diff options
author | Raghuram Subramani <raghus2247@gmail.com> | 2022-06-19 19:47:51 +0530 |
---|---|---|
committer | Raghuram Subramani <raghus2247@gmail.com> | 2022-06-19 19:47:51 +0530 |
commit | 4fd287655a72b9aea14cdac715ad5b90ed082ed2 (patch) | |
tree | 65d393bc0e699dd12d05b29ba568e04cea666207 /circuitpython/py/emitnative.c | |
parent | 0150f70ce9c39e9e6dd878766c0620c85e47bed0 (diff) |
add circuitpython code
Diffstat (limited to 'circuitpython/py/emitnative.c')
-rw-r--r-- | circuitpython/py/emitnative.c | 3045 |
1 files changed, 3045 insertions, 0 deletions
diff --git a/circuitpython/py/emitnative.c b/circuitpython/py/emitnative.c new file mode 100644 index 0000000..5946fcd --- /dev/null +++ b/circuitpython/py/emitnative.c @@ -0,0 +1,3045 @@ +/* + * This file is part of the MicroPython project, http://micropython.org/ + * + * The MIT License (MIT) + * + * Copyright (c) 2013, 2014 Damien P. George + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +// Essentially normal Python has 1 type: Python objects +// Viper has more than 1 type, and is just a more complicated (a superset of) Python. +// If you declare everything in Viper as a Python object (ie omit type decls) then +// it should in principle be exactly the same as Python native. +// Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc. +// In practice we won't have a VM but rather do this in asm which is actually very minimal. + +// Because it breaks strict Python equivalence it should be a completely separate +// decorator. It breaks equivalence because overflow on integers wraps around. +// It shouldn't break equivalence if you don't use the new types, but since the +// type decls might be used in normal Python for other reasons, it's probably safest, +// cleanest and clearest to make it a separate decorator. + +// Actually, it does break equivalence because integers default to native integers, +// not Python objects. + +// for x in l[0:8]: can be compiled into a native loop if l has pointer type + +#include <stdio.h> +#include <string.h> +#include <assert.h> + +#include "py/emit.h" +#include "py/nativeglue.h" +#include "py/objstr.h" + +#if MICROPY_DEBUG_VERBOSE // print debugging info +#define DEBUG_PRINT (1) +#define DEBUG_printf DEBUG_printf +#else // don't print debugging info +#define DEBUG_printf(...) (void)0 +#endif + +#ifndef N_X64 +#define N_X64 (0) +#endif + +#ifndef N_X86 +#define N_X86 (0) +#endif + +#ifndef N_THUMB +#define N_THUMB (0) +#endif + +#ifndef N_ARM +#define N_ARM (0) +#endif + +#ifndef N_XTENSA +#define N_XTENSA (0) +#endif + +#ifndef N_NLR_SETJMP +#define N_NLR_SETJMP (0) +#endif + +#ifndef N_PRELUDE_AS_BYTES_OBJ +#define N_PRELUDE_AS_BYTES_OBJ (0) +#endif + +// wrapper around everything in this file +#if N_X64 || N_X86 || N_THUMB || N_ARM || N_XTENSA || N_XTENSAWIN + +// C stack layout for native functions: +// 0: nlr_buf_t [optional] +// emit->code_state_start: mp_code_state_t +// emit->stack_start: Python object stack | emit->n_state +// locals (reversed, L0 at end) | +// +// C stack layout for native generator functions: +// 0=emit->stack_start: nlr_buf_t +// +// Then REG_GENERATOR_STATE points to: +// 0=emit->code_state_start: mp_code_state_t +// emit->stack_start: Python object stack | emit->n_state +// locals (reversed, L0 at end) | +// +// C stack layout for viper functions: +// 0: nlr_buf_t [optional] +// emit->code_state_start: fun_obj, old_globals [optional] +// emit->stack_start: Python object stack | emit->n_state +// locals (reversed, L0 at end) | +// (L0-L2 may be in regs instead) + +// Native emitter needs to know the following sizes and offsets of C structs (on the target): +#if MICROPY_DYNAMIC_COMPILER +#define SIZEOF_NLR_BUF (2 + mp_dynamic_compiler.nlr_buf_num_regs + 1) // the +1 is conservative in case MICROPY_ENABLE_PYSTACK enabled +#else +#define SIZEOF_NLR_BUF (sizeof(nlr_buf_t) / sizeof(uintptr_t)) +#endif +#define SIZEOF_CODE_STATE (sizeof(mp_code_state_t) / sizeof(uintptr_t)) +#define OFFSETOF_CODE_STATE_STATE (offsetof(mp_code_state_t, state) / sizeof(uintptr_t)) +#define OFFSETOF_CODE_STATE_FUN_BC (offsetof(mp_code_state_t, fun_bc) / sizeof(uintptr_t)) +#define OFFSETOF_CODE_STATE_IP (offsetof(mp_code_state_t, ip) / sizeof(uintptr_t)) +#define OFFSETOF_CODE_STATE_SP (offsetof(mp_code_state_t, sp) / sizeof(uintptr_t)) +#define OFFSETOF_OBJ_FUN_BC_GLOBALS (offsetof(mp_obj_fun_bc_t, globals) / sizeof(uintptr_t)) +#define OFFSETOF_OBJ_FUN_BC_BYTECODE (offsetof(mp_obj_fun_bc_t, bytecode) / sizeof(uintptr_t)) +#define OFFSETOF_OBJ_FUN_BC_CONST_TABLE (offsetof(mp_obj_fun_bc_t, const_table) / sizeof(uintptr_t)) + +// If not already defined, set parent args to same as child call registers +#ifndef REG_PARENT_RET +#define REG_PARENT_RET REG_RET +#define REG_PARENT_ARG_1 REG_ARG_1 +#define REG_PARENT_ARG_2 REG_ARG_2 +#define REG_PARENT_ARG_3 REG_ARG_3 +#define REG_PARENT_ARG_4 REG_ARG_4 +#endif + +// Word index of nlr_buf_t.ret_val +#define NLR_BUF_IDX_RET_VAL (1) + +// Whether the viper function needs access to fun_obj +#define NEED_FUN_OBJ(emit) ((emit)->scope->exc_stack_size > 0 \ + || ((emit)->scope->scope_flags & (MP_SCOPE_FLAG_REFGLOBALS | MP_SCOPE_FLAG_HASCONSTS))) + +// Whether the native/viper function needs to be wrapped in an exception handler +#define NEED_GLOBAL_EXC_HANDLER(emit) ((emit)->scope->exc_stack_size > 0 \ + || ((emit)->scope->scope_flags & (MP_SCOPE_FLAG_GENERATOR | MP_SCOPE_FLAG_REFGLOBALS))) + +// Whether registers can be used to store locals (only true if there are no +// exception handlers, because otherwise an nlr_jump will restore registers to +// their state at the start of the function and updates to locals will be lost) +#define CAN_USE_REGS_FOR_LOCALS(emit) ((emit)->scope->exc_stack_size == 0 && !(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) + +// Indices within the local C stack for various variables +#define LOCAL_IDX_EXC_VAL(emit) (NLR_BUF_IDX_RET_VAL) +#define LOCAL_IDX_EXC_HANDLER_PC(emit) (NLR_BUF_IDX_LOCAL_1) +#define LOCAL_IDX_EXC_HANDLER_UNWIND(emit) (NLR_BUF_IDX_LOCAL_2) +#define LOCAL_IDX_RET_VAL(emit) (NLR_BUF_IDX_LOCAL_3) +#define LOCAL_IDX_FUN_OBJ(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_FUN_BC) +#define LOCAL_IDX_OLD_GLOBALS(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_IP) +#define LOCAL_IDX_GEN_PC(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_IP) +#define LOCAL_IDX_LOCAL_VAR(emit, local_num) ((emit)->stack_start + (emit)->n_state - 1 - (local_num)) + +#define REG_GENERATOR_STATE (REG_LOCAL_3) + +#define EMIT_NATIVE_VIPER_TYPE_ERROR(emit, ...) do { \ + *emit->error_slot = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, __VA_ARGS__); \ +} while (0) + +typedef enum { + STACK_VALUE, + STACK_REG, + STACK_IMM, +} stack_info_kind_t; + +// these enums must be distinct and the bottom 4 bits +// must correspond to the correct MP_NATIVE_TYPE_xxx value +typedef enum { + VTYPE_PYOBJ = 0x00 | MP_NATIVE_TYPE_OBJ, + VTYPE_BOOL = 0x00 | MP_NATIVE_TYPE_BOOL, + VTYPE_INT = 0x00 | MP_NATIVE_TYPE_INT, + VTYPE_UINT = 0x00 | MP_NATIVE_TYPE_UINT, + VTYPE_PTR = 0x00 | MP_NATIVE_TYPE_PTR, + VTYPE_PTR8 = 0x00 | MP_NATIVE_TYPE_PTR8, + VTYPE_PTR16 = 0x00 | MP_NATIVE_TYPE_PTR16, + VTYPE_PTR32 = 0x00 | MP_NATIVE_TYPE_PTR32, + + VTYPE_PTR_NONE = 0x50 | MP_NATIVE_TYPE_PTR, + + VTYPE_UNBOUND = 0x60 | MP_NATIVE_TYPE_OBJ, + VTYPE_BUILTIN_CAST = 0x70 | MP_NATIVE_TYPE_OBJ, +} vtype_kind_t; + +STATIC qstr vtype_to_qstr(vtype_kind_t vtype) { + switch (vtype) { + case VTYPE_PYOBJ: + return MP_QSTR_object; + case VTYPE_BOOL: + return MP_QSTR_bool; + case VTYPE_INT: + return MP_QSTR_int; + case VTYPE_UINT: + return MP_QSTR_uint; + case VTYPE_PTR: + return MP_QSTR_ptr; + case VTYPE_PTR8: + return MP_QSTR_ptr8; + case VTYPE_PTR16: + return MP_QSTR_ptr16; + case VTYPE_PTR32: + return MP_QSTR_ptr32; + case VTYPE_PTR_NONE: + default: + return MP_QSTR_None; + } +} + +typedef struct _stack_info_t { + vtype_kind_t vtype; + stack_info_kind_t kind; + union { + int u_reg; + mp_int_t u_imm; + } data; +} stack_info_t; + +#define UNWIND_LABEL_UNUSED (0x7fff) +#define UNWIND_LABEL_DO_FINAL_UNWIND (0x7ffe) + +typedef struct _exc_stack_entry_t { + uint16_t label : 15; + uint16_t is_finally : 1; + uint16_t unwind_label : 15; + uint16_t is_active : 1; +} exc_stack_entry_t; + +struct _emit_t { + mp_obj_t *error_slot; + uint *label_slot; + uint exit_label; + int pass; + + bool do_viper_types; + bool prelude_offset_uses_u16_encoding; + + mp_uint_t local_vtype_alloc; + vtype_kind_t *local_vtype; + + mp_uint_t stack_info_alloc; + stack_info_t *stack_info; + vtype_kind_t saved_stack_vtype; + + size_t exc_stack_alloc; + size_t exc_stack_size; + exc_stack_entry_t *exc_stack; + + int prelude_offset; + int start_offset; + int n_state; + uint16_t code_state_start; + uint16_t stack_start; + int stack_size; + uint16_t n_cell; + + uint16_t const_table_cur_obj; + uint16_t const_table_num_obj; + uint16_t const_table_cur_raw_code; + mp_uint_t *const_table; + + #if MICROPY_PERSISTENT_CODE_SAVE + uint16_t qstr_link_cur; + mp_qstr_link_entry_t *qstr_link; + #endif + + bool last_emit_was_return_value; + + scope_t *scope; + + ASM_T *as; +}; + +STATIC const uint8_t reg_local_table[REG_LOCAL_NUM] = {REG_LOCAL_1, REG_LOCAL_2, REG_LOCAL_3}; + +STATIC void emit_native_global_exc_entry(emit_t *emit); +STATIC void emit_native_global_exc_exit(emit_t *emit); +STATIC void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj); + +emit_t *EXPORT_FUN(new)(mp_obj_t * error_slot, uint *label_slot, mp_uint_t max_num_labels) { + emit_t *emit = m_new0(emit_t, 1); + emit->error_slot = error_slot; + emit->label_slot = label_slot; + emit->stack_info_alloc = 8; + emit->stack_info = m_new(stack_info_t, emit->stack_info_alloc); + emit->exc_stack_alloc = 8; + emit->exc_stack = m_new(exc_stack_entry_t, emit->exc_stack_alloc); + emit->as = m_new0(ASM_T, 1); + mp_asm_base_init(&emit->as->base, max_num_labels); + return emit; +} + +void EXPORT_FUN(free)(emit_t * emit) { + mp_asm_base_deinit(&emit->as->base, false); + m_del_obj(ASM_T, emit->as); + m_del(exc_stack_entry_t, emit->exc_stack, emit->exc_stack_alloc); + m_del(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc); + m_del(stack_info_t, emit->stack_info, emit->stack_info_alloc); + m_del_obj(emit_t, emit); +} + +STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg); + +STATIC void emit_native_mov_reg_const(emit_t *emit, int reg_dest, int const_val) { + ASM_LOAD_REG_REG_OFFSET(emit->as, reg_dest, REG_FUN_TABLE, const_val); +} + +STATIC void emit_native_mov_state_reg(emit_t *emit, int local_num, int reg_src) { + if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { + ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, REG_GENERATOR_STATE, local_num); + } else { + ASM_MOV_LOCAL_REG(emit->as, local_num, reg_src); + } +} + +STATIC void emit_native_mov_reg_state(emit_t *emit, int reg_dest, int local_num) { + if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { + ASM_LOAD_REG_REG_OFFSET(emit->as, reg_dest, REG_GENERATOR_STATE, local_num); + } else { + ASM_MOV_REG_LOCAL(emit->as, reg_dest, local_num); + } +} + +STATIC void emit_native_mov_reg_state_addr(emit_t *emit, int reg_dest, int local_num) { + if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { + ASM_MOV_REG_IMM(emit->as, reg_dest, local_num * ASM_WORD_SIZE); + ASM_ADD_REG_REG(emit->as, reg_dest, REG_GENERATOR_STATE); + } else { + ASM_MOV_REG_LOCAL_ADDR(emit->as, reg_dest, local_num); + } +} + +STATIC void emit_native_mov_reg_qstr(emit_t *emit, int arg_reg, qstr qst) { + #if MICROPY_PERSISTENT_CODE_SAVE + size_t loc = ASM_MOV_REG_IMM_FIX_U16(emit->as, arg_reg, qst); + size_t link_idx = emit->qstr_link_cur++; + if (emit->pass == MP_PASS_EMIT) { + emit->qstr_link[link_idx].off = loc << 2 | 1; + emit->qstr_link[link_idx].qst = qst; + } + #else + ASM_MOV_REG_IMM(emit->as, arg_reg, qst); + #endif +} + +STATIC void emit_native_mov_reg_qstr_obj(emit_t *emit, int reg_dest, qstr qst) { + #if MICROPY_PERSISTENT_CODE_SAVE + size_t loc = ASM_MOV_REG_IMM_FIX_WORD(emit->as, reg_dest, (mp_uint_t)MP_OBJ_NEW_QSTR(qst)); + size_t link_idx = emit->qstr_link_cur++; + if (emit->pass == MP_PASS_EMIT) { + emit->qstr_link[link_idx].off = loc << 2 | 2; + emit->qstr_link[link_idx].qst = qst; + } + #else + ASM_MOV_REG_IMM(emit->as, reg_dest, (mp_uint_t)MP_OBJ_NEW_QSTR(qst)); + #endif +} + +#define emit_native_mov_state_imm_via(emit, local_num, imm, reg_temp) \ + do { \ + ASM_MOV_REG_IMM((emit)->as, (reg_temp), (imm)); \ + emit_native_mov_state_reg((emit), (local_num), (reg_temp)); \ + } while (false) + +#define emit_native_mov_state_imm_fix_u16_via(emit, local_num, imm, reg_temp) \ + do { \ + ASM_MOV_REG_IMM_FIX_U16((emit)->as, (reg_temp), (imm)); \ + emit_native_mov_state_reg((emit), (local_num), (reg_temp)); \ + } while (false) + +#define emit_native_mov_state_imm_fix_word_via(emit, local_num, imm, reg_temp) \ + do { \ + ASM_MOV_REG_IMM_FIX_WORD((emit)->as, (reg_temp), (imm)); \ + emit_native_mov_state_reg((emit), (local_num), (reg_temp)); \ + } while (false) + +STATIC void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) { + DEBUG_printf("start_pass(pass=%u, scope=%p)\n", pass, scope); + + emit->pass = pass; + emit->do_viper_types = scope->emit_options == MP_EMIT_OPT_VIPER; + emit->stack_size = 0; + #if N_PRELUDE_AS_BYTES_OBJ + emit->const_table_cur_obj = emit->do_viper_types ? 