diff options
author | Raghuram Subramani <raghus2247@gmail.com> | 2022-06-19 19:47:51 +0530 |
---|---|---|
committer | Raghuram Subramani <raghus2247@gmail.com> | 2022-06-19 19:47:51 +0530 |
commit | 4fd287655a72b9aea14cdac715ad5b90ed082ed2 (patch) | |
tree | 65d393bc0e699dd12d05b29ba568e04cea666207 /circuitpython/py/modmath.c | |
parent | 0150f70ce9c39e9e6dd878766c0620c85e47bed0 (diff) |
add circuitpython code
Diffstat (limited to 'circuitpython/py/modmath.c')
-rw-r--r-- | circuitpython/py/modmath.c | 435 |
1 files changed, 435 insertions, 0 deletions
diff --git a/circuitpython/py/modmath.c b/circuitpython/py/modmath.c new file mode 100644 index 0000000..103310d --- /dev/null +++ b/circuitpython/py/modmath.c @@ -0,0 +1,435 @@ +/* + * This file is part of the MicroPython project, http://micropython.org/ + * + * The MIT License (MIT) + * + * SPDX-FileCopyrightText: Copyright (c) 2013-2017 Damien P. George + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include "py/builtin.h" +#include "py/runtime.h" + +#include "supervisor/shared/translate.h" + +#if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH + +#include <math.h> + +// M_PI is not part of the math.h standard and may not be defined +// And by defining our own we can ensure it uses the correct const format. +#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846) +#define MP_PI_4 MICROPY_FLOAT_CONST(0.78539816339744830962) +#define MP_3_PI_4 MICROPY_FLOAT_CONST(2.35619449019234492885) + +STATIC NORETURN void math_error(void) { + mp_raise_ValueError(MP_ERROR_TEXT("math domain error")); +} + +STATIC mp_obj_t math_generic_1(mp_obj_t x_obj, mp_float_t (*f)(mp_float_t)) { + mp_float_t x = mp_obj_get_float(x_obj); + mp_float_t ans = f(x); + if ((isnan(ans) && !isnan(x)) || (isinf(ans) && !isinf(x))) { + math_error(); + } + return mp_obj_new_float(ans); +} + +STATIC mp_obj_t math_generic_2(mp_obj_t x_obj, mp_obj_t y_obj, mp_float_t (*f)(mp_float_t, mp_float_t)) { + mp_float_t x = mp_obj_get_float(x_obj); + mp_float_t y = mp_obj_get_float(y_obj); + mp_float_t ans = f(x, y); + if ((isnan(ans) && !isnan(x) && !isnan(y)) || (isinf(ans) && !isinf(x))) { + math_error(); + } + return mp_obj_new_float(ans); +} + +#define MATH_FUN_1(py_name, c_name) \ + STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { \ + return math_generic_1(x_obj, MICROPY_FLOAT_C_FUN(c_name)); \ + } \ + STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name); + +#define MATH_FUN_1_TO_BOOL(py_name, c_name) \ + STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \ + STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name); + +#define MATH_FUN_1_TO_INT(py_name, c_name) \ + STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_int_from_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \ + STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name); + +#define MATH_FUN_2(py_name, c_name) \ + STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \ + return math_generic_2(x_obj, y_obj, MICROPY_FLOAT_C_FUN(c_name)); \ + } \ + STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_##py_name##_obj, mp_math_##py_name); + +#define MATH_FUN_2_FLT_INT(py_name, c_name) \ + STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \ + return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_int(y_obj))); \ + } \ + STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_##py_name##_obj, mp_math_##py_name); + +#if MP_NEED_LOG2 +#undef log2 +#undef log2f +// 1.442695040888963407354163704 is 1/_M_LN2 +mp_float_t MICROPY_FLOAT_C_FUN(log2)(mp_float_t x) { + return MICROPY_FLOAT_C_FUN(log)(x) * MICROPY_FLOAT_CONST(1.442695040888963407354163704); +} +#endif + +// sqrt(x): returns the square root of x +MATH_FUN_1(sqrt, sqrt) +// pow(x, y): returns x to the power of y +#if MICROPY_PY_MATH_POW_FIX_NAN +mp_float_t pow_func(mp_float_t x, mp_float_t y) { + // pow(base, 0) returns 1 for any base, even when base is NaN + // pow(+1, exponent) returns 1 for any exponent, even when exponent is NaN + if (x == MICROPY_FLOAT_CONST(1.0) || y == MICROPY_FLOAT_CONST(0.0)) { + return MICROPY_FLOAT_CONST(1.0); + } + return MICROPY_FLOAT_C_FUN(pow)(x, y); +} +MATH_FUN_2(pow, pow_func) +#else +MATH_FUN_2(pow, pow) +#endif +// exp(x) +MATH_FUN_1(exp, exp) +#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS +// expm1(x) +MATH_FUN_1(expm1, expm1) +// log2(x) +MATH_FUN_1(log2, log2) +// log10(x) +MATH_FUN_1(log10, log10) +// cosh(x) +MATH_FUN_1(cosh, cosh) +// sinh(x) +MATH_FUN_1(sinh, sinh) +// tanh(x) +MATH_FUN_1(tanh, tanh) +// acosh(x) +MATH_FUN_1(acosh, acosh) +// asinh(x) +MATH_FUN_1(asinh, asinh) +// atanh(x) +MATH_FUN_1(atanh, atanh) +#endif +// cos(x) +MATH_FUN_1(cos, cos) +// sin(x) +MATH_FUN_1(sin, sin) +// tan(x) +MATH_FUN_1(tan, tan) +// acos(x) +MATH_FUN_1(acos, acos) +// asin(x) +MATH_FUN_1(asin, asin) +// atan(x) +MATH_FUN_1(atan, atan) +// atan2(y, x) +#if MICROPY_PY_MATH_ATAN2_FIX_INFNAN +mp_float_t atan2_func(mp_float_t x, mp_float_t y) { + if (isinf(x) && isinf(y)) { + return copysign(y < 0 ? MP_3_PI_4 : MP_PI_4, x); + } + return atan2(x, y); +} +MATH_FUN_2(atan2, atan2_func) +#else +MATH_FUN_2(atan2, atan2) +#endif +// ceil(x) +MATH_FUN_1_TO_INT(ceil, ceil) +// copysign(x, y) +STATIC mp_float_t MICROPY_FLOAT_C_FUN(copysign_func)(mp_float_t x, mp_float_t y) { + return MICROPY_FLOAT_C_FUN(copysign)(x, y); +} +MATH_FUN_2(copysign, copysign_func) +// fabs(x) +STATIC mp_float_t MICROPY_FLOAT_C_FUN(fabs_func)(mp_float_t x) { + return MICROPY_FLOAT_C_FUN(fabs)(x); +} +MATH_FUN_1(fabs, fabs_func) +// floor(x) +MATH_FUN_1_TO_INT(floor, floor) // TODO: delegate to x.