aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/py/objint.c
diff options
context:
space:
mode:
authorRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
committerRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
commit4fd287655a72b9aea14cdac715ad5b90ed082ed2 (patch)
tree65d393bc0e699dd12d05b29ba568e04cea666207 /circuitpython/py/objint.c
parent0150f70ce9c39e9e6dd878766c0620c85e47bed0 (diff)
add circuitpython code
Diffstat (limited to 'circuitpython/py/objint.c')
-rw-r--r--circuitpython/py/objint.c582
1 files changed, 582 insertions, 0 deletions
diff --git a/circuitpython/py/objint.c b/circuitpython/py/objint.c
new file mode 100644
index 0000000..50bcbf5
--- /dev/null
+++ b/circuitpython/py/objint.c
@@ -0,0 +1,582 @@
+/*
+ * This file is part of the MicroPython project, http://micropython.org/
+ *
+ * The MIT License (MIT)
+ *
+ * SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include <stdlib.h>
+#include <assert.h>
+#include <string.h>
+
+#include "py/parsenum.h"
+#include "py/smallint.h"
+#include "py/objint.h"
+#include "py/objstr.h"
+#include "py/runtime.h"
+#include "py/binary.h"
+
+#include "supervisor/shared/translate.h"
+
+#if MICROPY_PY_BUILTINS_FLOAT
+#include <math.h>
+#endif
+
+// This dispatcher function is expected to be independent of the implementation of long int
+STATIC mp_obj_t mp_obj_int_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
+ (void)type_in;
+ mp_arg_check_num(n_args, n_kw, 0, 2, false);
+
+ switch (n_args) {
+ case 0:
+ return MP_OBJ_NEW_SMALL_INT(0);
+
+ case 1:
+ if (mp_obj_is_int(args[0])) {
+ // already an int (small or long), just return it
+ return args[0];
+ } else if (mp_obj_is_str_or_bytes(args[0])) {
+ // a string, parse it
+ size_t l;
+ const char *s = mp_obj_str_get_data(args[0], &l);
+ return mp_parse_num_integer(s, l, 0, NULL);
+ #if MICROPY_PY_BUILTINS_FLOAT
+ } else if (mp_obj_is_float(args[0])) {
+ return mp_obj_new_int_from_float(mp_obj_float_get(args[0]));
+ #endif
+ } else {
+ return mp_unary_op(MP_UNARY_OP_INT, args[0]);
+ }
+
+ case 2:
+ default: {
+ // should be a string, parse it
+ size_t l;
+ const char *s = mp_obj_str_get_data(args[0], &l);
+ return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]), NULL);
+ }
+ }
+}
+
+#if MICROPY_PY_BUILTINS_FLOAT
+
+typedef enum {
+ MP_FP_CLASS_FIT_SMALLINT,
+ MP_FP_CLASS_FIT_LONGINT,
+ MP_FP_CLASS_OVERFLOW
+} mp_fp_as_int_class_t;
+
+STATIC mp_fp_as_int_class_t mp_classify_fp_as_int(mp_float_t val) {
+ union {
+ mp_float_t f;
+ #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
+ uint32_t i;
+ #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
+ uint32_t i[2];
+ #endif
+ } u = {val};
+
+ uint32_t e;
+ #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
+ e = u.i;
+ #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
+ e = u.i[MP_ENDIANNESS_LITTLE];
+ #endif
+#define MP_FLOAT_SIGN_SHIFT_I32 ((MP_FLOAT_FRAC_BITS + MP_FLOAT_EXP_BITS) % 32)
+#define MP_FLOAT_EXP_SHIFT_I32 (MP_FLOAT_FRAC_BITS % 32)
+
+ if (e & (1U << MP_FLOAT_SIGN_SHIFT_I32)) {
+ #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
+ e |= u.i[MP_ENDIANNESS_BIG] != 0;
+ #endif
+ if ((e & ~(1U << MP_FLOAT_SIGN_SHIFT_I32)) == 0) {
+ // handle case of -0 (when sign is set but rest of bits are zero)
+ e = 0;
+ } else {
+ e += ((1U << MP_FLOAT_EXP_BITS) - 1) << MP_FLOAT_EXP_SHIFT_I32;
+ }
+ } else {
+ e &= ~((1U << MP_FLOAT_EXP_SHIFT_I32) - 1);
+ }
+ // 8 * sizeof(uintptr_t) counts the number of bits for a small int
+ // TODO provide a way to configure this properly
+ if (e <= ((8 * sizeof(uintptr_t) + MP_FLOAT_EXP_BIAS - 3) << MP_FLOAT_EXP_SHIFT_I32)) {
+ return MP_FP_CLASS_FIT_SMALLINT;
+ }
+ #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
+ if (e <= (((sizeof(long long) * MP_BITS_PER_BYTE) + MP_FLOAT_EXP_BIAS - 2) << MP_FLOAT_EXP_SHIFT_I32)) {
+ return MP_FP_CLASS_FIT_LONGINT;
+ }
+ #endif
+ #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
+ return MP_FP_CLASS_FIT_LONGINT;
+ #else
+ return MP_FP_CLASS_OVERFLOW;
+ #endif
+}
+#undef MP_FLOAT_SIGN_SHIFT_I32
+#undef MP_FLOAT_EXP_SHIFT_I32
+
+mp_obj_t mp_obj_new_int_from_float(mp_float_t val) {
+ mp_float_union_t u = {val};
+ // IEEE-754: if biased exponent is all 1 bits...
