aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/py/gc.c
diff options
context:
space:
mode:
authorRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
committerRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
commit4fd287655a72b9aea14cdac715ad5b90ed082ed2 (patch)
tree65d393bc0e699dd12d05b29ba568e04cea666207 /circuitpython/py/gc.c
parent0150f70ce9c39e9e6dd878766c0620c85e47bed0 (diff)
add circuitpython code
Diffstat (limited to 'circuitpython/py/gc.c')
-rw-r--r--circuitpython/py/gc.c1217
1 files changed, 1217 insertions, 0 deletions
diff --git a/circuitpython/py/gc.c b/circuitpython/py/gc.c
new file mode 100644
index 0000000..826540d
--- /dev/null
+++ b/circuitpython/py/gc.c
@@ -0,0 +1,1217 @@
+/*
+ * This file is part of the MicroPython project, http://micropython.org/
+ *
+ * The MIT License (MIT)
+ *
+ * SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George
+ * SPDX-FileCopyrightText: Copyright (c) 2014 Paul Sokolovsky
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include <assert.h>
+#include <stdio.h>
+#include <string.h>
+
+#include "py/gc.h"
+#include "py/runtime.h"
+
+#if MICROPY_DEBUG_VALGRIND
+#include <valgrind/memcheck.h>
+#endif
+
+#include "supervisor/shared/safe_mode.h"
+
+#if CIRCUITPY_MEMORYMONITOR
+#include "shared-module/memorymonitor/__init__.h"
+#endif
+
+#if MICROPY_ENABLE_GC
+
+#if MICROPY_DEBUG_VERBOSE // print debugging info
+#define DEBUG_PRINT (1)
+#define DEBUG_printf DEBUG_printf
+#else // don't print debugging info
+#define DEBUG_PRINT (0)
+#define DEBUG_printf(...) (void)0
+#endif
+
+// Uncomment this if you want to use a debugger to capture state at every allocation and free.
+// #define LOG_HEAP_ACTIVITY 1
+
+// make this 1 to dump the heap each time it changes
+#define EXTENSIVE_HEAP_PROFILING (0)
+
+// make this 1 to zero out swept memory to more eagerly
+// detect untraced object still in use
+#define CLEAR_ON_SWEEP (0)
+
+// ATB = allocation table byte
+// 0b00 = FREE -- free block
+// 0b01 = HEAD -- head of a chain of blocks
+// 0b10 = TAIL -- in the tail of a chain of blocks
+// 0b11 = MARK -- marked head block
+
+#define AT_FREE (0)
+#define AT_HEAD (1)
+#define AT_TAIL (2)
+#define AT_MARK (3)
+
+#define BLOCKS_PER_ATB (4)
+
+#define BLOCK_SHIFT(block) (2 * ((block) & (BLOCKS_PER_ATB - 1)))
+#define ATB_GET_KIND(block) ((MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] >> BLOCK_SHIFT(block)) & 3)
+#define ATB_ANY_TO_FREE(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_MARK << BLOCK_SHIFT(block))); } while (0)
+#define ATB_FREE_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_HEAD << BLOCK_SHIFT(block)); } while (0)
+#define ATB_FREE_TO_TAIL(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_TAIL << BLOCK_SHIFT(block)); } while (0)
+#define ATB_HEAD_TO_MARK(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_MARK << BLOCK_SHIFT(block)); } while (0)
+#define ATB_MARK_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_TAIL << BLOCK_SHIFT(block))); } while (0)
+
+#define BLOCK_FROM_PTR(ptr) (((byte *)(ptr) - MP_STATE_MEM(gc_pool_start)) / BYTES_PER_BLOCK)
+#define PTR_FROM_BLOCK(block) (((block) * BYTES_PER_BLOCK + (uintptr_t)MP_STATE_MEM(gc_pool_start)))
+#define ATB_FROM_BLOCK(bl) ((bl) / BLOCKS_PER_ATB)
+
+#if MICROPY_ENABLE_FINALISER
+// FTB = finaliser table byte
+// if set, then the corresponding block may have a finaliser
+
+#define BLOCKS_PER_FTB (8)
+
+#define FTB_GET(block) ((MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] >> ((block) & 7)) & 1)
+#define FTB_SET(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] |= (1 << ((block) & 7)); } while (0)
+#define FTB_CLEAR(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] &= (~(1 << ((block) & 7))); } while (0)
+#endif
+
+#if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL
+#define GC_ENTER() mp_thread_mutex_lock(&MP_STATE_MEM(gc_mutex), 1)
+#define GC_EXIT() mp_thread_mutex_unlock(&MP_STATE_MEM(gc_mutex))
+#else
+#define GC_ENTER()
+#define GC_EXIT()
+#endif
+
+#ifdef LOG_HEAP_ACTIVITY
+volatile uint32_t change_me;
+#pragma GCC push_options
+#pragma GCC optimize ("O0")
+void __attribute__ ((noinline)) gc_log_change(uint32_t start_block, uint32_t length) {
+ change_me += start_block;
+ change_me += length; // Break on this line.