0 : 1; // reserve first obj for prelude bytes obj + #else + emit->const_table_cur_obj = 0; + #endif + emit->const_table_cur_raw_code = 0; + #if MICROPY_PERSISTENT_CODE_SAVE + emit->qstr_link_cur = 0; + #endif + emit->last_emit_was_return_value = false; + emit->scope = scope; + + // allocate memory for keeping track of the types of locals + if (emit->local_vtype_alloc < scope->num_locals) { + emit->local_vtype = m_renew(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc, scope->num_locals); + emit->local_vtype_alloc = scope->num_locals; + } + + // set default type for arguments + mp_uint_t num_args = emit->scope->num_pos_args + emit->scope->num_kwonly_args; + if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) { + num_args += 1; + } + if (scope->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) { + num_args += 1; + } + for (mp_uint_t i = 0; i < num_args; i++) { + emit->local_vtype[i] = VTYPE_PYOBJ; + } + + // Set viper type for arguments + if (emit->do_viper_types) { + for (int i = 0; i < emit->scope->id_info_len; ++i) { + id_info_t *id = &emit->scope->id_info[i]; + if (id->flags & ID_FLAG_IS_PARAM) { + assert(id->local_num < emit->local_vtype_alloc); + emit->local_vtype[id->local_num] = id->flags >> ID_FLAG_VIPER_TYPE_POS; + } + } + } + + // local variables begin unbound, and have unknown type + for (mp_uint_t i = num_args; i < emit->local_vtype_alloc; i++) { + emit->local_vtype[i] = VTYPE_UNBOUND; + } + + // values on stack begin unbound + for (mp_uint_t i = 0; i < emit->stack_info_alloc; i++) { + emit->stack_info[i].kind = STACK_VALUE; + emit->stack_info[i].vtype = VTYPE_UNBOUND; + } + + mp_asm_base_start_pass(&emit->as->base, pass == MP_PASS_EMIT ? MP_ASM_PASS_EMIT : MP_ASM_PASS_COMPUTE); + + // generate code for entry to function + + // Work out start of code state (mp_code_state_t or reduced version for viper) + emit->code_state_start = 0; + if (NEED_GLOBAL_EXC_HANDLER(emit)) { + emit->code_state_start = SIZEOF_NLR_BUF; + } + + if (emit->do_viper_types) { + // Work out size of state (locals plus stack) + // n_state counts all stack and locals, even those in registers + emit->n_state = scope->num_locals + scope->stack_size; + int num_locals_in_regs = 0; + if (CAN_USE_REGS_FOR_LOCALS(emit)) { + num_locals_in_regs = scope->num_locals; + if (num_locals_in_regs > REG_LOCAL_NUM) { + num_locals_in_regs = REG_LOCAL_NUM; + } + // Need a spot for REG_LOCAL_3 if 4 or more args (see below) + if (scope->num_pos_args >= 4) { + --num_locals_in_regs; + } + } + + // Work out where the locals and Python stack start within the C stack + if (NEED_GLOBAL_EXC_HANDLER(emit)) { + // Reserve 2 words for function object and old globals + emit->stack_start = emit->code_state_start + 2; + } else if (scope->scope_flags & MP_SCOPE_FLAG_HASCONSTS) { + // Reserve 1 word for function object, to access const table + emit->stack_start = emit->code_state_start + 1; + } else { + emit->stack_start = emit->code_state_start + 0; + } + + // Entry to function + ASM_ENTRY(emit->as, emit->stack_start + emit->n_state - num_locals_in_regs); + + #if N_X86 + asm_x86_mov_arg_to_r32(emit->as, 0, REG_PARENT_ARG_1); + #endif + + // Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_LOCAL_3, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CONST_TABLE); + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_LOCAL_3, 0); + + // Store function object (passed as first arg) to stack if needed + if (NEED_FUN_OBJ(emit)) { + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_FUN_OBJ(emit), REG_PARENT_ARG_1); + } + + // Put n_args in REG_ARG_1, n_kw in REG_ARG_2, args array in REG_LOCAL_3 + #if N_X86 + asm_x86_mov_arg_to_r32(emit->as, 1, REG_ARG_1); + asm_x86_mov_arg_to_r32(emit->as, 2, REG_ARG_2); + asm_x86_mov_arg_to_r32(emit->as, 3, REG_LOCAL_3); + #else + ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_PARENT_ARG_2); + ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_PARENT_ARG_3); + ASM_MOV_REG_REG(emit->as, REG_LOCAL_3, REG_PARENT_ARG_4); + #endif + + // Check number of args matches this function, and call mp_arg_check_num_sig if not + ASM_JUMP_IF_REG_NONZERO(emit->as, REG_ARG_2, *emit->label_slot + 4, true); + ASM_MOV_REG_IMM(emit->as, REG_ARG_3, scope->num_pos_args); + ASM_JUMP_IF_REG_EQ(emit->as, REG_ARG_1, REG_ARG_3, *emit->label_slot + 5); + mp_asm_base_label_assign(&emit->as->base, *emit->label_slot + 4); + ASM_MOV_REG_IMM(emit->as, REG_ARG_3, MP_OBJ_FUN_MAKE_SIG(scope->num_pos_args, scope->num_pos_args, false)); + ASM_CALL_IND(emit->as, MP_F_ARG_CHECK_NUM_SIG); + mp_asm_base_label_assign(&emit->as->base, *emit->label_slot + 5); + + // Store arguments into locals (reg or stack), converting to native if needed + for (int i = 0; i < emit->scope->num_pos_args; i++) { + int r = REG_ARG_1; + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_LOCAL_3, i); + if (emit->local_vtype[i] != VTYPE_PYOBJ) { + emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, emit->local_vtype[i], REG_ARG_2); + r = REG_RET; + } + // REG_LOCAL_3 points to the args array so be sure not to overwrite it if it's still needed + if (i < REG_LOCAL_NUM && CAN_USE_REGS_FOR_LOCALS(emit) && (i != 2 || emit->scope->num_pos_args == 3)) { + ASM_MOV_REG_REG(emit->as, reg_local_table[i], r); + } else { + emit_native_mov_state_reg(emit, LOCAL_IDX_LOCAL_VAR(emit, i), r); + } + } + // Get 3rd local from the stack back into REG_LOCAL_3 if this reg couldn't be written to above + if (emit->scope->num_pos_args >= 4 && CAN_USE_REGS_FOR_LOCALS(emit)) { + ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_3, LOCAL_IDX_LOCAL_VAR(emit, 2)); + } + + emit_native_global_exc_entry(emit); + + } else { + // work out size of state (locals plus stack) + emit->n_state = scope->num_locals + scope->stack_size; + + if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { + emit->code_state_start = 0; + emit->stack_start = SIZEOF_CODE_STATE; + #if N_PRELUDE_AS_BYTES_OBJ + // Load index of prelude bytes object in const_table + mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (uintptr_t)(emit->scope->num_pos_args + emit->scope->num_kwonly_args + 1)); + #else + mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (uintptr_t)emit->prelude_offset); + #endif + mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (uintptr_t)emit->start_offset); + ASM_ENTRY(emit->as, SIZEOF_NLR_BUF); + + // Put address of code_state into REG_GENERATOR_STATE + #if N_X86 + asm_x86_mov_arg_to_r32(emit->as, 0, REG_GENERATOR_STATE); + #else + ASM_MOV_REG_REG(emit->as, REG_GENERATOR_STATE, REG_PARENT_ARG_1); + #endif + + // Put throw value into LOCAL_IDX_EXC_VAL slot, for yield/yield-from + #if N_X86 + asm_x86_mov_arg_to_r32(emit->as, 1, REG_PARENT_ARG_2); + #endif + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_PARENT_ARG_2); + + // Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_GENERATOR_STATE, LOCAL_IDX_FUN_OBJ(emit)); + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CONST_TABLE); + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_TEMP0, emit->scope->num_pos_args + emit->scope->num_kwonly_args); + } else { + // The locals and stack start after the code_state structure + emit->stack_start = emit->code_state_start + SIZEOF_CODE_STATE; + + // Allocate space on C-stack for code_state structure, which includes state + ASM_ENTRY(emit->as, emit->stack_start + emit->n_state); + + // Prepare incoming arguments for call to mp_setup_code_state + + #if N_X86 + asm_x86_mov_arg_to_r32(emit->as, 0, REG_PARENT_ARG_1); + asm_x86_mov_arg_to_r32(emit->as, 1, REG_PARENT_ARG_2); + asm_x86_mov_arg_to_r32(emit->as, 2, REG_PARENT_ARG_3); + asm_x86_mov_arg_to_r32(emit->as, 3, REG_PARENT_ARG_4); + #endif + + // Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_LOCAL_3, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CONST_TABLE); + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_LOCAL_3, emit->scope->num_pos_args + emit->scope->num_kwonly_args); + + // Set code_state.fun_bc + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_FUN_OBJ(emit), REG_PARENT_ARG_1); + + // Set code_state.ip (offset from start of this function to prelude info) + int code_state_ip_local = emit->code_state_start + OFFSETOF_CODE_STATE_IP; + #if N_PRELUDE_AS_BYTES_OBJ + // Prelude is a bytes object in const_table; store ip = prelude->data - fun_bc->bytecode + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_LOCAL_3, REG_LOCAL_3, emit->scope->num_pos_args + emit->scope->num_kwonly_args + 1); + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_LOCAL_3, REG_LOCAL_3, offsetof(mp_obj_str_t, data) / sizeof(uintptr_t)); + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_PARENT_ARG_1, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_BYTECODE); + ASM_SUB_REG_REG(emit->as, REG_LOCAL_3, REG_PARENT_ARG_1); + emit_native_mov_state_reg(emit, code_state_ip_local, REG_LOCAL_3); + #else + if (emit->pass == MP_PASS_CODE_SIZE) { + // Commit to the encoding size based on the value of prelude_offset in this pass. + // By using 32768 as the cut-off it is highly unlikely that prelude_offset will + // grow beyond 65535 by the end of thiss pass, and so require the larger encoding. + emit->prelude_offset_uses_u16_encoding = emit->prelude_offset < 32768; + } + if (emit->prelude_offset_uses_u16_encoding) { + assert(emit->prelude_offset <= 65535); + emit_native_mov_state_imm_fix_u16_via(emit, code_state_ip_local, emit->prelude_offset, REG_PARENT_ARG_1); + } else { + emit_native_mov_state_imm_fix_word_via(emit, code_state_ip_local, emit->prelude_offset, REG_PARENT_ARG_1); + } + #endif + + // Set code_state.n_state (only works on little endian targets due to n_state being uint16_t) + emit_native_mov_state_imm_via(emit, emit->code_state_start + offsetof(mp_code_state_t, n_state) / sizeof(uintptr_t), emit->n_state, REG_ARG_1); + + // Put address of code_state into first arg + ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, emit->code_state_start); + + // Copy next 3 args if needed + #if REG_ARG_2 != REG_PARENT_ARG_2 + ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_PARENT_ARG_2); + #endif + #if REG_ARG_3 != REG_PARENT_ARG_3 + ASM_MOV_REG_REG(emit->as, REG_ARG_3, REG_PARENT_ARG_3); + #endif + #if REG_ARG_4 != REG_PARENT_ARG_4 + ASM_MOV_REG_REG(emit->as, REG_ARG_4, REG_PARENT_ARG_4); + #endif + + // Call mp_setup_code_state to prepare code_state structure + #if N_THUMB + asm_thumb_bl_ind(emit->as, MP_F_SETUP_CODE_STATE, ASM_THUMB_REG_R4); + #elif N_ARM + asm_arm_bl_ind(emit->as, MP_F_SETUP_CODE_STATE, ASM_ARM_REG_R4); + #else + ASM_CALL_IND(emit->as, MP_F_SETUP_CODE_STATE); + #endif + } + + emit_native_global_exc_entry(emit); + + // cache some locals in registers, but only if no exception handlers + if (CAN_USE_REGS_FOR_LOCALS(emit)) { + for (int i = 0; i < REG_LOCAL_NUM && i < scope->num_locals; ++i) { + ASM_MOV_REG_LOCAL(emit->as, reg_local_table[i], LOCAL_IDX_LOCAL_VAR(emit, i)); + } + } + + // set the type of closed over variables + for (mp_uint_t i = 0; i < scope->id_info_len; i++) { + id_info_t *id = &scope->id_info[i]; + if (id->kind == ID_INFO_KIND_CELL) { + emit->local_vtype[id->local_num] = VTYPE_PYOBJ; + } + } + + if (pass == MP_PASS_EMIT) { + // write argument names as qstr objects + // see comment in corresponding part of emitbc.c about the logic here + for (int i = 0; i < scope->num_pos_args + scope->num_kwonly_args; i++) { + qstr qst = MP_QSTR__star_; + for (int j = 0; j < scope->id_info_len; ++j) { + id_info_t *id = &scope->id_info[j]; + if ((id->flags & ID_FLAG_IS_PARAM) && id->local_num == i) { + qst = id->qst; + break; + } + } + emit->const_table[i] = (mp_uint_t)MP_OBJ_NEW_QSTR(qst); + } + } + } + +} + +static inline void emit_native_write_code_info_byte(emit_t *emit, byte val) { + mp_asm_base_data(&emit->as->base, 1, val); +} + +STATIC void emit_native_end_pass(emit_t *emit) { + emit_native_global_exc_exit(emit); + + if (!emit->do_viper_types) { + emit->prelude_offset = mp_asm_base_get_code_pos(&emit->as->base); + + size_t n_state = emit->n_state; + size_t n_exc_stack = 0; // exc-stack not needed for native code + MP_BC_PRELUDE_SIG_ENCODE(n_state, n_exc_stack, emit->scope, emit_native_write_code_info_byte, emit); + + #if MICROPY_PERSISTENT_CODE + size_t n_info = 4; + #else + size_t n_info = 1; + #endif + MP_BC_PRELUDE_SIZE_ENCODE(n_info, emit->n_cell, emit_native_write_code_info_byte, emit); + + #if MICROPY_PERSISTENT_CODE + mp_asm_base_data(&emit->as->base, 1, emit->scope->simple_name); + mp_asm_base_data(&emit->as->base, 1, emit->scope->simple_name >> 8); + mp_asm_base_data(&emit->as->base, 1, emit->scope->source_file); + mp_asm_base_data(&emit->as->base, 1, emit->scope->source_file >> 8); + #else + mp_asm_base_data(&emit->as->base, 1, 1); + #endif + + // bytecode prelude: initialise closed over variables + size_t cell_start = mp_asm_base_get_code_pos(&emit->as->base); + for (int i = 0; i < emit->scope->id_info_len; i++) { + id_info_t *id = &emit->scope->id_info[i]; + if (id->kind == ID_INFO_KIND_CELL) { + assert(id->local_num <= 255); + mp_asm_base_data(&emit->as->base, 1, id->local_num); // write the local which should be converted to a cell + } + } + emit->n_cell = mp_asm_base_get_code_pos(&emit->as->base) - cell_start; + + #if N_PRELUDE_AS_BYTES_OBJ + // Prelude bytes object is after qstr arg names and mp_fun_table + size_t table_off = emit->scope->num_pos_args + emit->scope->num_kwonly_args + 1; + if (emit->pass == MP_PASS_EMIT) { + void *buf = emit->as->base.code_base + emit->prelude_offset; + size_t n = emit->as->base.code_offset - emit->prelude_offset; + emit->const_table[table_off] = (uintptr_t)mp_obj_new_bytes(buf, n); + } + #endif + } + + ASM_END_PASS(emit->as); + + // check stack is back to zero size + assert(emit->stack_size == 0); + assert(emit->exc_stack_size == 0); + + // Deal with const table accounting + assert(emit->pass <= MP_PASS_STACK_SIZE || (emit->const_table_num_obj == emit->const_table_cur_obj)); + emit->const_table_num_obj = emit->const_table_cur_obj; + if (emit->pass == MP_PASS_CODE_SIZE) { + size_t const_table_alloc = 1 + emit->const_table_num_obj + emit->const_table_cur_raw_code; + size_t nqstr = 0; + if (!emit->do_viper_types) { + // Add room for qstr names of arguments + nqstr = emit->scope->num_pos_args + emit->scope->num_kwonly_args; + const_table_alloc += nqstr; + } + emit->const_table = m_new(mp_uint_t, const_table_alloc); + #if !MICROPY_DYNAMIC_COMPILER + // Store mp_fun_table pointer just after qstrs + // (but in dynamic-compiler mode eliminate dependency on mp_fun_table) + emit->const_table[nqstr] = (mp_uint_t)(uintptr_t)&mp_fun_table; + #endif + + #if MICROPY_PERSISTENT_CODE_SAVE + size_t qstr_link_alloc = emit->qstr_link_cur; + if (qstr_link_alloc > 0) { + emit->qstr_link = m_new(mp_qstr_link_entry_t, qstr_link_alloc); + } + #endif + } + + if (emit->pass == MP_PASS_EMIT) { + void *f = mp_asm_base_get_code(&emit->as->base); + mp_uint_t f_len = mp_asm_base_get_code_size(&emit->as->base); + + mp_emit_glue_assign_native(emit->scope->raw_code, + emit->do_viper_types ? MP_CODE_NATIVE_VIPER : MP_CODE_NATIVE_PY, + f, f_len, emit->const_table, + #if MICROPY_PERSISTENT_CODE_SAVE + emit->prelude_offset, + emit->const_table_cur_obj, emit->const_table_cur_raw_code, + emit->qstr_link_cur, emit->qstr_link, + #endif + emit->scope->num_pos_args, emit->scope->scope_flags, 0); + } +} + +STATIC bool emit_native_last_emit_was_return_value(emit_t *emit) { + return emit->last_emit_was_return_value; +} + +STATIC void ensure_extra_stack(emit_t *emit, size_t delta) { + if (emit->stack_size + delta > emit->stack_info_alloc) { + size_t new_alloc = (emit->stack_size + delta + 8) & ~3; + emit->stack_info = m_renew(stack_info_t, emit->stack_info, emit->stack_info_alloc, new_alloc); + emit->stack_info_alloc = new_alloc; + } +} + +STATIC void adjust_stack(emit_t *emit, mp_int_t stack_size_delta) { + assert((mp_int_t)emit->stack_size + stack_size_delta >= 0); + assert((mp_int_t)emit->stack_size + stack_size_delta <= (mp_int_t)emit->stack_info_alloc); + emit->stack_size += stack_size_delta; + if (emit->pass > MP_PASS_SCOPE && emit->stack_size > emit->scope->stack_size) { + emit->scope->stack_size = emit->stack_size; + } + #ifdef DEBUG_PRINT + DEBUG_printf(" adjust_stack; stack_size=%d+%d; stack now:", emit->stack_size - stack_size_delta, stack_size_delta); + for (int i = 0; i < emit->stack_size; i++) { + stack_info_t *si = &emit->stack_info[i]; + DEBUG_printf(" (v=%d k=%d %d)", si->vtype, si->kind, si->data.u_reg); + } + DEBUG_printf("\n"); + #endif +} + +STATIC void emit_native_adjust_stack_size(emit_t *emit, mp_int_t delta) { + DEBUG_printf("adjust_stack_size(" INT_FMT ")\n", delta); + if (delta > 0) { + ensure_extra_stack(emit, delta); + } + // If we are adjusting the stack in a positive direction (pushing) then we + // need to fill in values for the stack kind and vtype of the newly-pushed + // entries. These should be set to "value" (ie not reg or imm) because we + // should only need to adjust the stack due to a jump to this part in the + // code (and hence we have settled the stack before the jump). + for (mp_int_t i = 0; i < delta; i++) { + stack_info_t *si = &emit->stack_info[emit->stack_size + i]; + si->kind = STACK_VALUE; + // TODO we don't know the vtype to use here. At the moment this is a + // hack to get the case of multi comparison working. + if (delta == 1) { + si->vtype = emit->saved_stack_vtype; + } else { + si->vtype = VTYPE_PYOBJ; + } + } + adjust_stack(emit, delta); +} + +STATIC void emit_native_set_source_line(emit_t *emit, mp_uint_t source_line) { + (void)emit; + (void)source_line; +} + +// this must be called at start of emit functions +STATIC void emit_native_pre(emit_t *emit) { + emit->last_emit_was_return_value = false; +} + +// depth==0 is top, depth==1 is before top, etc +STATIC stack_info_t *peek_stack(emit_t *emit, mp_uint_t depth) { + return &emit->stack_info[emit->stack_size - 1 - depth]; +} + +// depth==0 is top, depth==1 is before top, etc +STATIC vtype_kind_t peek_vtype(emit_t *emit, mp_uint_t depth) { + if (emit->do_viper_types) { + return peek_stack(emit, depth)->vtype; + } else { + // Type is always PYOBJ even if the intermediate stored value is not + return VTYPE_PYOBJ; + } +} + +// pos=1 is TOS, pos=2 is next, etc +// use pos=0 for no skipping +STATIC void need_reg_single(emit_t *emit, int reg_needed, int skip_stack_pos) { + skip_stack_pos = emit->stack_size - skip_stack_pos; + for (int i = 0; i < emit->stack_size; i++) { + if (i != skip_stack_pos) { + stack_info_t *si = &emit->stack_info[i]; + if (si->kind == STACK_REG && si->data.u_reg == reg_needed) { + si->kind = STACK_VALUE; + emit_native_mov_state_reg(emit, emit->stack_start + i, si->data.u_reg); + } + } + } +} + +// Ensures all unsettled registers that hold Python values are copied to the +// concrete Python stack. All registers are then free to use. +STATIC void need_reg_all(emit_t *emit) { + for (int i = 0; i < emit->stack_size; i++) { + stack_info_t *si = &emit->stack_info[i]; + if (si->kind == STACK_REG) { + DEBUG_printf(" reg(%u) to local(%u)\n", si->data.u_reg, emit->stack_start + i); + si->kind = STACK_VALUE; + emit_native_mov_state_reg(emit, emit->stack_start + i, si->data.u_reg); + } + } +} + +STATIC vtype_kind_t load_reg_stack_imm(emit_t *emit, int reg_dest, const stack_info_t *si, bool convert_to_pyobj) { + if (!convert_to_pyobj && emit->do_viper_types) { + ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm); + return si->vtype; + } else { + if (si->vtype == VTYPE_PYOBJ) { + ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm); + } else if (si->vtype == VTYPE_BOOL) { + emit_native_mov_reg_const(emit, reg_dest, MP_F_CONST_FALSE_OBJ + si->data.u_imm); + } else if (si->vtype == VTYPE_INT || si->vtype == VTYPE_UINT) { + ASM_MOV_REG_IMM(emit->as, reg_dest, (uintptr_t)MP_OBJ_NEW_SMALL_INT(si->data.u_imm)); + } else if (si->vtype == VTYPE_PTR_NONE) { + emit_native_mov_reg_const(emit, reg_dest, MP_F_CONST_NONE_OBJ); + } else { + mp_raise_NotImplementedError(MP_ERROR_TEXT("conversion to object")); + } + return VTYPE_PYOBJ; + } +} + +// Copies all unsettled registers and immediates that are Python values into the +// concrete Python stack. This ensures the concrete Python stack holds valid +// values for the current stack_size. +// This function may clobber REG_TEMP1. +STATIC void need_stack_settled(emit_t *emit) { + DEBUG_printf(" need_stack_settled; stack_size=%d\n", emit->stack_size); + need_reg_all(emit); + for (int i = 0; i < emit->stack_size; i++) { + stack_info_t *si = &emit->stack_info[i]; + if (si->kind == STACK_IMM) { + DEBUG_printf(" imm(" INT_FMT ") to local(%u)\n", si->data.u_imm, emit->stack_start + i); + si->kind = STACK_VALUE; + // using REG_TEMP1 to avoid clobbering REG_TEMP0 (aka REG_RET) + si->vtype = load_reg_stack_imm(emit, REG_TEMP1, si, false); + emit_native_mov_state_reg(emit, emit->stack_start + i, REG_TEMP1); + } + } +} + +// pos=1 is TOS, pos=2 is next, etc +STATIC void emit_access_stack(emit_t *emit, int pos, vtype_kind_t *vtype, int reg_dest) { + need_reg_single(emit, reg_dest, pos); + stack_info_t *si = &emit->stack_info[emit->stack_size - pos]; + *vtype = si->vtype; + switch (si->kind) { + case STACK_VALUE: + emit_native_mov_reg_state(emit, reg_dest, emit->stack_start + emit->stack_size - pos); + break; + + case STACK_REG: + if (si->data.u_reg != reg_dest) { + ASM_MOV_REG_REG(emit->as, reg_dest, si->data.u_reg); + } + break; + + case STACK_IMM: + *vtype = load_reg_stack_imm(emit, reg_dest, si, false); + break; + } +} + +// does an efficient X=pop(); discard(); push(X) +// needs a (non-temp) register in case the poped element was stored in the stack +STATIC void emit_fold_stack_top(emit_t *emit, int reg_dest) { + stack_info_t *si = &emit->stack_info[emit->stack_size - 2]; + si[0] = si[1]; + if (si->kind == STACK_VALUE) { + // if folded element was on the stack we need to put it in a register + emit_native_mov_reg_state(emit, reg_dest, emit->stack_start + emit->stack_size - 1); + si->kind = STACK_REG; + si->data.u_reg = reg_dest; + } + adjust_stack(emit, -1); +} + +// If stacked value is in a register and the register is not r1 or r2, then +// *reg_dest is set to that register. Otherwise the value is put in *reg_dest. +STATIC void emit_pre_pop_reg_flexible(emit_t *emit, vtype_kind_t *vtype, int *reg_dest, int not_r1, int not_r2) { + emit->last_emit_was_return_value = false; + stack_info_t *si = peek_stack(emit, 0); + if (si->kind == STACK_REG && si->data.u_reg != not_r1 && si->data.u_reg != not_r2) { + *vtype = si->vtype; + *reg_dest = si->data.u_reg; + need_reg_single(emit, *reg_dest, 1); + } else { + emit_access_stack(emit, 1, vtype, *reg_dest); + } + adjust_stack(emit, -1); +} + +STATIC void emit_pre_pop_discard(emit_t *emit) { + emit->last_emit_was_return_value = false; + adjust_stack(emit, -1); +} + +STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) { + emit->last_emit_was_return_value = false; + emit_access_stack(emit, 1, vtype, reg_dest); + adjust_stack(emit, -1); +} + +STATIC