+ if (u.p.exp == ((1 << MP_FLOAT_EXP_BITS) - 1)) {
+ // ...then number is Inf (positive or negative) if fraction is 0, else NaN.
+ if (u.p.frc == 0) {
+ mp_raise_OverflowError_varg(MP_ERROR_TEXT("can't convert %q to %q"), MP_QSTR_inf, MP_QSTR_int);
+ } else {
+ mp_raise_ValueError_varg(MP_ERROR_TEXT("can't convert %q to %q"), MP_QSTR_NaN, MP_QSTR_int);
+ }
+ } else {
+ mp_fp_as_int_class_t icl = mp_classify_fp_as_int(val);
+ if (icl == MP_FP_CLASS_FIT_SMALLINT) {
+ return MP_OBJ_NEW_SMALL_INT((mp_int_t)val);
+ #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
+ } else {
+ mp_obj_int_t *o = mp_obj_int_new_mpz();
+ mpz_set_from_float(&o->mpz, val);
+ return MP_OBJ_FROM_PTR(o);
+ }
+ #else
+ #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
+ } else if (icl == MP_FP_CLASS_FIT_LONGINT) {
+ return mp_obj_new_int_from_ll((long long)val);
+ #endif
+ } else {
+ mp_raise_ValueError(MP_ERROR_TEXT("float too big"));
+ }
+ #endif
+ }
+}
+
+#endif
+
+#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
+typedef mp_longint_impl_t fmt_int_t;
+typedef unsigned long long fmt_uint_t;
+#else
+typedef mp_int_t fmt_int_t;
+typedef mp_uint_t fmt_uint_t;
+#endif
+
+void mp_obj_int_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
+ (void)kind;
+ // The size of this buffer is rather arbitrary. If it's not large
+ // enough, a dynamic one will be allocated.
+ char stack_buf[sizeof(fmt_int_t) * 4];
+ char *buf = stack_buf;
+ size_t buf_size = sizeof(stack_buf);
+ size_t fmt_size;
+
+ char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0');
+ mp_print_str(print, str);
+
+ if (buf != stack_buf) {
+ m_del(char, buf, buf_size);
+ }
+}
+
+STATIC const uint8_t log_base2_floor[] = {
+ 0, 1, 1, 2,
+ 2, 2, 2, 3,
+ 3, 3, 3, 3,
+ 3, 3, 3, 4,
+ /* if needed, these are the values for higher bases
+ 4, 4, 4, 4,
+ 4, 4, 4, 4,
+ 4, 4, 4, 4,
+ 4, 4, 4, 5
+ */
+};
+
+size_t mp_int_format_size(size_t num_bits, int base, const char *prefix, char comma) {
+ assert(2 <= base && base <= 16);
+ size_t num_digits = num_bits / log_base2_floor[base - 1] + 1;
+ size_t num_commas = comma ? num_digits / 3 : 0;
+ size_t prefix_len = prefix ? strlen(prefix) : 0;
+ return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte
+}
+
+// This routine expects you to pass in a buffer and size (in *buf and *buf_size).
+// If, for some reason, this buffer is too small, then it will allocate a
+// buffer and return the allocated buffer and size in *buf and *buf_size. It
+// is the callers responsibility to free this allocated buffer.
+//
+// The resulting formatted string will be returned from this function and the
+// formatted size will be in *fmt_size.