+}
+#pragma GCC pop_options
+#endif
+
+// TODO waste less memory; currently requires that all entries in alloc_table have a corresponding block in pool
+void gc_init(void *start, void *end) {
+ // align end pointer on block boundary
+ end = (void *)((uintptr_t)end & (~(BYTES_PER_BLOCK - 1)));
+ DEBUG_printf("Initializing GC heap: %p..%p = " UINT_FMT " bytes\n", start, end, (byte *)end - (byte *)start);
+
+ // calculate parameters for GC (T=total, A=alloc table, F=finaliser table, P=pool; all in bytes):
+ // T = A + F + P
+ // F = A * BLOCKS_PER_ATB / BLOCKS_PER_FTB
+ // P = A * BLOCKS_PER_ATB * BYTES_PER_BLOCK
+ // => T = A * (1 + BLOCKS_PER_ATB / BLOCKS_PER_FTB + BLOCKS_PER_ATB * BYTES_PER_BLOCK)
+ size_t total_byte_len = (byte *)end - (byte *)start;
+ #if MICROPY_ENABLE_FINALISER
+ MP_STATE_MEM(gc_alloc_table_byte_len) = (total_byte_len - 1) * MP_BITS_PER_BYTE / (MP_BITS_PER_BYTE + MP_BITS_PER_BYTE * BLOCKS_PER_ATB / BLOCKS_PER_FTB + MP_BITS_PER_BYTE * BLOCKS_PER_ATB * BYTES_PER_BLOCK);
+ #else
+ MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len / (1 + MP_BITS_PER_BYTE / 2 * BYTES_PER_BLOCK);
+ #endif
+
+ MP_STATE_MEM(gc_alloc_table_start) = (byte *)start;
+
+ #if MICROPY_ENABLE_FINALISER
+ size_t gc_finaliser_table_byte_len = (MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB + BLOCKS_PER_FTB - 1) / BLOCKS_PER_FTB;
+ MP_STATE_MEM(gc_finaliser_table_start) = MP_STATE_MEM(gc_alloc_table_start) + MP_STATE_MEM(gc_alloc_table_byte_len) + 1;
+ #endif
+
+ size_t gc_pool_block_len = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB;
+ MP_STATE_MEM(gc_pool_start) = (byte *)end - gc_pool_block_len * BYTES_PER_BLOCK;
+ MP_STATE_MEM(gc_pool_end) = end;
+
+ #if MICROPY_ENABLE_FINALISER
+ assert(MP_STATE_MEM(gc_pool_start) >= MP_STATE_MEM(gc_finaliser_table_start) + gc_finaliser_table_byte_len);
+ #endif
+
+ // Clear ATBs plus one more byte. The extra byte might be read when we read the final ATB and
+ // then try to count its tail. Clearing the byte ensures it is 0 and ends the chain. Without an
+ // FTB, it'll just clear the pool byte early.
+ memset(MP_STATE_MEM(gc_alloc_table_start), 0, MP_STATE_MEM(gc_alloc_table_byte_len) + 1);
+
+ #if MICROPY_ENABLE_FINALISER
+ // clear FTBs
+ memset(MP_STATE_MEM(gc_finaliser_table_start), 0, gc_finaliser_table_byte_len);
+ #endif
+
+ // Set first free ATB index to the start of the heap.
+ for (size_t i = 0; i < MICROPY_ATB_INDICES; i++) {
+ MP_STATE_MEM(gc_first_free_atb_index)[i] = 0;
+ }
+
+ // Set last free ATB index to the end of the heap.
+ MP_STATE_MEM(gc_last_free_atb_index) = MP_STATE_MEM(gc_alloc_table_byte_len) - 1;
+
+ // Set the lowest long lived ptr to the end of the heap to start. This will be lowered as long
+ // lived objects are allocated.
+ MP_STATE_MEM(gc_lowest_long_lived_ptr) = (void *)PTR_FROM_BLOCK(MP_STATE_MEM(gc_alloc_table_byte_len * BLOCKS_PER_ATB));
+
+ // unlock the GC
+ MP_STATE_THREAD(gc_lock_depth) = 0;
+
+ // allow auto collection
+ MP_STATE_MEM(gc_auto_collect_enabled) = true;
+
+ #if MICROPY_GC_ALLOC_THRESHOLD
+ // by default, maxuint for gc threshold, effectively turning gc-by-threshold off
+ MP_STATE_MEM(gc_alloc_threshold) = (size_t)-1;
+ MP_STATE_MEM(gc_alloc_amount) = 0;
+ #endif
+
+ #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL
+ mp_thread_mutex_init(&MP_STATE_MEM(gc_mutex));
+ #endif
+
+ MP_STATE_MEM(permanent_pointers) = NULL;
+
+ DEBUG_printf("GC layout:\n");
+ DEBUG_printf(" alloc table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_alloc_table_start), MP_STATE_MEM(gc_alloc_table_byte_len), MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB);
+ #if MICROPY_ENABLE_FINALISER
+ DEBUG_printf(" finaliser table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_finaliser_table_start), gc_finaliser_table_byte_len, gc_finaliser_table_byte_len * BLOCKS_PER_FTB);
+ #endif
+ DEBUG_printf(" pool at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_pool_start), gc_pool_block_len * BYTES_PER_BLOCK, gc_pool_block_len);
+}
+
+void gc_deinit(void) {
+ // Run any finalisers before we stop using the heap.
+ gc_sweep_all();
+
+ MP_STATE_MEM(gc_pool_start) = 0;
+}
+
+void gc_lock(void) {
+ // This does not need to be atomic or have the GC mutex because:
+ // - each thread has its own gc_lock_depth so there are no races between threads;
+ // - a hard interrupt will only change gc_lock_depth during its execution, and
+ // upon return will restore the value of gc_lock_depth.
+ MP_STATE_THREAD(gc_lock_depth)++;
+}
+
+void gc_unlock(void) {
+ // This does not need to be atomic, See comment above in gc_lock.
+ MP_STATE_THREAD(gc_lock_depth)--;
+}
+
+bool gc_is_locked(void) {
+ return MP_STATE_THREAD(gc_lock_depth) != 0;
+}
+
+#ifndef TRACE_MARK
+#if DEBUG_PRINT
+#define TRACE_MARK(block, ptr) DEBUG_printf("gc_mark(%p)\n", ptr)
+#else
+#define TRACE_MARK(block, ptr)
+#endif
+#endif
+
+// Take the given block as the topmost block on the stack. Check all it's
+// children: mark the unmarked child blocks and put those newly marked
+// blocks on the stack. When all children have been checked, pop off the
+// topmost block on the stack and repeat with that one.
+STATIC void gc_mark_subtree(size_t block) {
+ // Start with the block passed in the argument.