__floor__() if x is not a float +// fmod(x, y) +#if MICROPY_PY_MATH_FMOD_FIX_INFNAN +mp_float_t fmod_func(mp_float_t x, mp_float_t y) { + return (!isinf(x) && isinf(y)) ? x : fmod(x, y); +} +MATH_FUN_2(fmod, fmod_func) +#else +MATH_FUN_2(fmod, fmod) +#endif +// isfinite(x) +MATH_FUN_1_TO_BOOL(isfinite, isfinite) +// isinf(x) +MATH_FUN_1_TO_BOOL(isinf, isinf) +// isnan(x) +MATH_FUN_1_TO_BOOL(isnan, isnan) +// trunc(x) +MATH_FUN_1_TO_INT(trunc, trunc) +// ldexp(x, exp) +MATH_FUN_2_FLT_INT(ldexp, ldexp) +#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS +// erf(x): return the error function of x +MATH_FUN_1(erf, erf) +// erfc(x): return the complementary error function of x +MATH_FUN_1(erfc, erfc) +// gamma(x): return the gamma function of x +MATH_FUN_1(gamma, tgamma) +// lgamma(x): return the natural logarithm of the gamma function of x +MATH_FUN_1(lgamma, lgamma) +#endif +// TODO: fsum + +#if MICROPY_PY_MATH_ISCLOSE +STATIC mp_obj_t mp_math_isclose(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { + enum { ARG_rel_tol, ARG_abs_tol }; + static const mp_arg_t allowed_args[] = { + {MP_QSTR_rel_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}}, + {MP_QSTR_abs_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(0)}}, + }; + mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; + mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); + const mp_float_t a = mp_obj_get_float(pos_args[0]); + const mp_float_t b = mp_obj_get_float(pos_args[1]); + const mp_float_t rel_tol = args[ARG_rel_tol].u_obj == MP_OBJ_NULL + ? (mp_float_t)1e-9 : mp_obj_get_float(args[ARG_rel_tol].u_obj); + const mp_float_t abs_tol = mp_obj_get_float(args[ARG_abs_tol].u_obj); + if (rel_tol < (mp_float_t)0.0 || abs_tol < (mp_float_t)0.0) { + math_error(); + } + if (a == b) { + return mp_const_true; + } + const mp_float_t difference = MICROPY_FLOAT_C_FUN(fabs)(a - b); + if (isinf(difference)) { // Either a or b is inf + return mp_const_false; + } + if ((difference <= abs_tol) || + (difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * a)) || + (difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * b))) { + return mp_const_true; + } + return mp_const_false; +} +MP_DEFINE_CONST_FUN_OBJ_KW(mp_math_isclose_obj, 2, mp_math_isclose); +#endif + +// Function that takes a variable number of arguments + +// log(x[, base]) +STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) { + mp_float_t x = mp_obj_get_float(args[0]); + if (x <= (mp_float_t)0.0) { + math_error(); + } + mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x); + if (n_args == 1) { + return mp_obj_new_float(l); + } else { + mp_float_t base = mp_obj_get_float(args[1]); + if (base <= (mp_float_t)0.0) { + math_error(); + } else if (base == (mp_float_t)1.0) { + mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("division by zero")); + } + return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base)); + } +} +STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log); + +// Functions that return a tuple + +// frexp(x): converts a floating-point number to fractional and integral components +STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) { + int int_exponent = 0; + mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent); + mp_obj_t tuple[2]; + tuple[0] = mp_obj_new_float(significand); + tuple[1] = mp_obj_new_int(int_exponent); + return mp_obj_new_tuple(2, tuple); +} +STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp); + +// modf(x) +STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) { + mp_float_t int_part = 0.0; + mp_float_t x = mp_obj_get_float(x_obj); + mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(x, &int_part); + #if MICROPY_PY_MATH_MODF_FIX_NEGZERO + if (fractional_part == MICROPY_FLOAT_CONST(0.0)) { + fractional_part = copysign(fractional_part, x); + } + #endif + mp_obj_t tuple[2]; + tuple[0] = mp_obj_new_float(fractional_part); + tuple[1] = mp_obj_new_float(int_part); + return mp_obj_new_tuple(2, tuple); +} +STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf); + +// Angular conversions + +// radians(x) +STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) { + return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0))); +} +STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians); + +// degrees(x) +STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) { + return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI)); +} +STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees); + +#if MICROPY_PY_MATH_FACTORIAL + +#if MICROPY_OPT_MATH_FACTORIAL + +// factorial(x): slightly efficient recursive implementation +STATIC mp_obj_t mp_math_factorial_inner(mp_uint_t start, mp_uint_t