+char *mp_obj_int_formatted(char **buf, size_t *buf_size, size_t *fmt_size, mp_const_obj_t self_in,
+ int base, const char *prefix, char base_char, char comma) {
+ fmt_int_t num;
+ #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
+ // Only have small ints; get the integer value to format.
+ num = MP_OBJ_SMALL_INT_VALUE(self_in);
+ #else
+ if (mp_obj_is_small_int(self_in)) {
+ // A small int; get the integer value to format.
+ num = MP_OBJ_SMALL_INT_VALUE(self_in);
+ } else {
+ assert(mp_obj_is_type(self_in, &mp_type_int));
+ // Not a small int.
+ #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
+ const mp_obj_int_t *self = self_in;
+ // Get the value to format; mp_obj_get_int truncates to mp_int_t.
+ num = self->val;
+ #else
+ // Delegate to the implementation for the long int.
+ return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma);
+ #endif
+ }
+ #endif
+
+ char sign = '\0';
+ if (num < 0) {
+ num = -num;
+ sign = '-';
+ }
+
+ size_t needed_size = mp_int_format_size(sizeof(fmt_int_t) * 8, base, prefix, comma);
+ if (needed_size > *buf_size) {
+ *buf = m_new(char, needed_size);
+ *buf_size = needed_size;
+ }
+ char *str = *buf;
+
+ char *b = str + needed_size;
+ *(--b) = '\0';
+ char *last_comma = b;
+
+ if (num == 0) {
+ *(--b) = '0';
+ } else {
+ do {
+ // The cast to fmt_uint_t is because num is positive and we want unsigned arithmetic
+ int c = (fmt_uint_t)num % base;
+ num = (fmt_uint_t)num / base;
+ if (c >= 10) {
+ c += base_char - 10;
+ } else {
+ c += '0';
+ }
+ *(--b) = c;
+ if (comma && num != 0 && b > str && (last_comma - b) == 3) {
+ *(--b) = comma;
+ last_comma = b;
+ }
+ }
+ while (b > str && num != 0);
+ }
+ if (prefix) {
+ size_t prefix_len = strlen(prefix);
+ char *p = b - prefix_len;
+ if (p > str) {
+ b = p;
+ while (*prefix) {
+ *p++ = *prefix++;
+ }
+ }
+ }
+ if (sign && b > str) {
+ *(--b) = sign;
+ }
+ *fmt_size = *buf + needed_size - b - 1;
+
+ return b;
+}
+
+#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
+
+void mp_obj_int_buffer_overflow_check(mp_obj_t self_in, size_t nbytes, bool is_signed) {
+ if (is_signed) {
+ // self must be < 2**(bits - 1)
+ mp_obj_t edge = mp_binary_op(MP_BINARY_OP_INPLACE_LSHIFT,
+ mp_obj_new_int(1),
+ mp_obj_new_int(nbytes * 8 - 1));
+
+ if (mp_binary_op(MP_BINARY_OP_LESS, self_in, edge) == mp_const_true) {
+ // and >= -2**(bits - 1)
+ edge = mp_unary_op(MP_UNARY_OP_NEGATIVE, edge);
+ if (mp_binary_op(MP_BINARY_OP_MORE_EQUAL, self_in, edge) == mp_const_true) {
+ return;
+ }
+ }
+ } else {
+ // self must be >= 0
+ if (mp_obj_int_sign(self_in) >= 0) {
+ // and < 2**(bits)
+ mp_obj_t edge = mp_binary_op(MP_BINARY_OP_INPLACE_LSHIFT,
+ mp_obj_new_int(1),
+ mp_obj_new_int(nbytes * 8));
+
+ if (mp_binary_op(MP_BINARY_OP_LESS, self_in, edge) == mp_const_true) {
+ return;
+ }
+ }
+ }
+
+ mp_raise_OverflowError_varg(MP_ERROR_TEXT("value must fit in %d byte(s)"), nbytes);
+}
+
+#endif // MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
+
+void mp_small_int_buffer_overflow_check(mp_int_t val, size_t nbytes, bool is_signed) {
+ // Fast path for zero.
+ if (val == 0) {
+ return;
+ }
+
+ // Trying to store negative values in unsigned bytes falls through to failure.
+ if (is_signed || val >= 0) {
+
+ if (nbytes >= sizeof(val)) {
+ // All non-negative N bit signed integers fit in an unsigned N bit integer.