+ size_t sp = 0;
+ for (;;) {
+ MICROPY_GC_HOOK_LOOP
+ // work out number of consecutive blocks in the chain starting with this one
+ size_t n_blocks = 0;
+ do {
+ n_blocks += 1;
+ } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);
+
+ // check this block's children
+ void **ptrs = (void **)PTR_FROM_BLOCK(block);
+ for (size_t i = n_blocks * BYTES_PER_BLOCK / sizeof(void *); i > 0; i--, ptrs++) {
+ MICROPY_GC_HOOK_LOOP
+ void *ptr = *ptrs;
+ if (VERIFY_PTR(ptr)) {
+ // Mark and push this pointer
+ size_t childblock = BLOCK_FROM_PTR(ptr);
+ if (ATB_GET_KIND(childblock) == AT_HEAD) {
+ // an unmarked head, mark it, and push it on gc stack
+ TRACE_MARK(childblock, ptr);
+ ATB_HEAD_TO_MARK(childblock);
+ if (sp < MICROPY_ALLOC_GC_STACK_SIZE) {
+ MP_STATE_MEM(gc_stack)[sp++] = childblock;
+ } else {
+ MP_STATE_MEM(gc_stack_overflow) = 1;
+ }
+ }
+ }
+ }
+
+ // Are there any blocks on the stack?
+ if (sp == 0) {
+ break; // No, stack is empty, we're done.
+ }
+
+ // pop the next block off the stack
+ block = MP_STATE_MEM(gc_stack)[--sp];
+ }
+}
+
+STATIC void gc_deal_with_stack_overflow(void) {
+ while (MP_STATE_MEM(gc_stack_overflow)) {
+ MP_STATE_MEM(gc_stack_overflow) = 0;
+
+ // scan entire memory looking for blocks which have been marked but not their children
+ for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) {
+ MICROPY_GC_HOOK_LOOP
+ // trace (again) if mark bit set
+ if (ATB_GET_KIND(block) == AT_MARK) {
+ gc_mark_subtree(block);
+ }
+ }
+ }
+}
+
+STATIC void gc_sweep(void) {
+ #if MICROPY_PY_GC_COLLECT_RETVAL
+ MP_STATE_MEM(gc_collected) = 0;
+ #endif
+ // free unmarked heads and their tails
+ int free_tail = 0;
+ for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) {
+ MICROPY_GC_HOOK_LOOP
+ switch (ATB_GET_KIND(block)) {
+ case AT_HEAD:
+ #if MICROPY_ENABLE_FINALISER
+ if (FTB_GET(block)) {
+ mp_obj_base_t *obj = (mp_obj_base_t *)PTR_FROM_BLOCK(block);
+ if (obj->type != NULL) {
+ // if the object has a type then see if it has a __del__ method
+ mp_obj_t dest[2];
+ mp_load_method_maybe(MP_OBJ_FROM_PTR(obj), MP_QSTR___del__, dest);
+ if (dest[0] != MP_OBJ_NULL) {
+ // load_method returned a method, execute it in a protected environment
+ #if MICROPY_ENABLE_SCHEDULER
+ mp_sched_lock();
+ #endif
+ mp_call_function_1_protected(dest[0], dest[1]);
+ #if MICROPY_ENABLE_SCHEDULER
+ mp_sched_unlock();
+ #endif
+ }
+ }
+ // clear finaliser flag
+ FTB_CLEAR(block);
+ }
+ #endif
+ free_tail = 1;
+ DEBUG_printf("gc_sweep(%p)\n", (void *)PTR_FROM_BLOCK(block));
+
+ #ifdef LOG_HEAP_ACTIVITY
+ gc_log_change(block, 0);
+ #endif
+ #if MICROPY_PY_GC_COLLECT_RETVAL
+ MP_STATE_MEM(gc_collected)++;
+ #endif
+ // fall through to free the head
+ MP_FALLTHROUGH
+
+ case AT_TAIL:
+ if (free_tail) {
+ ATB_ANY_TO_FREE(block);
+ #if CLEAR_ON_SWEEP
+ memset((void *)PTR_FROM_BLOCK(block), 0, BYTES_PER_BLOCK);
+ #endif
+ }
+ break;
+
+ case AT_MARK:
+ ATB_MARK_TO_HEAD(block);
+ free_tail = 0;
+ break;
+ }
+ }
+}
+
+// Mark can handle NULL pointers because it verifies the pointer is within the heap bounds.
+STATIC void gc_mark(void *ptr) {
+ if (VERIFY_PTR(ptr)) {
+ size_t block = BLOCK_FROM_PTR(ptr);
+ if (ATB_GET_KIND(block) == AT_HEAD) {
+ // An unmarked head: mark it, and mark all its children
+ TRACE_MARK(block, ptr);
+ ATB_HEAD_TO_MARK(block);
+ gc_mark_subtree(block);
+ }
+ }
+}
+
+void gc_collect_start(void) {
+ GC_ENTER();
+ MP_STATE_THREAD(gc_lock_depth)++;
+ #if MICROPY_GC_ALLOC_THRESHOLD
+ MP_STATE_MEM(gc_alloc_amount) = 0;
+ #endif
+ MP_STATE_MEM(gc_stack_overflow) = 0;
+
+ // Trace root pointers. This relies on the root pointers being organised
+ // correctly in the mp_state_ctx structure. We scan nlr_top, dict_locals,
+ // dict_globals, then the root pointer section of mp_state_vm.
+ void **ptrs = (void **)(void *)&mp_state_ctx;
+ size_t root_start = offsetof(mp_state_ctx_t, thread.dict_locals);
+ size_t root_end = offsetof(mp_state_ctx_t, vm.qstr_last_chunk);
+ gc_collect_root(ptrs + root_start / sizeof(void *), (root_end - root_start) / sizeof(void *));
+
+ gc_mark(MP_STATE_MEM(permanent_pointers));
+
+ #if MICROPY_ENABLE_PYSTACK
+ // Trace root pointers from the Python stack.
+ ptrs = (void **)(void *)MP_STATE_THREAD(pystack_start);
+ gc_collect_root(ptrs, (MP_STATE_THREAD(pystack_cur) - MP_STATE_THREAD(pystack_start)) / sizeof(void *));
+ #endif
+}
+
+void gc_collect_ptr(void *ptr) {
+ gc_mark(ptr);
+}
+
+// Address sanitizer needs to know that the access to ptrs[i] must always be
+// considered OK, even if it's a load from an address that would normally be
+// prohibited (due to being undefined, in a red zone, etc).