end) { + if (start == end) { + return mp_obj_new_int(start); + } else if (end - start == 1) { + return mp_binary_op(MP_BINARY_OP_MULTIPLY, MP_OBJ_NEW_SMALL_INT(start), MP_OBJ_NEW_SMALL_INT(end)); + } else if (end - start == 2) { + mp_obj_t left = MP_OBJ_NEW_SMALL_INT(start); + mp_obj_t middle = MP_OBJ_NEW_SMALL_INT(start + 1); + mp_obj_t right = MP_OBJ_NEW_SMALL_INT(end); + mp_obj_t tmp = mp_binary_op(MP_BINARY_OP_MULTIPLY, left, middle); + return mp_binary_op(MP_BINARY_OP_MULTIPLY, tmp, right); + } else { + mp_uint_t middle = start + ((end - start) >> 1); + mp_obj_t left = mp_math_factorial_inner(start, middle); + mp_obj_t right = mp_math_factorial_inner(middle + 1, end); + return mp_binary_op(MP_BINARY_OP_MULTIPLY, left, right); + } +} +STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) { + mp_int_t max = mp_obj_get_int(x_obj); + if (max < 0) { + mp_raise_ValueError(MP_ERROR_TEXT("negative factorial")); + } else if (max == 0) { + return MP_OBJ_NEW_SMALL_INT(1); + } + return mp_math_factorial_inner(1, max); +} + +#else + +// factorial(x): squared difference implementation +// based on http://www.luschny.de/math/factorial/index.html +STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) { + mp_int_t max = mp_obj_get_int(x_obj); + if (max < 0) { + mp_raise_ValueError(MP_ERROR_TEXT("negative factorial")); + } else if (max <= 1) { + return MP_OBJ_NEW_SMALL_INT(1); + } + mp_int_t h = max >> 1; + mp_int_t q = h * h; + mp_int_t r = q << 1; + if (max & 1) { + r *= max; + } + mp_obj_t prod = MP_OBJ_NEW_SMALL_INT(r); + for (mp_int_t num = 1; num < max - 2; num += 2) { + q -= num; + prod = mp_binary_op(MP_BINARY_OP_MULTIPLY, prod, MP_OBJ_NEW_SMALL_INT(q)); + } + return prod; +} + +#endif + +STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_factorial_obj, mp_math_factorial); + +#endif + +STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = { + { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) }, + { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e }, + { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi }, + { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) }, + { MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) }, + { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) }, + #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS + { MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) }, + #endif + { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) }, + #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS + { MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) }, + { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) }, + { MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) }, + { MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) }, + { MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) }, + { MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) }, + { MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) }, + { MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) }, + #endif + { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) }, + { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) }, + { MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) }, + { MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) }, + { MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) }, + { MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) }, + { MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) }, + { MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) }, + { MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) }, + { MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) }, + { MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) }, + { MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) }, + { MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) }, + { MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) }, + { MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) }, + { MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) }, + { MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) }, + { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) }, + #if MICROPY_PY_MATH_ISCLOSE + { MP_ROM_QSTR(MP_QSTR_isclose), MP_ROM_PTR(&mp_math_isclose_obj) }, + #endif + { MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) }, + { MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) }, + { MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) }, + #if MICROPY_PY_MATH_FACTORIAL + { MP_ROM_QSTR(MP_QSTR_factorial), MP_ROM_PTR(&mp_math_factorial_obj) }, + #endif + #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS + { MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) }, + { MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) }, + { MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) }, + { MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) }, + #endif +}; + +STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table); + +const mp_obj_module_t mp_module_math = { + .base = { &mp_type_module }, + .globals = (mp_obj_dict_t *)&mp_module_math_globals, +}; + +#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH |