTR_int); + } else { + mp_raise_ValueError_varg(MP_ERROR_TEXT("can't convert %q to %q"), MP_QSTR_NaN, MP_QSTR_int); + } + } else { + mp_fp_as_int_class_t icl = mp_classify_fp_as_int(val); + if (icl == MP_FP_CLASS_FIT_SMALLINT) { + return MP_OBJ_NEW_SMALL_INT((mp_int_t)val); + #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ + } else { + mp_obj_int_t *o = mp_obj_int_new_mpz(); + mpz_set_from_float(&o->mpz, val); + return MP_OBJ_FROM_PTR(o); + } + #else + #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG + } else if (icl == MP_FP_CLASS_FIT_LONGINT) { + return mp_obj_new_int_from_ll((long long)val); + #endif + } else { + mp_raise_ValueError(MP_ERROR_TEXT("float too big")); + } + #endif + } +} + +#endif + +#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG +typedef mp_longint_impl_t fmt_int_t; +typedef unsigned long long fmt_uint_t; +#else +typedef mp_int_t fmt_int_t; +typedef mp_uint_t fmt_uint_t; +#endif + +void mp_obj_int_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { + (void)kind; + // The size of this buffer is rather arbitrary. If it's not large + // enough, a dynamic one will be allocated. + char stack_buf[sizeof(fmt_int_t) * 4]; + char *buf = stack_buf; + size_t buf_size = sizeof(stack_buf); + size_t fmt_size; + + char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0'); + mp_print_str(print, str); + + if (buf != stack_buf) { + m_del(char, buf, buf_size); + } +} + +STATIC const uint8_t log_base2_floor[] = { + 0, 1, 1, 2, + 2, 2, 2, 3, + 3, 3, 3, 3, + 3, 3, 3, 4, + /* if needed, these are the values for higher bases + 4, 4, 4, 4, + 4, 4, 4, 4, + 4, 4, 4, 4, + 4, 4, 4, 5 + */ +}; + +size_t mp_int_format_size(size_t num_bits, int base, const char *prefix, char comma) { + assert(2 <= base && base <= 16); + size_t num_digits = num_bits / log_base2_floor[base - 1] + 1; + size_t num_commas = comma ? num_digits / 3 : 0; + size_t prefix_len = prefix ? strlen(prefix) : 0; + return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte +} + +// This routine expects you to pass in a buffer and size (in *buf and *buf_size). +// If, for some reason, this buffer is too small, then it will allocate a +// buffer and return the allocated buffer and size in *buf and *buf_size. It +// is the callers responsibility to free this allocated buffer. +// +// The resulting formatted string will be returned from this function and the +// formatted size will be in *fmt_size. +char *mp_obj_int_formatted(char **buf, size_t *buf_size, size_t *fmt_size, mp_const_obj_t self_in, + int base, const char *prefix, char base_char, char comma) { + fmt_int_t num; + #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE + // Only have small ints; get the integer value to format. + num = MP_OBJ_SMALL_INT_VALUE(self_in); + #else + if (mp_obj_is_small_int(self_in)) { + // A small int; get the integer value to format. + num = MP_OBJ_SMALL_INT_VALUE(self_in); + } else { + assert(mp_obj_is_type(self_in, &mp_type_int)); + // Not a small int. + #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG + const mp_obj_int_t *self = self_in; + // Get the value to format; mp_obj_get_int truncates to mp_int_t. + num = self->val; + #else + // Delegate to the implementation for the long int. + return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma); + #endif + } + #endif + + char sign = '\0'; + if (num < 0) { + num = -num; + sign = '-'; + } + + size_t needed_size = mp_int_format_size(sizeof(fmt_int_t) * 8, base, prefix, comma); + if (needed_size > *buf_size) { + *buf = m_new(char, needed_size); + *buf_size = needed_size; + } + char *str = *buf; + + char *b = str + needed_size; + *(--b) = '\0'; + char *last_comma = b; + + if (num == 0) { + *(--b) = '0'; + } else { + do { + // The cast to fmt_uint_t is because num is positive and we want unsigned arithmetic + int c = (fmt_uint_t)num % base; + num = (fmt_uint_t)num / base; + if (c >= 10) { + c += base_char - 10; + } else { + c += '0'; + } + *(--b) = c; + if (comma && num != 0 && b > str && (last_comma - b) == 3) { + *(--b) = comma; + last_comma = b; + } + } + while (b > str && num != 0); + } + if (prefix) { + size_t prefix_len = strlen(prefix); + char *p = b - prefix_len; + if (p > str) { + b = p; + while (*prefix) { + *p++ = *prefix++; + } + } + } + if (sign && b > str) { + *(--b) = sign; + } + *fmt_size = *buf + needed_size - b - 1; + + return b; +} + +#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE + +void mp_obj_int_buffer_overflow_check(mp_obj_t self_in, size_t nbytes, bool is_signed) { + if (is_signed) { + // self must be < 2**(bits - 1) + mp_obj_t edge = mp_binary_op(MP_BINARY_OP_INPLACE_LSHIFT, + mp_obj_new_int(1), + mp_obj_new_int(nbytes * 8 - 1)); + + if (mp_binary_op(MP_BINARY_OP_LESS, self_in, edge) == mp_const_true) { + // and >= -2**(bits - 1) + edge = mp_unary_op(MP_UNARY_OP_NEGATIVE, edge); + if (mp_binary_op(MP_BINARY_OP_MORE_EQUAL, self_in, edge) == mp_const_true) { + return; + } + } + } else { + // self must be >= 0 + if (mp_obj_int_sign(self_in) >= 0) { + // and < 2**(bits) + mp_obj_t edge = mp_binary_op(MP_BINARY_OP_INPLACE_LSHIFT, + mp_obj_new_int(1), + mp_obj_new_int(nbytes * 8)); + + if (mp_binary_op(MP_BINARY_OP_LESS, self_in, edge) == mp_const_true) { + return; + } + } + } + + mp_raise_OverflowError_varg(MP_ERROR_TEXT("value must fit in %d byte(s)"), nbytes); +} + +#endif // MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE + +void mp_small_int_buffer_overflow_check(mp_int_t val, size_t nbytes, bool is_signed) { + // Fast path for zero. + if (val == 0) { + return; + } + + // Trying to store negative values in unsigned bytes falls through to failure. + if (is_signed || val >= 0) { + + if (nbytes >= sizeof(val)) { + // All non-negative N bit signed integers fit in an unsigned N bit integer. + // This case prevents shifting too far below. + return; + } + + if (is_signed) { + mp_int_t edge = ((mp_int_t)1 << (nbytes * 8 - 1)); + if (-edge <= val && val < edge) { + return; + } + // Out of range, fall through to failure. + } else { + // Unsigned. We already know val >= 0. + mp_int_t edge = ((mp_int_t)1 << (nbytes * 8)); + if (val < edge) { + return; + } + } + // Fall through to failure. + } + + mp_raise_OverflowError_varg(MP_ERROR_TEXT("value must fit in %d byte(s)"), nbytes); +} + +#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE + +int mp_obj_int_sign(mp_obj_t self_in) { + mp_int_t val = mp_obj_get_int(self_in); + if (val < 0) { + return -1; + } else if (val > 0) { + return 1; + } else { + return 0; + } +} + +// This is called for operations on SMALL_INT that are not handled by mp_unary_op +mp_obj_t mp_obj_int_unary_op(mp_unary_op_t op, mp_obj_t o_in) { + return MP_OBJ_NULL; // op not supported +} + +// This is called for operations on SMALL_INT that are not handled by mp_binary_op +mp_obj_t mp_obj_int_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { + return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in); +} + +// This is called only with strings whose value doesn't fit in SMALL_INT +mp_obj_t mp_obj_new_int_from_str_len(const char **str, size_t len, bool neg, unsigned int base) { + mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("long int not supported in this build")); + return mp_const_none; +} + +// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT) +mp_obj_t mp_obj_new_int_from_ll(long long val) { + mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow")); + return mp_const_none; +} + +// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT) +mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) { + mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow")); + return mp_const_none; +} + +mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) { + // SMALL_INT accepts only signed numbers, so make sure the input + // value fits completely in the small-int positive range. + if ((value & ~MP_SMALL_INT_POSITIVE_MASK) == 0) { + return MP_OBJ_NEW_SMALL_INT(value); + } + mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow")); + return mp_const_none; +} + +mp_obj_t mp_obj_new_int(mp_int_t value) { + if (MP_SMALL_INT_FITS(value)) { + return MP_OBJ_NEW_SMALL_INT(value); + } + mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow")); + return mp_const_none; +} + +mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) { + return MP_OBJ_SMALL_INT_VALUE(self_in); +} + +mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) { + return MP_OBJ_SMALL_INT_VALUE(self_in); +} + +#endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE + +// This dispatcher function is expected to be independent of the implementation of long int +// It handles the extra cases for integer-like arithmetic +mp_obj_t mp_obj_int_binary_op_extra_cases(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { + if (rhs_in == mp_const_false) { + // false acts as 0 + return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0)); + } else if (rhs_in == mp_const_true) { + // true acts as 0 + return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1)); + } else if (op == MP_BINARY_OP_MULTIPLY) { + if (mp_obj_is_str_or_bytes(rhs_in) || mp_obj_is_type(rhs_in, &mp_type_tuple) || mp_obj_is_type(rhs_in, &mp_type_list)) { + // multiply is commutative for these types, so delegate to them + return mp_binary_op(op, rhs_in, lhs_in); + } + } + return MP_OBJ_NULL; // op not supported +} + +#if MICROPY_CPYTHON_COMPAT +STATIC mp_obj_t int_bit_length(mp_obj_t self_in) { + #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE + if (!mp_obj_is_small_int(self_in)) { + return mp_obj_int_bit_length_impl(self_in); + } else + #endif + { + mp_int_t int_val = MP_OBJ_SMALL_INT_VALUE(self_in); + mp_uint_t value = + (int_val == 0) ? 0 : + (int_val == MP_SMALL_INT_MIN) ? 8 * sizeof(mp_int_t) : + (int_val < 0) ? 8 * sizeof(long) - __builtin_clzl(-int_val) : + 8 * sizeof(long) - __builtin_clzl(int_val); + return mp_obj_new_int_from_uint(value); + } + +} +MP_DEFINE_CONST_FUN_OBJ_1(int_bit_length_obj, int_bit_length); +#endif + +// this is a classmethod +STATIC mp_obj_t int_from_bytes(size_t n_args, const mp_obj_t *args) { + // TODO: Support signed param (assumes signed=False at the moment) + (void)n_args; + + // get the buffer info + mp_buffer_info_t bufinfo; + mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ); + + const byte *buf = (const byte *)bufinfo.buf; + int delta = 1; + if (args[2] == MP_OBJ_NEW_QSTR(MP_QSTR_little)) { + buf += bufinfo.len - 1; + delta = -1; + } + + mp_uint_t value = 0; + size_t len = bufinfo.len; + for (; len--; buf += delta) { + #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE + if (value > (MP_SMALL_INT_MAX >> 8)) { + // Result will overflow a small-int so construct a big-int + return mp_obj_int_from_bytes_impl(args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little), bufinfo.len, bufinfo.buf); + } + #endif + value = (value << 8) | *buf; + } + return mp_obj_new_int_from_uint(value); +} + +STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_fun_obj, 3, 4, int_from_bytes); +STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(int_from_bytes_obj, MP_ROM_PTR(&int_from_bytes_fun_obj)); + +STATIC mp_obj_t int_to_bytes(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { + enum { ARG_length, ARG_byteorder, ARG_signed }; + static const mp_arg_t allowed_args[] = { + { MP_QSTR_length, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, + { MP_QSTR_byteorder, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, + { MP_QSTR_signed, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, + }; + mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; + mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); + + mp_int_t len = args[ARG_length].u_int; + if (len < 0) { + mp_raise_ValueError(NULL); + } + + mp_obj_t self = pos_args[0]; + bool big_endian = args[ARG_byteorder].u_obj != MP_OBJ_NEW_QSTR(MP_QSTR_little); + bool signed_ = args[ARG_signed].u_bool; + + vstr_t vstr; + vstr_init_len(&vstr, len); + byte *data = (byte *)vstr.buf; + memset(data, 0, len); + + #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE + if (!mp_obj_is_small_int(self)) { + mp_obj_int_buffer_overflow_check(self, len, signed_); + mp_obj_int_to_bytes_impl(self, big_endian, len, data); + } else + #endif + { + mp_int_t val = MP_OBJ_SMALL_INT_VALUE(self); + // Small int checking is separate, to be fast. + mp_small_int_buffer_overflow_check(val, len, signed_); + size_t l = MIN((size_t)len, sizeof(val)); + if (val < 0) { + // Sign extend negative numbers. + memset(data, -1, len); + } + mp_binary_set_int(l, big_endian, data + (big_endian ? (len - l) : 0), val); + } + + return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); +} +STATIC MP_DEFINE_CONST_FUN_OBJ_KW(int_to_bytes_obj, 3, int_to_bytes); + +STATIC const mp_rom_map_elem_t int_locals_dict_table[] = { + #if MICROPY_CPYTHON_COMPAT + { MP_ROM_QSTR(MP_QSTR_bit_length), MP_ROM_PTR(&int_bit_length_obj) }, + #endif + { MP_ROM_QSTR(MP_QSTR_from_bytes), MP_ROM_PTR(&int_from_bytes_obj) }, + { MP_ROM_QSTR(MP_QSTR_to_bytes), MP_ROM_PTR(&int_to_bytes_obj) }, +}; + +STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table); + +const mp_obj_type_t mp_type_int = { + { &mp_type_type }, + .name = MP_QSTR_int, + .flags = MP_TYPE_FLAG_EXTENDED, + .print = mp_obj_int_print, + .make_new = mp_obj_int_make_new, + .locals_dict = (mp_obj_dict_t *)&int_locals_dict, + MP_TYPE_EXTENDED_FIELDS( + .unary_op = mp_obj_int_unary_op, + .binary_op = mp_obj_int_binary_op, + ), +}; |