+#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
+__attribute__((no_sanitize_address))
+#endif
+static void *gc_get_ptr(void **ptrs, int i) {
+ #if MICROPY_DEBUG_VALGRIND
+ if (!VALGRIND_CHECK_MEM_IS_ADDRESSABLE(&ptrs[i], sizeof(*ptrs))) {
+ return NULL;
+ }
+ #endif
+ return ptrs[i];
+}
+
+void gc_collect_root(void **ptrs, size_t len) {
+ for (size_t i = 0; i < len; i++) {
+ MICROPY_GC_HOOK_LOOP
+ void *ptr = gc_get_ptr(ptrs, i);
+ gc_mark(ptr);
+ }
+}
+
+void gc_collect_end(void) {
+ gc_deal_with_stack_overflow();
+ gc_sweep();
+ for (size_t i = 0; i < MICROPY_ATB_INDICES; i++) {
+ MP_STATE_MEM(gc_first_free_atb_index)[i] = 0;
+ }
+ MP_STATE_MEM(gc_last_free_atb_index) = MP_STATE_MEM(gc_alloc_table_byte_len) - 1;
+ MP_STATE_THREAD(gc_lock_depth)--;
+ GC_EXIT();
+}
+
+void gc_sweep_all(void) {
+ GC_ENTER();
+ MP_STATE_THREAD(gc_lock_depth)++;
+ MP_STATE_MEM(gc_stack_overflow) = 0;
+ gc_collect_end();
+}
+
+void gc_info(gc_info_t *info) {
+ GC_ENTER();
+ info->total = MP_STATE_MEM(gc_pool_end) - MP_STATE_MEM(gc_pool_start);
+ info->used = 0;
+ info->free = 0;
+ info->max_free = 0;
+ info->num_1block = 0;
+ info->num_2block = 0;
+ info->max_block = 0;
+ bool finish = false;
+ for (size_t block = 0, len = 0, len_free = 0; !finish;) {
+ size_t kind = ATB_GET_KIND(block);
+ switch (kind) {
+ case AT_FREE:
+ info->free += 1;
+ len_free += 1;
+ len = 0;
+ break;
+
+ case AT_HEAD:
+ info->used += 1;
+ len = 1;
+ break;
+
+ case AT_TAIL:
+ info->used += 1;
+ len += 1;
+ break;
+
+ case AT_MARK:
+ // shouldn't happen
+ break;
+ }
+
+ block++;
+ finish = (block == MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB);
+ // Get next block type if possible
+ if (!finish) {
+ kind = ATB_GET_KIND(block);
+ }
+
+ if (finish || kind == AT_FREE || kind == AT_HEAD) {
+ if (len == 1) {
+ info->num_1block += 1;
+ } else if (len == 2) {
+ info->num_2block += 1;
+ }
+ if (len > info->max_block) {
+ info->max_block = len;
+ }
+ if (finish || kind == AT_HEAD) {
+ if (len_free > info->max_free) {
+ info->max_free = len_free;
+ }
+ len_free = 0;
+ }
+ }
+ }
+
+ info->used *= BYTES_PER_BLOCK;
+ info->free *= BYTES_PER_BLOCK;
+ GC_EXIT();
+}
+
+bool gc_alloc_possible(void) {
+ return MP_STATE_MEM(gc_pool_start) != 0;
+}
+
+// We place long lived objects at the end of the heap rather than the start. This reduces
+// fragmentation by localizing the heap churn to one portion of memory (the start of the heap.)
+void *gc_alloc(size_t n_bytes, unsigned int alloc_flags, bool long_lived) {
+ bool has_finaliser = alloc_flags & GC_ALLOC_FLAG_HAS_FINALISER;
+ size_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK;
+ DEBUG_printf("gc_alloc(" UINT_FMT " bytes -> " UINT_FMT " blocks)\n", n_bytes, n_blocks);
+
+ // check for 0 allocation
+ if (n_blocks == 0) {
+ return NULL;
+ }
+
+ // check if GC is locked
+ if (MP_STATE_THREAD(gc_lock_depth) > 0) {
+ return NULL;
+ }
+
+ if (MP_STATE_MEM(gc_pool_start) == 0) {
+ reset_into_safe_mode(GC_ALLOC_OUTSIDE_VM);
+ }
+
+ GC_ENTER();
+
+ size_t found_block = 0xffffffff;
+ size_t end_block;
+ size_t start_block;
+ size_t n_free;
+ bool collected = !MP_STATE_MEM(gc_auto_collect_enabled);
+
+ #if MICROPY_GC_ALLOC_THRESHOLD
+ if (!collected && MP_STATE_MEM(gc_alloc_amount) >= MP_STATE_MEM(gc_alloc_threshold)) {
+ GC_EXIT();
+ gc_collect();
+ collected = 1;
+ GC_ENTER();
+ }
+ #endif
+
+ bool keep_looking = true;
+
+ // When we start searching on the other side of the crossover block we make sure to
+ // perform a collect. That way we'll get the closest free block in our section.
+ size_t crossover_block = BLOCK_FROM_PTR(MP_STATE_MEM(gc_lowest_long_lived_ptr));
+ while (keep_looking) {
+ int8_t direction = 1;
+ size_t bucket = MIN(n_blocks, MICROPY_ATB_INDICES) - 1;
+ size_t first_free = MP_STATE_MEM(gc_first_free_atb_index)[bucket];
+ size_t start = first_free;
+ if (long_lived) {
+ direction = -1;
+ start = MP_STATE_MEM(gc_last_free_atb_index);
+ }
+ n_free = 0;
+ // look for a run of n_blocks available blocks
+ for (size_t i = start; keep_looking && first_free <= i && i <= MP_STATE_MEM(gc_last_free_atb_index); i += direction) {
+ byte a = MP_STATE_MEM(gc_alloc_table_start)[i];
+ // Four ATB states are packed into a single byte.
+ int j = 0;
+ if (direction == -1) {
+ j = 3;
+ }
+ for (; keep_looking && 0 <= j && j <= 3; j += direction) {
+ if ((a & (0x3 << (j * 2))) == 0) {
+ if (++n_free >= n_blocks) {
+ found_block = i * BLOCKS_PER_ATB + j;
+ keep_looking = false;
+ }
+ } else {
+ if (!collected) {
+ size_t block = i * BLOCKS_PER_ATB + j;
+ if ((direction == 1 && block >= crossover_block) ||
+ (direction == -1 && block < crossover_block)) {
+ keep_looking = false;
+ }
+ }
+ n_free = 0;
+ }
+ }
+ }
+ if (n_free >= n_blocks) {
+ break;
+ }
+
+ GC_EXIT();
+ // nothing found!
+ if (collected) {
+ return NULL;
+ }
+ DEBUG_printf("gc_alloc(" UINT_FMT "): no free mem, triggering GC\n", n_bytes);
+ gc_collect();
+ collected = true;
+ // Try again since we've hopefully freed up space.
+ keep_looking = true;
+ GC_ENTER();
+ }
+ assert(found_block != 0xffffffff);
+
+ // Found free space ending at found_block inclusive.
+ // Also, set last free ATB index to block after last block we found, for start of
+ // next scan. Also, whenever we free or shrink a block we must check if this index needs
+ // adjusting (see gc_realloc and gc_free).
+ if (!long_lived) {
+ end_block = found_block;
+ start_block = found_block - n_free + 1;
+ if (n_blocks < MICROPY_ATB_INDICES) {
+ size_t next_free_atb = (found_block + n_blocks) / BLOCKS_PER_ATB;
+ // Update all atb indices for larger blocks too.
+ for (size_t i = n_blocks - 1; i < MICROPY_ATB_INDICES; i++) {
+ MP_STATE_MEM(gc_first_free_atb_index)[i] = next_free_atb;
+ }
+ }
+ } else {
+ start_block = found_block;
+ end_block = found_block + n_free - 1;
+ // Always update the bounds of the long lived area because we assume it is contiguous. (It
+ // can still be reset by a sweep.)
+ MP_STATE_MEM(gc_last_free_atb_index) = (found_block - 1) / BLOCKS_PER_ATB;
+ }
+
+ #ifdef LOG_HEAP_ACTIVITY
+ gc_log_change(start_block, end_block - start_block + 1);
+ #endif
+
+ // mark first block as used head
+ ATB_FREE_TO_HEAD(start_block);
+
+ // mark rest of blocks as used tail
+ // TODO for a run of many blocks can make this more efficient
+ for (size_t bl = start_block + 1; bl <= end_block; bl++) {
+ ATB_FREE_TO_TAIL(bl);
+ }
+
+ // get pointer to first block
+ // we must create this pointer before unlocking the GC so a collection can find it
+ void *ret_ptr = (void *)(MP_STATE_MEM(gc_pool_start) + start_block * BYTES_PER_BLOCK);
+ DEBUG_printf("gc_alloc(%p)\n", ret_ptr);
+
+ // If the allocation was long live then update the lowest value. Its used to trigger early
+ // collects when allocations fail in their respective section. Its also used to ignore calls to
+ // gc_make_long_lived where the pointer is already in the long lived section.
+ if (long_lived && ret_ptr < MP_STATE_MEM(gc_lowest_long_lived_ptr)) {
+ MP_STATE_MEM(gc_lowest_long_lived_ptr) = ret_ptr;
+ }
+
+ #if MICROPY_GC_ALLOC_THRESHOLD
+ MP_STATE_MEM(gc_alloc_amount) += n_blocks;
+ #endif
+
+ GC_EXIT();
+
+ #if MICROPY_GC_CONSERVATIVE_CLEAR
+ // be conservative and zero out all the newly allocated blocks
+ memset((byte *)ret_ptr, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK);
+ #else
+ // zero out the additional bytes of the newly allocated blocks
+ // This is needed because the blocks may have previously held pointers
+ // to the heap and will not be set to something else if the caller
+ // doesn't actually use the entire block. As such they will continue
+ // to point to the heap and may prevent other blocks from being reclaimed.
+ memset((byte *)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes);
+ #endif
+
+ #if MICROPY_ENABLE_FINALISER
+ if (has_finaliser) {
+ // clear type pointer in case it is never set
+ ((mp_obj_base_t *)ret_ptr)->type = NULL;
+ // set mp_obj flag only if it has a finaliser
+ GC_ENTER();
+ FTB_SET(start_block);
+ GC_EXIT();
+ }
+ #else
+ (void)has_finaliser;
+ #endif
+
+ #if EXTENSIVE_HEAP_PROFILING
+ gc_dump_alloc_table();
+ #endif
+
+ #if CIRCUITPY_MEMORYMONITOR
+ memorymonitor_track_allocation(end_block - start_block + 1);
+ #endif
+
+ return ret_ptr;
+}
+
+/*
+void *gc_alloc(mp_uint_t n_bytes) {
+ return _gc_alloc(n_bytes, false);
+}
+
+void *gc_alloc_with_finaliser(mp_uint_t n_bytes) {
+ return _gc_alloc(n_bytes, true);
+}
+*/
+
+// force the freeing of a piece of memory
+// TODO: freeing here does not call finaliser
+void gc_free(void *ptr) {
+ if (MP_STATE_THREAD(gc_lock_depth) > 0) {
+ // TODO how to deal with this error?
+ return;
+ }
+
+ GC_ENTER();
+
+ DEBUG_printf("gc_free(%p)\n", ptr);
+
+ if (ptr == NULL) {
+ GC_EXIT();
+ } else {
+ if (MP_STATE_MEM(gc_pool_start) == 0) {
+ reset_into_safe_mode(GC_ALLOC_OUTSIDE_VM);
+ }
+ // get the GC block number corresponding to this pointer
+ assert(VERIFY_PTR(ptr));
+ size_t start_block = BLOCK_FROM_PTR(ptr);
+ assert(ATB_GET_KIND(start_block) == AT_HEAD);
+
+ #if MICROPY_ENABLE_FINALISER
+ FTB_CLEAR(start_block);
+ #endif
+
+ // free head and all of its tail blocks
+ #ifdef LOG_HEAP_ACTIVITY
+ gc_log_change(start_block, 0);
+ #endif
+ size_t block = start_block;
+ do {
+ ATB_ANY_TO_FREE(block);
+ block += 1;
+ } while (ATB_GET_KIND(block) == AT_TAIL);
+
+ // Update the first free pointer for our size only. Not much calls gc_free directly so there
+ // is decent chance we'll want to allocate this size again. By only updating the specific
+ // size we don't risk something smaller fitting in.
+ size_t n_blocks = block - start_block;
+ size_t bucket = MIN(n_blocks, MICROPY_ATB_INDICES) - 1;
+ size_t new_free_atb = start_block / BLOCKS_PER_ATB;
+ if (new_free_atb < MP_STATE_MEM(gc_first_free_atb_index)[bucket]) {
+ MP_STATE_MEM(gc_first_free_atb_index)[bucket] = new_free_atb;
+ }
+ // set the last_free pointer to this block if it's earlier in the heap
+ if (new_free_atb > MP_STATE_MEM(gc_last_free_atb_index)) {
+ MP_STATE_MEM(gc_last_free_atb_index) = new_free_atb;
+ }
+
+ GC_EXIT();
+
+ #if EXTENSIVE_HEAP_PROFILING
+ gc_dump_alloc_table();
+ #endif
+ }
+}
+
+size_t gc_nbytes(const void *ptr) {
+ GC_ENTER();
+ if (VERIFY_PTR(ptr)) {
+ size_t block = BLOCK_FROM_PTR(ptr);
+ if (ATB_GET_KIND(block) == AT_HEAD) {
+ // work out number of consecutive blocks in the chain starting with this on
+ size_t n_blocks = 0;
+ do {
+ n_blocks += 1;
+ } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);
+ GC_EXIT();
+ return n_blocks * BYTES_PER_BLOCK;
+ }
+ }
+
+ // invalid pointer
+ GC_EXIT();
+ return 0;
+}
+
+bool gc_has_finaliser(const void *ptr) {
+ #if MICROPY_ENABLE_FINALISER
+ GC_ENTER();
+ if (VERIFY_PTR(ptr)) {
+ bool has_finaliser = FTB_GET(BLOCK_FROM_PTR(ptr));
+ GC_EXIT();
+ return has_finaliser;
+ }
+
+ // invalid pointer
+ GC_EXIT();
+ #else
+ (void)ptr;
+ #endif
+ return false;
+}
+
+void *gc_make_long_lived(void *old_ptr) {
+ // If its already in the long lived section then don't bother moving it.
+ if (old_ptr >= MP_STATE_MEM(gc_lowest_long_lived_ptr)) {
+ return old_ptr;
+ }
+ size_t n_bytes = gc_nbytes(old_ptr);
+ if (n_bytes == 0) {
+ return old_ptr;
+ }
+ bool has_finaliser = gc_has_finaliser(old_ptr);
+
+ // Try and find a new area in the long lived section to copy the memory to.
+ void *new_ptr = gc_alloc(n_bytes, has_finaliser, true);
+ if (new_ptr == NULL) {
+ return old_ptr;
+ } else if (old_ptr > new_ptr) {
+ // Return the old pointer if the new one is lower in the heap and free the new space.
+ gc_free(new_ptr);
+ return old_ptr;
+ }
+ // We copy everything over and let the garbage collection process delete the old copy. That way
+ // we ensure we don't delete memory that has a second reference. (Though if there is we may
+ // confuse things when its mutable.)
+ memcpy(new_ptr, old_ptr, n_bytes);
+ return new_ptr;
+}
+
+#if 0
+// old, simple realloc that didn't expand memory in place
+void *gc_realloc(void *ptr, mp_uint_t n_bytes) {
+ mp_uint_t n_existing = gc_nbytes(ptr);
+ if (n_bytes <= n_existing) {
+ return ptr;
+ } else {
+ bool has_finaliser;
+ if (ptr == NULL) {
+ has_finaliser = false;
+ } else {
+ #if MICROPY_ENABLE_FINALISER
+ has_finaliser = FTB_GET(BLOCK_FROM_PTR((mp_uint_t)ptr));
+ #else
+ has_finaliser = false;
+ #endif
+ }
+ void *ptr2 = gc_alloc(n_bytes, has_finaliser);
+ if (ptr2 == NULL) {
+ return ptr2;
+ }
+ memcpy(ptr2, ptr, n_existing);
+ gc_free(ptr);
+ return ptr2;
+ }
+}
+
+#else // Alternative gc_realloc impl
+
+void *gc_realloc(void *ptr_in, size_t n_bytes, bool allow_move) {
+ // check for pure allocation
+ if (ptr_in == NULL) {
+ return gc_alloc(n_bytes, false, false);
+ }
+
+ // check for pure free
+ if (n_bytes == 0) {
+ gc_free(ptr_in);
+ return NULL;
+ }
+
+ if (MP_STATE_THREAD(gc_lock_depth) > 0) {
+ return NULL;
+ }
+
+ void *ptr = ptr_in;
+
+ GC_ENTER();
+
+ // get the GC block number corresponding to this pointer
+ assert(VERIFY_PTR(ptr));
+ size_t block = BLOCK_FROM_PTR(ptr);
+ assert(ATB_GET_KIND(block) == AT_HEAD);
+
+ // compute number of new blocks that are requested
+ size_t new_blocks = (n_bytes + BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK;
+
+ // Get the total number of consecutive blocks that are already allocated to
+ // this chunk of memory, and then count the number of free blocks following
+ // it. Stop if we reach the end of the heap, or if we find enough extra
+ // free blocks to satisfy the realloc. Note that we need to compute the
+ // total size of the existing memory chunk so we can correctly and
+ // efficiently shrink it (see below for shrinking code).
+ size_t n_free = 0;
+ size_t n_blocks = 1; // counting HEAD block
+ size_t max_block = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB;
+ for (size_t bl = block + n_blocks; bl < max_block; bl++) {
+ byte block_type = ATB_GET_KIND(bl);
+ if (block_type == AT_TAIL) {
+ n_blocks++;
+ continue;
+ }
+ if (block_type == AT_FREE) {
+ n_free++;
+ if (n_blocks + n_free >= new_blocks) {
+ // stop as soon as we find enough blocks for n_bytes
+ break;
+ }
+ continue;
+ }
+ break;
+ }
+
+ // return original ptr if it already has the requested number of blocks
+ if (new_blocks == n_blocks) {
+ GC_EXIT();
+ return ptr_in;
+ }
+
+ // check if we can shrink the allocated area
+ if (new_blocks < n_blocks) {
+ // free unneeded tail blocks
+ for (size_t bl = block + new_blocks, count = n_blocks - new_blocks; count > 0; bl++, count--) {
+ ATB_ANY_TO_FREE(bl);
+ }
+
+ // set the last_free pointer to end of this block if it's earlier in the heap
+ size_t new_free_atb = (block + new_blocks) / BLOCKS_PER_ATB;
+ size_t bucket = MIN(n_blocks - new_blocks, MICROPY_ATB_INDICES) - 1;
+ if (new_free_atb < MP_STATE_MEM(gc_first_free_atb_index)[bucket]) {
+ MP_STATE_MEM(gc_first_free_atb_index)[bucket] = new_free_atb;
+ }
+ if (new_free_atb > MP_STATE_MEM(gc_last_free_atb_index)) {
+ MP_STATE_MEM(gc_last_free_atb_index) = new_free_atb;
+ }
+
+ GC_EXIT();
+
+ #if EXTENSIVE_HEAP_PROFILING
+ gc_dump_alloc_table();
+ #endif
+
+ #ifdef LOG_HEAP_ACTIVITY
+ gc_log_change(block, new_blocks);
+ #endif
+
+ #if CIRCUITPY_MEMORYMONITOR
+ memorymonitor_track_allocation(new_blocks);
+ #endif
+
+ return ptr_in;
+ }
+
+ // check if we can expand in place
+ if (new_blocks <= n_blocks + n_free) {
+ // mark few more blocks as used tail
+ for (size_t bl = block + n_blocks; bl < block + new_blocks; bl++) {
+ assert(ATB_GET_KIND(bl) == AT_FREE);
+ ATB_FREE_TO_TAIL(bl);
+ }
+
+ GC_EXIT();
+
+ #if MICROPY_GC_CONSERVATIVE_CLEAR
+ // be conservative and zero out all the newly allocated blocks
+ memset((byte *)ptr_in + n_blocks * BYTES_PER_BLOCK, 0, (new_blocks - n_blocks) * BYTES_PER_BLOCK);
+ #else
+ // zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc)
+ memset((byte *)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes);
+ #endif
+
+ #if EXTENSIVE_HEAP_PROFILING
+ gc_dump_alloc_table();
+ #endif
+
+ #ifdef LOG_HEAP_ACTIVITY
+ gc_log_change(block, new_blocks);
+ #endif
+
+ #if CIRCUITPY_MEMORYMONITOR
+ memorymonitor_track_allocation(new_blocks);
+ #endif
+
+ return ptr_in;
+ }
+
+ #if MICROPY_ENABLE_FINALISER
+ bool ftb_state = FTB_GET(block);
+ #else
+ bool ftb_state = false;
+ #endif
+
+ GC_EXIT();
+
+ if (!allow_move) {
+ // not allowed to move memory block so return failure
+ return NULL;
+ }
+
+ // can't resize inplace; try to find a new contiguous chain
+ void *ptr_out = gc_alloc(n_bytes, ftb_state, false);
+
+ // check that the alloc succeeded
+ if (ptr_out == NULL) {
+ return NULL;
+ }
+
+ DEBUG_printf("gc_realloc(%p -> %p)\n", ptr_in, ptr_out);
+ memcpy(ptr_out, ptr_in, n_blocks * BYTES_PER_BLOCK);
+ gc_free(ptr_in);
+ return ptr_out;
+}
+#endif // Alternative gc_realloc impl
+
+bool gc_never_free(void *ptr) {
+ // Check to make sure the pointer is on the heap in the first place.
+ if (gc_nbytes(ptr) == 0) {
+ return false;
+ }
+ // Pointers are stored in a linked list where each block is BYTES_PER_BLOCK long and the first
+ // pointer is the next block of pointers.
+ void **current_reference_block = MP_STATE_MEM(permanent_pointers);
+ while (current_reference_block != NULL) {
+ for (size_t i = 1; i < BYTES_PER_BLOCK / sizeof(void *); i++) {
+ if (current_reference_block[i] == NULL) {
+ current_reference_block[i] = ptr;
+ return true;
+ }
+ }
+ current_reference_block = current_reference_block[0];
+ }
+ void **next_block = gc_alloc(BYTES_PER_BLOCK, false, true);
+ if (next_block == NULL) {
+ return false;
+ }
+ if (MP_STATE_MEM(permanent_pointers) == NULL) {
+ MP_STATE_MEM(permanent_pointers) = next_block;
+ } else {
+ current_reference_block[0] = next_block;
+ }
+ next_block[1] = ptr;
+ return true;
+}
+
+void gc_dump_info(void) {
+ gc_info_t info;
+ gc_info(&info);
+ mp_printf(&mp_plat_print, "GC: total: %u, used: %u, free: %u\n",
+ (uint)info.total, (uint)info.used, (uint)info.free);
+ mp_printf(&mp_plat_print, " No. of 1-blocks: %u, 2-blocks: %u, max blk sz: %u, max free sz: %u\n",
+ (uint)info.num_1block, (uint)info.num_2block, (uint)info.max_block, (uint)info.max_free);
+}
+
+void gc_dump_alloc_table(void) {
+ GC_ENTER();
+ static const size_t DUMP_BYTES_PER_LINE = 64;
+ #if !EXTENSIVE_HEAP_PROFILING
+ // When comparing heap output we don't want to print the starting
+ // pointer of the heap because it changes from run to run.
+ mp_printf(&mp_plat_print, "GC memory layout; from %p:", MP_STATE_MEM(gc_pool_start));
+ #endif
+ for (size_t bl = 0; bl < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; bl++) {
+ if (bl % DUMP_BYTES_PER_LINE == 0) {
+ // a new line of blocks
+ {
+ // check if this line contains only free blocks
+ size_t bl2 = bl;
+ while (bl2 < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB && ATB_GET_KIND(bl2) == AT_FREE) {
+ bl2++;
+ }
+ if (bl2 - bl >= 2 * DUMP_BYTES_PER_LINE) {
+ // there are at least 2 lines containing only free blocks, so abbreviate their printing
+ mp_printf(&mp_plat_print, "\n (%u lines all free)", (uint)(bl2 - bl) / DUMP_BYTES_PER_LINE);
+ bl = bl2 & (~(DUMP_BYTES_PER_LINE - 1));
+ if (bl >= MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB) {
+ // got to end of heap
+ break;
+ }
+ }
+ }
+ // print header for new line of blocks
+ // (the cast to uint32_t is for 16-bit ports)
+ // mp_printf(&mp_plat_print, "\n%05x: ", (uint)(PTR_FROM_BLOCK(bl) & (uint32_t)0xfffff));
+ mp_printf(&mp_plat_print, "\n%05x: ", (uint)((bl * BYTES_PER_BLOCK) & (uint32_t)0xfffff));
+ }
+ int c = ' ';
+ switch (ATB_GET_KIND(bl)) {
+ case AT_FREE:
+ c = '.';
+ break;
+ /* this prints out if the object is reachable from BSS or STACK (for unix only)
+ case AT_HEAD: {
+ c = 'h';
+ void **ptrs = (void**)(void*)&mp_state_ctx;
+ mp_uint_t len = offsetof(mp_state_ctx_t, vm.stack_top) / sizeof(mp_uint_t);
+ for (mp_uint_t i = 0; i < len; i++) {
+ mp_uint_t ptr = (mp_uint_t)ptrs[i];
+ if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
+ c = 'B';
+ break;
+ }
+ }
+ if (c == 'h') {
+ ptrs = (void**)&c;
+ len = ((mp_uint_t)MP_STATE_THREAD(stack_top) - (mp_uint_t)&c) / sizeof(mp_uint_t);
+ for (mp_uint_t i = 0; i < len; i++) {
+ mp_uint_t ptr = (mp_uint_t)ptrs[i];
+ if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
+ c = 'S';
+ break;
+ }
+ }
+ }
+ break;
+ }
+ */
+ /* this prints the uPy object type of the head block */
+ case AT_HEAD: {
+ #pragma GCC diagnostic push
+ #pragma GCC diagnostic ignored "-Wcast-align"
+ void **ptr = (void **)(MP_STATE_MEM(gc_pool_start) + bl * BYTES_PER_BLOCK);
+ #pragma GCC diagnostic pop
+ if (*ptr == &mp_type_tuple) {
+ c = 'T';
+ } else if (*ptr == &mp_type_list) {
+ c = 'L';
+ } else if (*ptr == &mp_type_dict) {
+ c = 'D';
+ } else if (*ptr == &mp_type_str || *ptr == &mp_type_bytes) {
+ c = 'S';
+ }
+ #if MICROPY_PY_BUILTINS_BYTEARRAY
+ else if (*ptr == &mp_type_bytearray) {
+ c = 'A';
+ }
+ #endif
+ #if MICROPY_PY_ARRAY
+ else if (*ptr == &mp_type_array) {
+ c = 'A';
+ }
+ #endif
+ #if MICROPY_PY_BUILTINS_FLOAT
+ else if (*ptr == &mp_type_float) {
+ c = 'F';
+ }
+ #endif
+ else if (*ptr == &mp_type_fun_bc) {
+ c = 'B';
+ } else if (*ptr == &mp_type_module) {
+ c = 'M';
+ } else {
+ c = 'h';
+ #if 0
+ // This code prints "Q" for qstr-pool data, and "q" for qstr-str
+ // data. It can be useful to see how qstrs are being allocated,
+ // but is disabled by default because it is very slow.
+ for (qstr_pool_t *pool = MP_STATE_VM(last_pool); c == 'h' && pool != NULL; pool = pool->prev) {
+ if ((qstr_pool_t *)ptr == pool) {
+ c = 'Q';
+ break;
+ }
+ for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) {
+ if ((const byte *)ptr == *q) {
+ c = 'q';
+ break;
+ }
+ }
+ }
+ #endif
+ }
+ break;
+ }
+ case AT_TAIL:
+ c = '=';
+ break;
+ case AT_MARK:
+ c = 'm';
+ break;
+ }
+ mp_printf(&mp_plat_print, "%c", c);
+ }
+ mp_print_str(&mp_plat_print, "\n");
+ GC_EXIT();
+}
+
+#if 0
+// For testing the GC functions
+void gc_test(void) {
+ mp_uint_t len = 500;
+ mp_uint_t *heap = malloc(len);
+ gc_init(heap, heap + len / sizeof(mp_uint_t));
+ void *ptrs[100];
+ {
+ mp_uint_t **p = gc_alloc(16, false);
+ p[0] = gc_alloc(64, false);
+ p[1] = gc_alloc(1, false);
+ p[2] = gc_alloc(1, false);
+ p[3] = gc_alloc(1, false);
+ mp_uint_t ***p2 = gc_alloc(16, false);
+ p2[0] = p;
+ p2[1] = p;
+ ptrs[0] = p2;
+ }
+ for (int i = 0; i < 25; i += 2) {
+ mp_uint_t *p = gc_alloc(i, false);
+ printf("p=%p\n", p);
+ if (i & 3) {
+ // ptrs[i] = p;
+ }
+ }
+
+ printf("Before GC:\n");
+ gc_dump_alloc_table();
+ printf("Starting GC...\n");
+ gc_collect_start();
+ gc_collect_root(ptrs, sizeof(ptrs) / sizeof(void *));
+ gc_collect_end();
+ printf("After GC:\n");
+ gc_dump_alloc_table();
+}
+#endif
+
+#endif // MICROPY_ENABLE_GC