+ // This case prevents shifting too far below.
+ return;
+ }
+
+ if (is_signed) {
+ mp_int_t edge = ((mp_int_t)1 << (nbytes * 8 - 1));
+ if (-edge <= val && val < edge) {
+ return;
+ }
+ // Out of range, fall through to failure.
+ } else {
+ // Unsigned. We already know val >= 0.
+ mp_int_t edge = ((mp_int_t)1 << (nbytes * 8));
+ if (val < edge) {
+ return;
+ }
+ }
+ // Fall through to failure.
+ }
+
+ mp_raise_OverflowError_varg(MP_ERROR_TEXT("value must fit in %d byte(s)"), nbytes);
+}
+
+#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
+
+int mp_obj_int_sign(mp_obj_t self_in) {
+ mp_int_t val = mp_obj_get_int(self_in);
+ if (val < 0) {
+ return -1;
+ } else if (val > 0) {
+ return 1;
+ } else {
+ return 0;
+ }
+}
+
+// This is called for operations on SMALL_INT that are not handled by mp_unary_op
+mp_obj_t mp_obj_int_unary_op(mp_unary_op_t op, mp_obj_t o_in) {
+ return MP_OBJ_NULL; // op not supported
+}
+
+// This is called for operations on SMALL_INT that are not handled by mp_binary_op
+mp_obj_t mp_obj_int_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
+ return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in);
+}
+
+// This is called only with strings whose value doesn't fit in SMALL_INT
+mp_obj_t mp_obj_new_int_from_str_len(const char **str, size_t len, bool neg, unsigned int base) {
+ mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("long int not supported in this build"));
+ return mp_const_none;
+}
+
+// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
+mp_obj_t mp_obj_new_int_from_ll(long long val) {
+ mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow"));
+ return mp_const_none;
+}
+
+// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
+mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) {
+ mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow"));
+ return mp_const_none;
+}
+
+mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) {
+ // SMALL_INT accepts only signed numbers, so make sure the input
+ // value fits completely in the small-int positive range.
+ if ((value & ~MP_SMALL_INT_POSITIVE_MASK) == 0) {
+ return MP_OBJ_NEW_SMALL_INT(value);
+ }
+ mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow"));
+ return mp_const_none;
+}
+
+mp_obj_t mp_obj_new_int(mp_int_t value) {
+ if (MP_SMALL_INT_FITS(value)) {
+ return MP_OBJ_NEW_SMALL_INT(value);
+ }
+ mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow"));
+ return mp_const_none;
+}
+
+mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) {
+ return MP_OBJ_SMALL_INT_VALUE(self_in);
+}
+
+mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) {
+ return MP_OBJ_SMALL_INT_VALUE(self_in);
+}
+
+#endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
+
+// This dispatcher function is expected to be independent of the implementation of long int
+// It handles the extra cases for integer-like arithmetic
+mp_obj_t mp_obj_int_binary_op_extra_cases(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
+ if (rhs_in == mp_const_false) {
+ // false acts as 0
+ return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0));
+ } else if (rhs_in == mp_const_true) {
+ // true acts as 0
+ return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1));
+ } else if (op == MP_BINARY_OP_MULTIPLY) {
+ if (mp_obj_is_str_or_bytes(rhs_in) || mp_obj_is_type(rhs_in, &mp_type_tuple) || mp_obj_is_type(rhs_in, &mp_type_list)) {
+ // multiply is commutative for these types, so delegate to them
+ return mp_binary_op(op, rhs_in, lhs_in);
+ }
+ }
+ return MP_OBJ_NULL; // op not supported
+}
+
+#if MICROPY_CPYTHON_COMPAT
+STATIC mp_obj_t int_bit_length(mp_obj_t self_in) {
+ #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
+ if (!mp_obj_is_small_int(self_in)) {
+ return mp_obj_int_bit_length_impl(self_in);
+ } else
+ #endif
+ {
+ mp_int_t int_val = MP_OBJ_SMALL_INT_VALUE(self_in);
+ mp_uint_t value =
+ (int_val == 0) ? 0 :
+ (int_val == MP_SMALL_INT_MIN) ? 8 * sizeof(mp_int_t) :
+ (int_val < 0) ? 8 * sizeof(long) - __builtin_clzl(-int_val) :
+ 8 * sizeof(long) - __builtin_clzl(int_val);
+ return mp_obj_new_int_from_uint(value);
+ }
+
+}
+MP_DEFINE_CONST_FUN_OBJ_1(int_bit_length_obj, int_bit_length);
+#endif
+
+// this is a classmethod
+STATIC mp_obj_t int_from_bytes(size_t n_args, const mp_obj_t *args) {
+ // TODO: Support signed param (assumes signed=False at the moment)
+ (void)n_args;
+
+ // get the buffer info
+ mp_buffer_info_t bufinfo;
+ mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);
+
+ const byte *buf = (const byte *)bufinfo.buf;
+ int delta = 1;
+ if (args[2] == MP_OBJ_NEW_QSTR(MP_QSTR_little)) {
+ buf += bufinfo.len - 1;
+ delta = -1;
+ }
+
+ mp_uint_t value = 0;
+ size_t len = bufinfo.len;
+ for (; len--; buf += delta) {
+ #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
+ if (value > (MP_SMALL_INT_MAX >> 8)) {
+ // Result will overflow a small-int so construct a big-int
+ return mp_obj_int_from_bytes_impl(args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little), bufinfo.len, bufinfo.buf);
+ }
+ #endif
+ value = (value << 8) | *buf;
+ }
+ return mp_obj_new_int_from_uint(value);
+}
+
+STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_fun_obj, 3, 4, int_from_bytes);
+STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(int_from_bytes_obj, MP_ROM_PTR(&int_from_bytes_fun_obj));
+
+STATIC mp_obj_t int_to_bytes(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
+ enum { ARG_length, ARG_byteorder, ARG_signed };
+ static const mp_arg_t allowed_args[] = {
+ { MP_QSTR_length, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
+ { MP_QSTR_byteorder, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
+ { MP_QSTR_signed, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
+ };
+ mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
+ mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
+
+ mp_int_t len = args[ARG_length].u_int;
+ if (len < 0) {
+ mp_raise_ValueError(NULL);
+ }
+
+ mp_obj_t self = pos_args[0];
+ bool big_endian = args[ARG_byteorder].u_obj != MP_OBJ_NEW_QSTR(MP_QSTR_little);
+ bool signed_ = args[ARG_signed].u_bool;
+
+ vstr_t vstr;
+ vstr_init_len(&vstr, len);
+ byte *data = (byte *)vstr.buf;
+ memset(data, 0, len);
+
+ #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
+ if (!mp_obj_is_small_int(self)) {
+ mp_obj_int_buffer_overflow_check(self, len, signed_);
+ mp_obj_int_to_bytes_impl(self, big_endian, len, data);
+ } else
+ #endif
+ {
+ mp_int_t val = MP_OBJ_SMALL_INT_VALUE(self);
+ // Small int checking is separate, to be fast.
+ mp_small_int_buffer_overflow_check(val, len, signed_);
+ size_t l = MIN((size_t)len, sizeof(val));
+ if (val < 0) {
+ // Sign extend negative numbers.
+ memset(data, -1, len);
+ }
+ mp_binary_set_int(l, big_endian, data + (big_endian ? (len - l) : 0), val);
+ }
+
+ return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
+}
+STATIC MP_DEFINE_CONST_FUN_OBJ_KW(int_to_bytes_obj, 3, int_to_bytes);
+
+STATIC const mp_rom_map_elem_t int_locals_dict_table[] = {
+ #if MICROPY_CPYTHON_COMPAT
+ { MP_ROM_QSTR(MP_QSTR_bit_length), MP_ROM_PTR(&int_bit_length_obj) },
+ #endif
+ { MP_ROM_QSTR(MP_QSTR_from_bytes), MP_ROM_PTR(&int_from_bytes_obj) },
+ { MP_ROM_QSTR(MP_QSTR_to_bytes), MP_ROM_PTR(&int_to_bytes_obj) },
+};
+
+STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table);
+
+const mp_obj_type_t mp_type_int = {
+ { &mp_type_type },
+ .name = MP_QSTR_int,
+ .flags = MP_TYPE_FLAG_EXTENDED,
+ .print = mp_obj_int_print,
+ .make_new = mp_obj_int_make_new,
+ .locals_dict = (mp_obj_dict_t *)&int_locals_dict,
+ MP_TYPE_EXTENDED_FIELDS(
+ .unary_op = mp_obj_int_unary_op,
+ .binary_op = mp_obj_int_binary_op,
+ ),
+};