void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) { + emit_pre_pop_reg(emit, vtypea, rega); + emit_pre_pop_reg(emit, vtypeb, regb); +} + +STATIC void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) { + emit_pre_pop_reg(emit, vtypea, rega); + emit_pre_pop_reg(emit, vtypeb, regb); + emit_pre_pop_reg(emit, vtypec, regc); +} + +STATIC void emit_post(emit_t *emit) { + (void)emit; +} + +STATIC void emit_post_top_set_vtype(emit_t *emit, vtype_kind_t new_vtype) { + stack_info_t *si = &emit->stack_info[emit->stack_size - 1]; + si->vtype = new_vtype; +} + +STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) { + ensure_extra_stack(emit, 1); + stack_info_t *si = &emit->stack_info[emit->stack_size]; + si->vtype = vtype; + si->kind = STACK_REG; + si->data.u_reg = reg; + adjust_stack(emit, 1); +} + +STATIC void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, mp_int_t imm) { + ensure_extra_stack(emit, 1); + stack_info_t *si = &emit->stack_info[emit->stack_size]; + si->vtype = vtype; + si->kind = STACK_IMM; + si->data.u_imm = imm; + adjust_stack(emit, 1); +} + +STATIC void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) { + emit_post_push_reg(emit, vtypea, rega); + emit_post_push_reg(emit, vtypeb, regb); +} + +STATIC void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) { + emit_post_push_reg(emit, vtypea, rega); + emit_post_push_reg(emit, vtypeb, regb); + emit_post_push_reg(emit, vtypec, regc); +} + +STATIC void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) { + emit_post_push_reg(emit, vtypea, rega); + emit_post_push_reg(emit, vtypeb, regb); + emit_post_push_reg(emit, vtypec, regc); + emit_post_push_reg(emit, vtyped, regd); +} + +STATIC void emit_call(emit_t *emit, mp_fun_kind_t fun_kind) { + need_reg_all(emit); + ASM_CALL_IND(emit->as, fun_kind); +} + +STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) { + need_reg_all(emit); + ASM_MOV_REG_IMM(emit->as, arg_reg, arg_val); + ASM_CALL_IND(emit->as, fun_kind); +} + +STATIC void emit_call_with_2_imm_args(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2) { + need_reg_all(emit); + ASM_MOV_REG_IMM(emit->as, arg_reg1, arg_val1); + ASM_MOV_REG_IMM(emit->as, arg_reg2, arg_val2); + ASM_CALL_IND(emit->as, fun_kind); +} + +STATIC void emit_call_with_qstr_arg(emit_t *emit, mp_fun_kind_t fun_kind, qstr qst, int arg_reg) { + need_reg_all(emit); + emit_native_mov_reg_qstr(emit, arg_reg, qst); + ASM_CALL_IND(emit->as, fun_kind); +} + +// vtype of all n_pop objects is VTYPE_PYOBJ +// Will convert any items that are not VTYPE_PYOBJ to this type and put them back on the stack. +// If any conversions of non-immediate values are needed, then it uses REG_ARG_1, REG_ARG_2 and REG_RET. +// Otherwise, it does not use any temporary registers (but may use reg_dest before loading it with stack pointer). +STATIC void emit_get_stack_pointer_to_reg_for_pop(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_pop) { + need_reg_all(emit); + + // First, store any immediate values to their respective place on the stack. + for (mp_uint_t i = 0; i < n_pop; i++) { + stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i]; + // must push any imm's to stack + // must convert them to VTYPE_PYOBJ for viper code + if (si->kind == STACK_IMM) { + si->kind = STACK_VALUE; + si->vtype = load_reg_stack_imm(emit, reg_dest, si, true); + emit_native_mov_state_reg(emit, emit->stack_start + emit->stack_size - 1 - i, reg_dest); + } + + // verify that this value is on the stack + assert(si->kind == STACK_VALUE); + } + + // Second, convert any non-VTYPE_PYOBJ to that type. + for (mp_uint_t i = 0; i < n_pop; i++) { + stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i]; + if (si->vtype != VTYPE_PYOBJ) { + mp_uint_t local_num = emit->stack_start + emit->stack_size - 1 - i; + emit_native_mov_reg_state(emit, REG_ARG_1, local_num); + emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, si->vtype, REG_ARG_2); // arg2 = type + emit_native_mov_state_reg(emit, local_num, REG_RET); + si->vtype = VTYPE_PYOBJ; + DEBUG_printf(" convert_native_to_obj(local_num=" UINT_FMT ")\n", local_num); + } + } + + // Adujust the stack for a pop of n_pop items, and load the stack pointer into reg_dest. + adjust_stack(emit, -n_pop); + emit_native_mov_reg_state_addr(emit, reg_dest, emit->stack_start + emit->stack_size); +} + +// vtype of all n_push objects is VTYPE_PYOBJ +STATIC void emit_get_stack_pointer_to_reg_for_push(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_push) { + need_reg_all(emit); + ensure_extra_stack(emit, n_push); + for (mp_uint_t i = 0; i < n_push; i++) { + emit->stack_info[emit->stack_size + i].kind = STACK_VALUE; + emit->stack_info[emit->stack_size + i].vtype = VTYPE_PYOBJ; + } + emit_native_mov_reg_state_addr(emit, reg_dest, emit->stack_start + emit->stack_size); + adjust_stack(emit, n_push); +} + +STATIC void emit_native_push_exc_stack(emit_t *emit, uint label, bool is_finally) { + if (emit->exc_stack_size + 1 > emit->exc_stack_alloc) { + size_t new_alloc = emit->exc_stack_alloc + 4; + emit->exc_stack = m_renew(exc_stack_entry_t, emit->exc_stack, emit->exc_stack_alloc, new_alloc); + emit->exc_stack_alloc = new_alloc; + } + + exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size++]; + e->label = label; + e->is_finally = is_finally; + e->unwind_label = UNWIND_LABEL_UNUSED; + e->is_active = true; + + ASM_MOV_REG_PCREL(emit->as, REG_RET, label); + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET); +} + +STATIC void emit_native_leave_exc_stack(emit_t *emit, bool start_of_handler) { + assert(emit->exc_stack_size > 0); + + // Get current exception handler and deactivate it + exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1]; + e->is_active = false; + + // Find next innermost active exception handler, to restore as current handler + for (--e; e >= emit->exc_stack && !e->is_active; --e) { + } + + // Update the PC of the new exception handler + if (e < emit->exc_stack) { + // No active handler, clear handler PC to zero + if (start_of_handler) { + // Optimisation: PC is already cleared by global exc handler + return; + } + ASM_XOR_REG_REG(emit->as, REG_RET, REG_RET); + } else { + // Found new active handler, get its PC + ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label); + } + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET); +} + +STATIC exc_stack_entry_t *emit_native_pop_exc_stack(emit_t *emit) { + assert(emit->exc_stack_size > 0); + exc_stack_entry_t *e = &emit->exc_stack[--emit->exc_stack_size]; + assert(e->is_active == false); + return e; +} + +STATIC void emit_load_reg_with_ptr(emit_t *emit, int reg, mp_uint_t ptr, size_t table_off) { + if (!emit->do_viper_types) { + // Skip qstr names of arguments + table_off += emit->scope->num_pos_args + emit->scope->num_kwonly_args; + } + if (emit->pass == MP_PASS_EMIT) { + emit->const_table[table_off] = ptr; + } + emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_FUN_OBJ(emit)); + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CONST_TABLE); + ASM_LOAD_REG_REG_OFFSET(emit->as, reg, REG_TEMP0, table_off); +} + +STATIC void emit_load_reg_with_object(emit_t *emit, int reg, mp_obj_t obj) { + // First entry is for mp_fun_table + size_t table_off = 1 + emit->const_table_cur_obj++; + emit_load_reg_with_ptr(emit, reg, (mp_uint_t)obj, table_off); +} + +STATIC void emit_load_reg_with_raw_code(emit_t *emit, int reg, mp_raw_code_t *rc) { + // First entry is for mp_fun_table, then constant objects + size_t table_off = 1 + emit->const_table_num_obj + emit->const_table_cur_raw_code++; + emit_load_reg_with_ptr(emit, reg, (mp_uint_t)rc, table_off); +} + +STATIC void emit_native_label_assign(emit_t *emit, mp_uint_t l) { + DEBUG_printf("label_assign(" UINT_FMT ")\n", l); + + bool is_finally = false; + if (emit->exc_stack_size > 0) { + exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1]; + is_finally = e->is_finally && e->label == l; + } + + if (is_finally) { + // Label is at start of finally handler: store TOS into exception slot + vtype_kind_t vtype; + emit_pre_pop_reg(emit, &vtype, REG_TEMP0); + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0); + } + + emit_native_pre(emit); + // need to commit stack because we can jump here from elsewhere + need_stack_settled(emit); + mp_asm_base_label_assign(&emit->as->base, l); + emit_post(emit); + + if (is_finally) { + // Label is at start of finally handler: pop exception stack + emit_native_leave_exc_stack(emit, false); + } +} + +STATIC void emit_native_global_exc_entry(emit_t *emit) { + // Note: 4 labels are reserved for this function, starting at *emit->label_slot + + emit->exit_label = *emit->label_slot; + + if (NEED_GLOBAL_EXC_HANDLER(emit)) { + mp_uint_t nlr_label = *emit->label_slot + 1; + mp_uint_t start_label = *emit->label_slot + 2; + mp_uint_t global_except_label = *emit->label_slot + 3; + + if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { + // Set new globals + emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_FUN_OBJ(emit)); + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_ARG_1, OFFSETOF_OBJ_FUN_BC_GLOBALS); + emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS); + + // Save old globals (or NULL if globals didn't change) + emit_native_mov_state_reg(emit, LOCAL_IDX_OLD_GLOBALS(emit), REG_RET); + } + + if (emit->scope->exc_stack_size == 0) { + if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { + // Optimisation: if globals didn't change don't push the nlr context + ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, start_label, false); + } + + // Wrap everything in an nlr context + ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 0); + emit_call(emit, MP_F_NLR_PUSH); + #if N_NLR_SETJMP + ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 2); + emit_call(emit, MP_F_SETJMP); + #endif + ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, start_label, true); + } else { + // Clear the unwind state + ASM_XOR_REG_REG(emit->as, REG_TEMP0, REG_TEMP0); + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_UNWIND(emit), REG_TEMP0); + + // Put PC of start code block into REG_LOCAL_1 + ASM_MOV_REG_PCREL(emit->as, REG_LOCAL_1, start_label); + + // Wrap everything in an nlr context + emit_native_label_assign(emit, nlr_label); + ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_2, LOCAL_IDX_EXC_HANDLER_UNWIND(emit)); + ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 0); + emit_call(emit, MP_F_NLR_PUSH); + #if N_NLR_SETJMP + ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 2); + emit_call(emit, MP_F_SETJMP); + #endif + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_UNWIND(emit), REG_LOCAL_2); + ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, global_except_label, true); + + // Clear PC of current code block, and jump there to resume execution + ASM_XOR_REG_REG(emit->as, REG_TEMP0, REG_TEMP0); + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_TEMP0); + ASM_JUMP_REG(emit->as, REG_LOCAL_1); + + // Global exception handler: check for valid exception handler + emit_native_label_assign(emit, global_except_label); + #if N_NLR_SETJMP + // Reload REG_FUN_TABLE, since it may be clobbered by longjmp + emit_native_mov_reg_state(emit, REG_LOCAL_1, LOCAL_IDX_FUN_OBJ(emit)); + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_LOCAL_1, REG_LOCAL_1, offsetof(mp_obj_fun_bc_t, const_table) / sizeof(uintptr_t)); + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_LOCAL_1, emit->scope->num_pos_args + emit->scope->num_kwonly_args); + #endif + ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_1, LOCAL_IDX_EXC_HANDLER_PC(emit)); + ASM_JUMP_IF_REG_NONZERO(emit->as, REG_LOCAL_1, nlr_label, false); + } + + if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { + // Restore old globals + emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_OLD_GLOBALS(emit)); + emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS); + } + + if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { + // Store return value in state[0] + ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, LOCAL_IDX_EXC_VAL(emit)); + ASM_STORE_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_GENERATOR_STATE, OFFSETOF_CODE_STATE_STATE); + + // Load return kind + ASM_MOV_REG_IMM(emit->as, REG_PARENT_RET, MP_VM_RETURN_EXCEPTION); + + ASM_EXIT(emit->as); + } else { + // Re-raise exception out to caller + ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); + emit_call(emit, MP_F_NATIVE_RAISE); + } + + // Label for start of function + emit_native_label_assign(emit, start_label); + + if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { + emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_GEN_PC(emit)); + ASM_JUMP_REG(emit->as, REG_TEMP0); + emit->start_offset = mp_asm_base_get_code_pos(&emit->as->base); + + // This is the first entry of the generator + + // Check LOCAL_IDX_EXC_VAL for any injected value + ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); + emit_call(emit, MP_F_NATIVE_RAISE); + } + } +} + +STATIC void emit_native_global_exc_exit(emit_t *emit) { + // Label for end of function + emit_native_label_assign(emit, emit->exit_label); + + if (NEED_GLOBAL_EXC_HANDLER(emit)) { + // Get old globals + if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { + emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_OLD_GLOBALS(emit)); + + if (emit->scope->exc_stack_size == 0) { + // Optimisation: if globals didn't change then don't restore them and don't do nlr_pop + ASM_JUMP_IF_REG_ZERO(emit->as, REG_ARG_1, emit->exit_label + 1, false); + } + + // Restore old globals + emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS); + } + + // Pop the nlr context + emit_call(emit, MP_F_NLR_POP); + + if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { + if (emit->scope->exc_stack_size == 0) { + // Destination label for above optimisation + emit_native_label_assign(emit, emit->exit_label + 1); + } + } + + // Load return value + ASM_MOV_REG_LOCAL(emit->as, REG_PARENT_RET, LOCAL_IDX_RET_VAL(emit)); + } + + ASM_EXIT(emit->as); +} + +STATIC void emit_native_import_name(emit_t *emit, qstr qst) { + DEBUG_printf("import_name %s\n", qstr_str(qst)); + + // get arguments from stack: arg2 = fromlist, arg3 = level + // If using viper types these arguments must be converted to proper objects, and + // to accomplish this viper types are turned off for the emit_pre_pop_reg_reg call. + bool orig_do_viper_types = emit->do_viper_types; + emit->do_viper_types = false; + vtype_kind_t vtype_fromlist; + vtype_kind_t vtype_level; + emit_pre_pop_reg_reg(emit, &vtype_fromlist, REG_ARG_2, &vtype_level, REG_ARG_3); + assert(vtype_fromlist == VTYPE_PYOBJ); + assert(vtype_level == VTYPE_PYOBJ); + emit->do_viper_types = orig_do_viper_types; + + emit_call_with_qstr_arg(emit, MP_F_IMPORT_NAME, qst, REG_ARG_1); // arg1 = import name + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); +} + +STATIC void emit_native_import_from(emit_t *emit, qstr qst) { + DEBUG_printf("import_from %s\n", qstr_str(qst)); + emit_native_pre(emit); + vtype_kind_t vtype_module; + emit_access_stack(emit, 1, &vtype_module, REG_ARG_1); // arg1 = module + assert(vtype_module == VTYPE_PYOBJ); + emit_call_with_qstr_arg(emit, MP_F_IMPORT_FROM, qst, REG_ARG_2); // arg2 = import name + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); +} + +STATIC void emit_native_import_star(emit_t *emit) { + DEBUG_printf("import_star\n"); + vtype_kind_t vtype_module; + emit_pre_pop_reg(emit, &vtype_module, REG_ARG_1); // arg1 = module + assert(vtype_module == VTYPE_PYOBJ); + emit_call(emit, MP_F_IMPORT_ALL); + emit_post(emit); +} + +STATIC void emit_native_import(emit_t *emit, qstr qst, int kind) { + if (kind == MP_EMIT_IMPORT_NAME) { + emit_native_import_name(emit, qst); + } else if (kind == MP_EMIT_IMPORT_FROM) { + emit_native_import_from(emit, qst); + } else { + emit_native_import_star(emit); + } +} + +STATIC void emit_native_load_const_tok(emit_t *emit, mp_token_kind_t tok) { + DEBUG_printf("load_const_tok(tok=%u)\n", tok); + if (tok == MP_TOKEN_ELLIPSIS) { + #if MICROPY_PERSISTENT_CODE_SAVE + emit_native_load_const_obj(emit, MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj)); + #else + emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj)); + #endif + } else { + emit_native_pre(emit); + if (tok == MP_TOKEN_KW_NONE) { + emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); + } else { + emit_post_push_imm(emit, VTYPE_BOOL, tok == MP_TOKEN_KW_FALSE ? 0 : 1); + } + } +} + +STATIC void emit_native_load_const_small_int(emit_t *emit, mp_int_t arg) { + DEBUG_printf("load_const_small_int(int=" INT_FMT ")\n", arg); + emit_native_pre(emit); + emit_post_push_imm(emit, VTYPE_INT, arg); +} + +STATIC void emit_native_load_const_str(emit_t *emit, qstr qst) { + emit_native_pre(emit); + // TODO: Eventually we want to be able to work with raw pointers in viper to + // do native array access. For now we just load them as any other object. + /* + if (emit->do_viper_types) { + // load a pointer to the asciiz string? + emit_post_push_imm(emit, VTYPE_PTR, (mp_uint_t)qstr_str(qst)); + } else + */ + { + need_reg_single(emit, REG_TEMP0, 0); + emit_native_mov_reg_qstr_obj(emit, REG_TEMP0, qst); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_TEMP0); + } +} + +STATIC void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj) { + emit->scope->scope_flags |= MP_SCOPE_FLAG_HASCONSTS; + emit_native_pre(emit); + need_reg_single(emit, REG_RET, 0); + emit_load_reg_with_object(emit, REG_RET, obj); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); +} + +STATIC void emit_native_load_null(emit_t *emit) { + emit_native_pre(emit); + emit_post_push_imm(emit, VTYPE_PYOBJ, 0); +} + +STATIC void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { + DEBUG_printf("load_fast(%s, " UINT_FMT ")\n", qstr_str(qst), local_num); + vtype_kind_t vtype = emit->local_vtype[local_num]; + if (vtype == VTYPE_UNBOUND) { + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("local '%q' used before type known"), qst); + } + emit_native_pre(emit); + if (local_num < REG_LOCAL_NUM && CAN_USE_REGS_FOR_LOCALS(emit)) { + emit_post_push_reg(emit, vtype, reg_local_table[local_num]); + } else { + need_reg_single(emit, REG_TEMP0, 0); + emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_LOCAL_VAR(emit, local_num)); + emit_post_push_reg(emit, vtype, REG_TEMP0); + } +} + +STATIC void emit_native_load_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { + DEBUG_printf("load_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num); + need_reg_single(emit, REG_RET, 0); + emit_native_load_fast(emit, qst, local_num); + vtype_kind_t vtype; + int reg_base = REG_RET; + emit_pre_pop_reg_flexible(emit, &vtype, ®_base, -1, -1); + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_RET, reg_base, 1); + // closed over vars are always Python objects + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); +} + +STATIC void emit_native_load_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { + if (kind == MP_EMIT_IDOP_LOCAL_FAST) { + emit_native_load_fast(emit, qst, local_num); + } else { + emit_native_load_deref(emit, qst, local_num); + } +} + +STATIC void emit_native_load_global(emit_t *emit, qstr qst, int kind) { + MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_LOAD_NAME); + MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_LOAD_GLOBAL); + emit_native_pre(emit); + if (kind == MP_EMIT_IDOP_GLOBAL_NAME) { + DEBUG_printf("load_name(%s)\n", qstr_str(qst)); + } else { + DEBUG_printf("load_global(%s)\n", qstr_str(qst)); + if (emit->do_viper_types) { + // check for builtin casting operators + int native_type = mp_native_type_from_qstr(qst); + if (native_type >= MP_NATIVE_TYPE_BOOL) { + emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, native_type); + return; + } + } + } + emit_call_with_qstr_arg(emit, MP_F_LOAD_NAME + kind, qst, REG_ARG_1); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); +} + +STATIC void emit_native_load_attr(emit_t *emit, qstr qst) { + // depends on type of subject: + // - integer, function, pointer to integers: error + // - pointer to structure: get member, quite easy + // - Python object: call mp_load_attr, and needs to be typed to convert result + vtype_kind_t vtype_base; + emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base + assert(vtype_base == VTYPE_PYOBJ); + emit_call_with_qstr_arg(emit, MP_F_LOAD_ATTR, qst, REG_ARG_2); // arg2 = attribute name + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); +} + +STATIC void emit_native_load_method(emit_t *emit, qstr qst, bool is_super) { + if (is_super) { + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, 3); // arg2 = dest ptr + emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, 2); // arg2 = dest ptr + emit_call_with_qstr_arg(emit, MP_F_LOAD_SUPER_METHOD, qst, REG_ARG_1); // arg1 = method name + } else { + vtype_kind_t vtype_base; + emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base + assert(vtype_base == VTYPE_PYOBJ); + emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr + emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, qst, REG_ARG_2); // arg2 = method name + } +} + +STATIC void emit_native_load_build_class(emit_t *emit) { + emit_native_pre(emit); + emit_call(emit, MP_F_LOAD_BUILD_CLASS); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); +} + +STATIC void emit_native_load_subscr(emit_t *emit) { + DEBUG_printf("load_subscr\n"); + // need to compile: base[index] + + // pop: index, base + // optimise case where index is an immediate + vtype_kind_t vtype_base = peek_vtype(emit, 1); + + if (vtype_base == VTYPE_PYOBJ) { + // standard Python subscr + // TODO factor this implicit cast code with other uses of it + vtype_kind_t vtype_index = peek_vtype(emit, 0); + if (vtype_index == VTYPE_PYOBJ) { + emit_pre_pop_reg(emit, &vtype_index, REG_ARG_2); + } else { + emit_pre_pop_reg(emit, &vtype_index, REG_ARG_1); + emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype_index, REG_ARG_2); // arg2 = type + ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); + } + emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); + emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_SENTINEL, REG_ARG_3); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); + } else { + // viper load + // TODO The different machine architectures have very different + // capabilities and requirements for loads, so probably best to + // write a completely separate load-optimiser for each one. + stack_info_t *top = peek_stack(emit, 0); + if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) { + // index is an immediate + mp_int_t index_value = top->data.u_imm; + emit_pre_pop_discard(emit); // discard index + int reg_base = REG_ARG_1; + int reg_index = REG_ARG_2; + emit_pre_pop_reg_flexible(emit, &vtype_base, ®_base, reg_index, reg_index); + need_reg_single(emit, REG_RET, 0); + switch (vtype_base) { + case VTYPE_PTR8: { + // pointer to 8-bit memory + // TODO optimise to use thumb ldrb r1, [r2, r3] + if (index_value != 0) { + // index is non-zero + #if N_THUMB + if (index_value > 0 && index_value < 32) { + asm_thumb_ldrb_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); + break; + } + #endif + ASM_MOV_REG_IMM(emit->as, reg_index, index_value); + ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base + reg_base = reg_index; + } + ASM_LOAD8_REG_REG(emit->as, REG_RET, reg_base); // load from (base+index) + break; + } + case VTYPE_PTR16: { + // pointer to 16-bit memory + if (index_value != 0) { + // index is a non-zero immediate + #if N_THUMB + if (index_value > 0 && index_value < 32) { + asm_thumb_ldrh_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); + break; + } + #endif + ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1); + ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base + reg_base = reg_index; + } + ASM_LOAD16_REG_REG(emit->as, REG_RET, reg_base); // load from (base+2*index) + break; + } + case VTYPE_PTR32: { + // pointer to 32-bit memory + if (index_value != 0) { + // index is a non-zero immediate + #if N_THUMB + if (index_value > 0 && index_value < 32) { + asm_thumb_ldr_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); + break; + } + #endif + ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2); + ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base + reg_base = reg_index; + } + ASM_LOAD32_REG_REG(emit->as, REG_RET, reg_base); // load from (base+4*index) + break; + } + default: + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("can't load from '%q'"), vtype_to_qstr(vtype_base)); + } + } else { + // index is not an immediate + vtype_kind_t vtype_index; + int reg_index = REG_ARG_2; + emit_pre_pop_reg_flexible(emit, &vtype_index, ®_index, REG_ARG_1, REG_ARG_1); + emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); + need_reg_single(emit, REG_RET, 0); + if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) { + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("can't load with '%q' index"), vtype_to_qstr(vtype_index)); + } + switch (vtype_base) { + case VTYPE_PTR8: { + // pointer to 8-bit memory + // TODO optimise to use thumb ldrb r1, [r2, r3] + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_LOAD8_REG_REG(emit->as, REG_RET, REG_ARG_1); // store value to (base+index) + break; + } + case VTYPE_PTR16: { + // pointer to 16-bit memory + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_LOAD16_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+2*index) + break; + } + case VTYPE_PTR32: { + // pointer to word-size memory + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_LOAD32_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+4*index) + break; + } + default: + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("can't load from '%q'"), vtype_to_qstr(vtype_base)); + } + } + emit_post_push_reg(emit, VTYPE_INT, REG_RET); + } +} + +STATIC void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { + vtype_kind_t vtype; + if (local_num < REG_LOCAL_NUM && CAN_USE_REGS_FOR_LOCALS(emit)) { + emit_pre_pop_reg(emit, &vtype, reg_local_table[local_num]); + } else { + emit_pre_pop_reg(emit, &vtype, REG_TEMP0); + emit_native_mov_state_reg(emit, LOCAL_IDX_LOCAL_VAR(emit, local_num), REG_TEMP0); + } + emit_post(emit); + + // check types + if (emit->local_vtype[local_num] == VTYPE_UNBOUND) { + // first time this local is assigned, so give it a type of the object stored in it + emit->local_vtype[local_num] = vtype; + } else if (emit->local_vtype[local_num] != vtype) { + // type of local is not the same as object stored in it + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("local '%q' has type '%q' but source is '%q'"), + qst, vtype_to_qstr(emit->local_vtype[local_num]), vtype_to_qstr(vtype)); + } +} + +STATIC void emit_native_store_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { + DEBUG_printf("store_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num); + need_reg_single(emit, REG_TEMP0, 0); + need_reg_single(emit, REG_TEMP1, 0); + emit_native_load_fast(emit, qst, local_num); + vtype_kind_t vtype; + int reg_base = REG_TEMP0; + emit_pre_pop_reg_flexible(emit, &vtype, ®_base, -1, -1); + int reg_src = REG_TEMP1; + emit_pre_pop_reg_flexible(emit, &vtype, ®_src, reg_base, reg_base); + ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, reg_base, 1); + emit_post(emit); +} + +STATIC void emit_native_store_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { + if (kind == MP_EMIT_IDOP_LOCAL_FAST) { + emit_native_store_fast(emit, qst, local_num); + } else { + emit_native_store_deref(emit, qst, local_num); + } +} + +STATIC void emit_native_store_global(emit_t *emit, qstr qst, int kind) { + MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_STORE_NAME); + MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_STORE_GLOBAL); + if (kind == MP_EMIT_IDOP_GLOBAL_NAME) { + // mp_store_name, but needs conversion of object (maybe have mp_viper_store_name(obj, type)) + vtype_kind_t vtype; + emit_pre_pop_reg(emit, &vtype, REG_ARG_2); + assert(vtype == VTYPE_PYOBJ); + } else { + vtype_kind_t vtype = peek_vtype(emit, 0); + if (vtype == VTYPE_PYOBJ) { + emit_pre_pop_reg(emit, &vtype, REG_ARG_2); + } else { + emit_pre_pop_reg(emit, &vtype, REG_ARG_1); + emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype, REG_ARG_2); // arg2 = type + ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); + } + } + emit_call_with_qstr_arg(emit, MP_F_STORE_NAME + kind, qst, REG_ARG_1); // arg1 = name + emit_post(emit); +} + +STATIC void emit_native_store_attr(emit_t *emit, qstr qst) { + vtype_kind_t vtype_base, vtype_val; + emit_pre_pop_reg_reg(emit, &vtype_base, REG_ARG_1, &vtype_val, REG_ARG_3); // arg1 = base, arg3 = value + assert(vtype_base == VTYPE_PYOBJ); + assert(vtype_val == VTYPE_PYOBJ); + emit_call_with_qstr_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name + emit_post(emit); +} + +STATIC void emit_native_store_subscr(emit_t *emit) { + DEBUG_printf("store_subscr\n"); + // need to compile: base[index] = value + + // pop: index, base, value + // optimise case where index is an immediate + vtype_kind_t vtype_base = peek_vtype(emit, 1); + + if (vtype_base == VTYPE_PYOBJ) { + // standard Python subscr + vtype_kind_t vtype_index = peek_vtype(emit, 0); + vtype_kind_t vtype_value = peek_vtype(emit, 2); + if (vtype_index != VTYPE_PYOBJ || vtype_value != VTYPE_PYOBJ) { + // need to implicitly convert non-objects to objects + // TODO do this properly + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, 3); + adjust_stack(emit, 3); + } + emit_pre_pop_reg_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1, &vtype_value, REG_ARG_3); + emit_call(emit, MP_F_OBJ_SUBSCR); + } else { + // viper store + // TODO The different machine architectures have very different + // capabilities and requirements for stores, so probably best to + // write a completely separate store-optimiser for each one. + stack_info_t *top = peek_stack(emit, 0); + if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) { + // index is an immediate + mp_int_t index_value = top->data.u_imm; + emit_pre_pop_discard(emit); // discard index + vtype_kind_t vtype_value; + int reg_base = REG_ARG_1; + int reg_index = REG_ARG_2; + int reg_value = REG_ARG_3; + emit_pre_pop_reg_flexible(emit, &vtype_base, ®_base, reg_index, reg_value); + #if N_X64 || N_X86 + // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX) + emit_pre_pop_reg(emit, &vtype_value, reg_value); + #else + emit_pre_pop_reg_flexible(emit, &vtype_value, ®_value, reg_base, reg_index); + #endif + if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) { + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("can't store '%q'"), vtype_to_qstr(vtype_value)); + } + switch (vtype_base) { + case VTYPE_PTR8: { + // pointer to 8-bit memory + // TODO optimise to use thumb strb r1, [r2, r3] + if (index_value != 0) { + // index is non-zero + #if N_THUMB + if (index_value > 0 && index_value < 32) { + asm_thumb_strb_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); + break; + } + #endif + ASM_MOV_REG_IMM(emit->as, reg_index, index_value); + #if N_ARM + asm_arm_strb_reg_reg_reg(emit->as, reg_value, reg_base, reg_index); + return; + #endif + ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base + reg_base = reg_index; + } + ASM_STORE8_REG_REG(emit->as, reg_value, reg_base); // store value to (base+index) + break; + } + case VTYPE_PTR16: { + // pointer to 16-bit memory + if (index_value != 0) { + // index is a non-zero immediate + #if N_THUMB + if (index_value > 0 && index_value < 32) { + asm_thumb_strh_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); + break; + } + #endif + ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1); + ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base + reg_base = reg_index; + } + ASM_STORE16_REG_REG(emit->as, reg_value, reg_base); // store value to (base+2*index) + break; + } + case VTYPE_PTR32: { + // pointer to 32-bit memory + if (index_value != 0) { + // index is a non-zero immediate + #if N_THUMB + if (index_value > 0 && index_value < 32) { + asm_thumb_str_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); + break; + } + #endif + #if N_ARM + ASM_MOV_REG_IMM(emit->as, reg_index, index_value); + asm_arm_str_reg_reg_reg(emit->as, reg_value, reg_base, reg_index); + return; + #endif + ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2); + ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base + reg_base = reg_index; + } + ASM_STORE32_REG_REG(emit->as, reg_value, reg_base); // store value to (base+4*index) + break; + } + default: + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("can't store to '%q'"), vtype_to_qstr(vtype_base)); + } + } else { + // index is not an immediate + vtype_kind_t vtype_index, vtype_value; + int reg_index = REG_ARG_2; + int reg_value = REG_ARG_3; + emit_pre_pop_reg_flexible(emit, &vtype_index, ®_index, REG_ARG_1, reg_value); + emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); + if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) { + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("can't store with '%q' index"), vtype_to_qstr(vtype_index)); + } + #if N_X64 || N_X86 + // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX) + emit_pre_pop_reg(emit, &vtype_value, reg_value); + #else + emit_pre_pop_reg_flexible(emit, &vtype_value, ®_value, REG_ARG_1, reg_index); + #endif + if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) { + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("can't store '%q'"), vtype_to_qstr(vtype_value)); + } + switch (vtype_base) { + case VTYPE_PTR8: { + // pointer to 8-bit memory + // TODO optimise to use thumb strb r1, [r2, r3] + #if N_ARM + asm_arm_strb_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); + break; + #endif + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_STORE8_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+index) + break; + } + case VTYPE_PTR16: { + // pointer to 16-bit memory + #if N_ARM + asm_arm_strh_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); + break; + #endif + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_STORE16_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+2*index) + break; + } + case VTYPE_PTR32: { + // pointer to 32-bit memory + #if N_ARM + asm_arm_str_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); + break; + #endif + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base + ASM_STORE32_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+4*index) + break; + } + default: + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("can't store to '%q'"), vtype_to_qstr(vtype_base)); + } + } + + } +} + +STATIC void emit_native_delete_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { + if (kind == MP_EMIT_IDOP_LOCAL_FAST) { + // TODO: This is not compliant implementation. We could use MP_OBJ_SENTINEL + // to mark deleted vars but then every var would need to be checked on + // each access. Very inefficient, so just set value to None to enable GC. + emit_native_load_const_tok(emit, MP_TOKEN_KW_NONE); + emit_native_store_fast(emit, qst, local_num); + } else { + // TODO implement me! + } +} + +STATIC void emit_native_delete_global(emit_t *emit, qstr qst, int kind) { + MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_DELETE_NAME); + MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_DELETE_GLOBAL); + emit_native_pre(emit); + emit_call_with_qstr_arg(emit, MP_F_DELETE_NAME + kind, qst, REG_ARG_1); + emit_post(emit); +} + +STATIC void emit_native_delete_attr(emit_t *emit, qstr qst) { + vtype_kind_t vtype_base; + emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base + assert(vtype_base == VTYPE_PYOBJ); + ASM_XOR_REG_REG(emit->as, REG_ARG_3, REG_ARG_3); // arg3 = value (null for delete) + emit_call_with_qstr_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name + emit_post(emit); +} + +STATIC void emit_native_delete_subscr(emit_t *emit) { + vtype_kind_t vtype_index, vtype_base; + emit_pre_pop_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1); // index, base + assert(vtype_index == VTYPE_PYOBJ); + assert(vtype_base == VTYPE_PYOBJ); + emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3); +} + +STATIC void emit_native_subscr(emit_t *emit, int kind) { + if (kind == MP_EMIT_SUBSCR_LOAD) { + emit_native_load_subscr(emit); + } else if (kind == MP_EMIT_SUBSCR_STORE) { + emit_native_store_subscr(emit); + } else { + emit_native_delete_subscr(emit); + } +} + +STATIC void emit_native_attr(emit_t *emit, qstr qst, int kind) { + if (kind == MP_EMIT_ATTR_LOAD) { + emit_native_load_attr(emit, qst); + } else if (kind == MP_EMIT_ATTR_STORE) { + emit_native_store_attr(emit, qst); + } else { + emit_native_delete_attr(emit, qst); + } +} + +STATIC void emit_native_dup_top(emit_t *emit) { + DEBUG_printf("dup_top\n"); + vtype_kind_t vtype; + int reg = REG_TEMP0; + emit_pre_pop_reg_flexible(emit, &vtype, ®, -1, -1); + emit_post_push_reg_reg(emit, vtype, reg, vtype, reg); +} + +STATIC void emit_native_dup_top_two(emit_t *emit) { + vtype_kind_t vtype0, vtype1; + emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1); + emit_post_push_reg_reg_reg_reg(emit, vtype1, REG_TEMP1, vtype0, REG_TEMP0, vtype1, REG_TEMP1, vtype0, REG_TEMP0); +} + +STATIC void emit_native_pop_top(emit_t *emit) { + DEBUG_printf("pop_top\n"); + emit_pre_pop_discard(emit); + emit_post(emit); +} + +STATIC void emit_native_rot_two(emit_t *emit) { + DEBUG_printf("rot_two\n"); + vtype_kind_t vtype0, vtype1; + emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1); + emit_post_push_reg_reg(emit, vtype0, REG_TEMP0, vtype1, REG_TEMP1); +} + +STATIC void emit_native_rot_three(emit_t *emit) { + DEBUG_printf("rot_three\n"); + vtype_kind_t vtype0, vtype1, vtype2; + emit_pre_pop_reg_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1, &vtype2, REG_TEMP2); + emit_post_push_reg_reg_reg(emit, vtype0, REG_TEMP0, vtype2, REG_TEMP2, vtype1, REG_TEMP1); +} + +STATIC void emit_native_jump(emit_t *emit, mp_uint_t label) { + DEBUG_printf("jump(label=" UINT_FMT ")\n", label); + emit_native_pre(emit); + // need to commit stack because we are jumping elsewhere + need_stack_settled(emit); + ASM_JUMP(emit->as, label); + emit_post(emit); +} + +STATIC void emit_native_jump_helper(emit_t *emit, bool cond, mp_uint_t label, bool pop) { + vtype_kind_t vtype = peek_vtype(emit, 0); + if (vtype == VTYPE_PYOBJ) { + emit_pre_pop_reg(emit, &vtype, REG_ARG_1); + if (!pop) { + adjust_stack(emit, 1); + } + emit_call(emit, MP_F_OBJ_IS_TRUE); + } else { + emit_pre_pop_reg(emit, &vtype, REG_RET); + if (!pop) { + adjust_stack(emit, 1); + } + if (!(vtype == VTYPE_BOOL || vtype == VTYPE_INT || vtype == VTYPE_UINT)) { + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("can't implicitly convert '%q' to 'bool'"), vtype_to_qstr(vtype)); + } + } + // For non-pop need to save the vtype so that emit_native_adjust_stack_size + // can use it. This is a bit of a hack. + if (!pop) { + emit->saved_stack_vtype = vtype; + } + // need to commit stack because we may jump elsewhere + need_stack_settled(emit); + // Emit the jump + if (cond) { + ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label, vtype == VTYPE_PYOBJ); + } else { + ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label, vtype == VTYPE_PYOBJ); + } + if (!pop) { + adjust_stack(emit, -1); + } + emit_post(emit); +} + +STATIC void emit_native_pop_jump_if(emit_t *emit, bool cond, mp_uint_t label) { + DEBUG_printf("pop_jump_if(cond=%u, label=" UINT_FMT ")\n", cond, label); + emit_native_jump_helper(emit, cond, label, true); +} + +STATIC void emit_native_jump_if_or_pop(emit_t *emit, bool cond, mp_uint_t label) { + DEBUG_printf("jump_if_or_pop(cond=%u, label=" UINT_FMT ")\n", cond, label); + emit_native_jump_helper(emit, cond, label, false); +} + +STATIC void emit_native_unwind_jump(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) { + if (except_depth > 0) { + exc_stack_entry_t *first_finally = NULL; + exc_stack_entry_t *prev_finally = NULL; + exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1]; + for (; except_depth > 0; --except_depth, --e) { + if (e->is_finally && e->is_active) { + // Found an active finally handler + if (first_finally == NULL) { + first_finally = e; + } + if (prev_finally != NULL) { + // Mark prev finally as needed to unwind a jump + prev_finally->unwind_label = e->label; + } + prev_finally = e; + } + } + if (prev_finally == NULL) { + // No finally, handle the jump ourselves + // First, restore the exception handler address for the jump + if (e < emit->exc_stack) { + ASM_XOR_REG_REG(emit->as, REG_RET, REG_RET); + } else { + ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label); + } + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET); + } else { + // Last finally should do our jump for us + // Mark finally as needing to decide the type of jump + prev_finally->unwind_label = UNWIND_LABEL_DO_FINAL_UNWIND; + ASM_MOV_REG_PCREL(emit->as, REG_RET, label & ~MP_EMIT_BREAK_FROM_FOR); + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_UNWIND(emit), REG_RET); + // Cancel any active exception (see also emit_native_pop_except_jump) + ASM_MOV_REG_IMM(emit->as, REG_RET, (mp_uint_t)MP_OBJ_NULL); + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_RET); + // Jump to the innermost active finally + label = first_finally->label; + } + } + emit_native_jump(emit, label & ~MP_EMIT_BREAK_FROM_FOR); +} + +STATIC void emit_native_setup_with(emit_t *emit, mp_uint_t label) { + // the context manager is on the top of the stack + // stack: (..., ctx_mgr) + + // get __exit__ method + vtype_kind_t vtype; + emit_access_stack(emit, 1, &vtype, REG_ARG_1); // arg1 = ctx_mgr + assert(vtype == VTYPE_PYOBJ); + emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr + emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___exit__, REG_ARG_2); + // stack: (..., ctx_mgr, __exit__, self) + + emit_pre_pop_reg(emit, &vtype, REG_ARG_3); // self + emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // __exit__ + emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // ctx_mgr + emit_post_push_reg(emit, vtype, REG_ARG_2); // __exit__ + emit_post_push_reg(emit, vtype, REG_ARG_3); // self + // stack: (..., __exit__, self) + // REG_ARG_1=ctx_mgr + + // get __enter__ method + emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr + emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___enter__, REG_ARG_2); // arg2 = method name + // stack: (..., __exit__, self, __enter__, self) + + // call __enter__ method + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2); // pointer to items, including meth and self + emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 0, REG_ARG_1, 0, REG_ARG_2); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // push return value of __enter__ + // stack: (..., __exit__, self, as_value) + + // need to commit stack because we may jump elsewhere + need_stack_settled(emit); + emit_native_push_exc_stack(emit, label, true); + + emit_native_dup_top(emit); + // stack: (..., __exit__, self, as_value, as_value) +} + +STATIC void emit_native_setup_block(emit_t *emit, mp_uint_t label, int kind) { + if (kind == MP_EMIT_SETUP_BLOCK_WITH) { + emit_native_setup_with(emit, label); + } else { + // Set up except and finally + emit_native_pre(emit); + need_stack_settled(emit); + emit_native_push_exc_stack(emit, label, kind == MP_EMIT_SETUP_BLOCK_FINALLY); + emit_post(emit); + } +} + +STATIC void emit_native_with_cleanup(emit_t *emit, mp_uint_t label) { + // Note: 3 labels are reserved for this function, starting at *emit->label_slot + + // stack: (..., __exit__, self, as_value) + emit_native_pre(emit); + emit_native_leave_exc_stack(emit, false); + adjust_stack(emit, -1); + // stack: (..., __exit__, self) + + // Label for case where __exit__ is called from an unwind jump + emit_native_label_assign(emit, *emit->label_slot + 2); + + // call __exit__ + emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); + emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); + emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5); + emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2); + + // Replace exc with None and finish + emit_native_jump(emit, *emit->label_slot); + + // nlr_catch + // Don't use emit_native_label_assign because this isn't a real finally label + mp_asm_base_label_assign(&emit->as->base, label); + + // Leave with's exception handler + emit_native_leave_exc_stack(emit, true); + + // Adjust stack counter for: __exit__, self (implicitly discard as_value which is above self) + emit_native_adjust_stack_size(emit, 2); + // stack: (..., __exit__, self) + + ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); // get exc + + // Check if exc is MP_OBJ_NULL (i.e. zero) and jump to non-exc handler if it is + ASM_JUMP_IF_REG_ZERO(emit->as, REG_ARG_1, *emit->label_slot + 2, false); + + ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_1, 0); // get type(exc) + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_2); // push type(exc) + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_1); // push exc value + emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); // traceback info + // Stack: (..., __exit__, self, type(exc), exc, traceback) + + // call __exit__ method + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5); + emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2); + // Stack: (...) + + // If REG_RET is true then we need to replace exception with None (swallow exception) + if (REG_ARG_1 != REG_RET) { + ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_RET); + } + emit_call(emit, MP_F_OBJ_IS_TRUE); + ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, *emit->label_slot + 1, true); + + // Replace exception with MP_OBJ_NULL. + emit_native_label_assign(emit, *emit->label_slot); + ASM_MOV_REG_IMM(emit->as, REG_TEMP0, (mp_uint_t)MP_OBJ_NULL); + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0); + + // end of with cleanup nlr_catch block + emit_native_label_assign(emit, *emit->label_slot + 1); + + // Exception is in nlr_buf.ret_val slot +} + +STATIC void emit_native_end_finally(emit_t *emit) { + // logic: + // exc = pop_stack + // if exc == None: pass + // else: raise exc + // the check if exc is None is done in the MP_F_NATIVE_RAISE stub + emit_native_pre(emit); + ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); + emit_call(emit, MP_F_NATIVE_RAISE); + + // Get state for this finally and see if we need to unwind + exc_stack_entry_t *e = emit_native_pop_exc_stack(emit); + if (e->unwind_label != UNWIND_LABEL_UNUSED) { + ASM_MOV_REG_LOCAL(emit->as, REG_RET, LOCAL_IDX_EXC_HANDLER_UNWIND(emit)); + ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, *emit->label_slot, false); + if (e->unwind_label == UNWIND_LABEL_DO_FINAL_UNWIND) { + ASM_JUMP_REG(emit->as, REG_RET); + } else { + emit_native_jump(emit, e->unwind_label); + } + emit_native_label_assign(emit, *emit->label_slot); + } + + emit_post(emit); +} + +STATIC void emit_native_get_iter(emit_t *emit, bool use_stack) { + // perhaps the difficult one, as we want to rewrite for loops using native code + // in cases where we iterate over a Python object, can we use normal runtime calls? + + vtype_kind_t vtype; + emit_pre_pop_reg(emit, &vtype, REG_ARG_1); + assert(vtype == VTYPE_PYOBJ); + if (use_stack) { + emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, MP_OBJ_ITER_BUF_NSLOTS); + emit_call(emit, MP_F_NATIVE_GETITER); + } else { + // mp_getiter will allocate the iter_buf on the heap + ASM_MOV_REG_IMM(emit->as, REG_ARG_2, 0); + emit_call(emit, MP_F_NATIVE_GETITER); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); + } +} + +STATIC void emit_native_for_iter(emit_t *emit, mp_uint_t label) { + emit_native_pre(emit); + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, MP_OBJ_ITER_BUF_NSLOTS); + adjust_stack(emit, MP_OBJ_ITER_BUF_NSLOTS); + emit_call(emit, MP_F_NATIVE_ITERNEXT); + #if MICROPY_DEBUG_MP_OBJ_SENTINELS + ASM_MOV_REG_IMM(emit->as, REG_TEMP1, (mp_uint_t)MP_OBJ_STOP_ITERATION); + ASM_JUMP_IF_REG_EQ(emit->as, REG_RET, REG_TEMP1, label); + #else + MP_STATIC_ASSERT(MP_OBJ_STOP_ITERATION == 0); + ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label, false); + #endif + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); +} + +STATIC void emit_native_for_iter_end(emit_t *emit) { + // adjust stack counter (we get here from for_iter ending, which popped the value for us) + emit_native_pre(emit); + adjust_stack(emit, -MP_OBJ_ITER_BUF_NSLOTS); + emit_post(emit); +} + +STATIC void emit_native_pop_except_jump(emit_t *emit, mp_uint_t label, bool within_exc_handler) { + if (within_exc_handler) { + // Cancel any active exception so subsequent handlers don't see it + ASM_MOV_REG_IMM(emit->as, REG_TEMP0, (mp_uint_t)MP_OBJ_NULL); + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0); + } else { + emit_native_leave_exc_stack(emit, false); + } + emit_native_jump(emit, label); +} + +STATIC void emit_native_unary_op(emit_t *emit, mp_unary_op_t op) { + vtype_kind_t vtype; + emit_pre_pop_reg(emit, &vtype, REG_ARG_2); + if (vtype == VTYPE_PYOBJ) { + emit_call_with_imm_arg(emit, MP_F_UNARY_OP, op, REG_ARG_1); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); + } else { + adjust_stack(emit, 1); + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("unary op %q not implemented"), mp_unary_op_method_name[op]); + } +} + +STATIC void emit_native_binary_op(emit_t *emit, mp_binary_op_t op) { + DEBUG_printf("binary_op(" UINT_FMT ")\n", op); + vtype_kind_t vtype_lhs = peek_vtype(emit, 1); + vtype_kind_t vtype_rhs = peek_vtype(emit, 0); + if ((vtype_lhs == VTYPE_INT || vtype_lhs == VTYPE_UINT) + && (vtype_rhs == VTYPE_INT || vtype_rhs == VTYPE_UINT)) { + // for integers, inplace and normal ops are equivalent, so use just normal ops + if (MP_BINARY_OP_INPLACE_OR <= op && op <= MP_BINARY_OP_INPLACE_POWER) { + op += MP_BINARY_OP_OR - MP_BINARY_OP_INPLACE_OR; + } + + #if N_X64 || N_X86 + // special cases for x86 and shifting + if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_RSHIFT) { + #if N_X64 + emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X64_REG_RCX, &vtype_lhs, REG_RET); + #else + emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X86_REG_ECX, &vtype_lhs, REG_RET); + #endif + if (op == MP_BINARY_OP_LSHIFT) { + ASM_LSL_REG(emit->as, REG_RET); + } else { + if (vtype_lhs == VTYPE_UINT) { + ASM_LSR_REG(emit->as, REG_RET); + } else { + ASM_ASR_REG(emit->as, REG_RET); + } + } + emit_post_push_reg(emit, vtype_lhs, REG_RET); + return; + } + #endif + + // special cases for floor-divide and module because we dispatch to helper functions + if (op == MP_BINARY_OP_FLOOR_DIVIDE || op == MP_BINARY_OP_MODULO) { + emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_2, &vtype_lhs, REG_ARG_1); + if (vtype_lhs != VTYPE_INT) { + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("div/mod not implemented for uint"), mp_binary_op_method_name[op]); + } + if (op == MP_BINARY_OP_FLOOR_DIVIDE) { + emit_call(emit, MP_F_SMALL_INT_FLOOR_DIVIDE); + } else { + emit_call(emit, MP_F_SMALL_INT_MODULO); + } + emit_post_push_reg(emit, VTYPE_INT, REG_RET); + return; + } + + int reg_rhs = REG_ARG_3; + emit_pre_pop_reg_flexible(emit, &vtype_rhs, ®_rhs, REG_RET, REG_ARG_2); + emit_pre_pop_reg(emit, &vtype_lhs, REG_ARG_2); + + #if !(N_X64 || N_X86) + if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_RSHIFT) { + if (op == MP_BINARY_OP_LSHIFT) { + ASM_LSL_REG_REG(emit->as, REG_ARG_2, reg_rhs); + } else { + if (vtype_lhs == VTYPE_UINT) { + ASM_LSR_REG_REG(emit->as, REG_ARG_2, reg_rhs); + } else { + ASM_ASR_REG_REG(emit->as, REG_ARG_2, reg_rhs); + } + } + emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); + return; + } + #endif + + if (op == MP_BINARY_OP_OR) { + ASM_OR_REG_REG(emit->as, REG_ARG_2, reg_rhs); + emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); + } else if (op == MP_BINARY_OP_XOR) { + ASM_XOR_REG_REG(emit->as, REG_ARG_2, reg_rhs); + emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); + } else if (op == MP_BINARY_OP_AND) { + ASM_AND_REG_REG(emit->as, REG_ARG_2, reg_rhs); + emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); + } else if (op == MP_BINARY_OP_ADD) { + ASM_ADD_REG_REG(emit->as, REG_ARG_2, reg_rhs); + emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); + } else if (op == MP_BINARY_OP_SUBTRACT) { + ASM_SUB_REG_REG(emit->as, REG_ARG_2, reg_rhs); + emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); + } else if (op == MP_BINARY_OP_MULTIPLY) { + ASM_MUL_REG_REG(emit->as, REG_ARG_2, reg_rhs); + emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); + } else if (MP_BINARY_OP_LESS <= op && op <= MP_BINARY_OP_NOT_EQUAL) { + // comparison ops are (in enum order): + // MP_BINARY_OP_LESS + // MP_BINARY_OP_MORE + // MP_BINARY_OP_EQUAL + // MP_BINARY_OP_LESS_EQUAL + // MP_BINARY_OP_MORE_EQUAL + // MP_BINARY_OP_NOT_EQUAL + + if (vtype_lhs != vtype_rhs) { + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("comparison of int and uint")); + } + + size_t op_idx = op - MP_BINARY_OP_LESS + (vtype_lhs == VTYPE_UINT ? 0 : 6); + + need_reg_single(emit, REG_RET, 0); + #if N_X64 + asm_x64_xor_r64_r64(emit->as, REG_RET, REG_RET); + asm_x64_cmp_r64_with_r64(emit->as, reg_rhs, REG_ARG_2); + static byte ops[6 + 6] = { + // unsigned + ASM_X64_CC_JB, + ASM_X64_CC_JA, + ASM_X64_CC_JE, + ASM_X64_CC_JBE, + ASM_X64_CC_JAE, + ASM_X64_CC_JNE, + // signed + ASM_X64_CC_JL, + ASM_X64_CC_JG, + ASM_X64_CC_JE, + ASM_X64_CC_JLE, + ASM_X64_CC_JGE, + ASM_X64_CC_JNE, + }; + asm_x64_setcc_r8(emit->as, ops[op_idx], REG_RET); + #elif N_X86 + asm_x86_xor_r32_r32(emit->as, REG_RET, REG_RET); + asm_x86_cmp_r32_with_r32(emit->as, reg_rhs, REG_ARG_2); + static byte ops[6 + 6] = { + // unsigned + ASM_X86_CC_JB, + ASM_X86_CC_JA, + ASM_X86_CC_JE, + ASM_X86_CC_JBE, + ASM_X86_CC_JAE, + ASM_X86_CC_JNE, + // signed + ASM_X86_CC_JL, + ASM_X86_CC_JG, + ASM_X86_CC_JE, + ASM_X86_CC_JLE, + ASM_X86_CC_JGE, + ASM_X86_CC_JNE, + }; + asm_x86_setcc_r8(emit->as, ops[op_idx], REG_RET); + #elif N_THUMB + asm_thumb_cmp_rlo_rlo(emit->as, REG_ARG_2, reg_rhs); + #if MICROPY_EMIT_THUMB_ARMV7M + static uint16_t ops[6 + 6] = { + // unsigned + ASM_THUMB_OP_ITE_CC, + ASM_THUMB_OP_ITE_HI, + ASM_THUMB_OP_ITE_EQ, + ASM_THUMB_OP_ITE_LS, + ASM_THUMB_OP_ITE_CS, + ASM_THUMB_OP_ITE_NE, + // signed + ASM_THUMB_OP_ITE_LT, + ASM_THUMB_OP_ITE_GT, + ASM_THUMB_OP_ITE_EQ, + ASM_THUMB_OP_ITE_LE, + ASM_THUMB_OP_ITE_GE, + ASM_THUMB_OP_ITE_NE, + }; + asm_thumb_op16(emit->as, ops[op_idx]); + asm_thumb_mov_rlo_i8(emit->as, REG_RET, 1); + asm_thumb_mov_rlo_i8(emit->as, REG_RET, 0); + #else + static uint16_t ops[6 + 6] = { + // unsigned + ASM_THUMB_CC_CC, + ASM_THUMB_CC_HI, + ASM_THUMB_CC_EQ, + ASM_THUMB_CC_LS, + ASM_THUMB_CC_CS, + ASM_THUMB_CC_NE, + // signed + ASM_THUMB_CC_LT, + ASM_THUMB_CC_GT, + ASM_THUMB_CC_EQ, + ASM_THUMB_CC_LE, + ASM_THUMB_CC_GE, + ASM_THUMB_CC_NE, + }; + asm_thumb_bcc_rel9(emit->as, ops[op_idx], 6); + asm_thumb_mov_rlo_i8(emit->as, REG_RET, 0); + asm_thumb_b_rel12(emit->as, 4); + asm_thumb_mov_rlo_i8(emit->as, REG_RET, 1); + #endif + #elif N_ARM + asm_arm_cmp_reg_reg(emit->as, REG_ARG_2, reg_rhs); + static uint ccs[6 + 6] = { + // unsigned + ASM_ARM_CC_CC, + ASM_ARM_CC_HI, + ASM_ARM_CC_EQ, + ASM_ARM_CC_LS, + ASM_ARM_CC_CS, + ASM_ARM_CC_NE, + // signed + ASM_ARM_CC_LT, + ASM_ARM_CC_GT, + ASM_ARM_CC_EQ, + ASM_ARM_CC_LE, + ASM_ARM_CC_GE, + ASM_ARM_CC_NE, + }; + asm_arm_setcc_reg(emit->as, REG_RET, ccs[op_idx]); + #elif N_XTENSA || N_XTENSAWIN + static uint8_t ccs[6 + 6] = { + // unsigned + ASM_XTENSA_CC_LTU, + 0x80 | ASM_XTENSA_CC_LTU, // for GTU we'll swap args + ASM_XTENSA_CC_EQ, + 0x80 | ASM_XTENSA_CC_GEU, // for LEU we'll swap args + ASM_XTENSA_CC_GEU, + ASM_XTENSA_CC_NE, + // signed + ASM_XTENSA_CC_LT, + 0x80 | ASM_XTENSA_CC_LT, // for GT we'll swap args + ASM_XTENSA_CC_EQ, + 0x80 | ASM_XTENSA_CC_GE, // for LE we'll swap args + ASM_XTENSA_CC_GE, + ASM_XTENSA_CC_NE, + }; + uint8_t cc = ccs[op_idx]; + if ((cc & 0x80) == 0) { + asm_xtensa_setcc_reg_reg_reg(emit->as, cc, REG_RET, REG_ARG_2, reg_rhs); + } else { + asm_xtensa_setcc_reg_reg_reg(emit->as, cc & ~0x80, REG_RET, reg_rhs, REG_ARG_2); + } + #else + #error not implemented + #endif + emit_post_push_reg(emit, VTYPE_BOOL, REG_RET); + } else { + // TODO other ops not yet implemented + adjust_stack(emit, 1); + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("binary op %q not implemented"), mp_binary_op_method_name[op]); + } + } else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) { + emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2); + bool invert = false; + if (op == MP_BINARY_OP_NOT_IN) { + invert = true; + op = MP_BINARY_OP_IN; + } else if (op == MP_BINARY_OP_IS_NOT) { + invert = true; + op = MP_BINARY_OP_IS; + } + emit_call_with_imm_arg(emit, MP_F_BINARY_OP, op, REG_ARG_1); + if (invert) { + ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); + emit_call_with_imm_arg(emit, MP_F_UNARY_OP, MP_UNARY_OP_NOT, REG_ARG_1); + } + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); + } else { + adjust_stack(emit, -1); + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("can't do binary op between '%q' and '%q'"), + vtype_to_qstr(vtype_lhs), vtype_to_qstr(vtype_rhs)); + } +} + +#if MICROPY_PY_BUILTINS_SLICE +STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args); +#endif + +STATIC void emit_native_build(emit_t *emit, mp_uint_t n_args, int kind) { + // for viper: call runtime, with types of args + // if wrapped in byte_array, or something, allocates memory and fills it + MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_TUPLE == MP_F_BUILD_TUPLE); + MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_LIST == MP_F_BUILD_LIST); + MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_MAP == MP_F_BUILD_MAP); + MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_SET == MP_F_BUILD_SET); + #if MICROPY_PY_BUILTINS_SLICE + if (kind == MP_EMIT_BUILD_SLICE) { + emit_native_build_slice(emit, n_args); + return; + } + #endif + emit_native_pre(emit); + if (kind == MP_EMIT_BUILD_TUPLE || kind == MP_EMIT_BUILD_LIST || kind == MP_EMIT_BUILD_SET) { + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items + } + emit_call_with_imm_arg(emit, MP_F_BUILD_TUPLE + kind, n_args, REG_ARG_1); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new tuple/list/map/set +} + +STATIC void emit_native_store_map(emit_t *emit) { + vtype_kind_t vtype_key, vtype_value, vtype_map; + emit_pre_pop_reg_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3, &vtype_map, REG_ARG_1); // key, value, map + assert(vtype_key == VTYPE_PYOBJ); + assert(vtype_value == VTYPE_PYOBJ); + assert(vtype_map == VTYPE_PYOBJ); + emit_call(emit, MP_F_STORE_MAP); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // map +} + +#if MICROPY_PY_BUILTINS_SLICE +STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args) { + DEBUG_printf("build_slice %d\n", n_args); + if (n_args == 2) { + vtype_kind_t vtype_start, vtype_stop; + emit_pre_pop_reg_reg(emit, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop + assert(vtype_start == VTYPE_PYOBJ); + assert(vtype_stop == VTYPE_PYOBJ); + emit_native_mov_reg_const(emit, REG_ARG_3, MP_F_CONST_NONE_OBJ); // arg3 = step + } else { + assert(n_args == 3); + vtype_kind_t vtype_start, vtype_stop, vtype_step; + emit_pre_pop_reg_reg_reg(emit, &vtype_step, REG_ARG_3, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop, arg3 = step + assert(vtype_start == VTYPE_PYOBJ); + assert(vtype_stop == VTYPE_PYOBJ); + assert(vtype_step == VTYPE_PYOBJ); + } + emit_call(emit, MP_F_NEW_SLICE); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); +} +#endif + +STATIC void emit_native_store_comp(emit_t *emit, scope_kind_t kind, mp_uint_t collection_index) { + mp_fun_kind_t f; + if (kind == SCOPE_LIST_COMP) { + vtype_kind_t vtype_item; + emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2); + assert(vtype_item == VTYPE_PYOBJ); + f = MP_F_LIST_APPEND; + #if MICROPY_PY_BUILTINS_SET + } else if (kind == SCOPE_SET_COMP) { + vtype_kind_t vtype_item; + emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2); + assert(vtype_item == VTYPE_PYOBJ); + f = MP_F_STORE_SET; + #endif + } else { + // SCOPE_DICT_COMP + vtype_kind_t vtype_key, vtype_value; + emit_pre_pop_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3); + assert(vtype_key == VTYPE_PYOBJ); + assert(vtype_value == VTYPE_PYOBJ); + f = MP_F_STORE_MAP; + } + vtype_kind_t vtype_collection; + emit_access_stack(emit, collection_index, &vtype_collection, REG_ARG_1); + assert(vtype_collection == VTYPE_PYOBJ); + emit_call(emit, f); + emit_post(emit); +} + +STATIC void emit_native_unpack_sequence(emit_t *emit, mp_uint_t n_args) { + DEBUG_printf("unpack_sequence %d\n", n_args); + vtype_kind_t vtype_base; + emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq + assert(vtype_base == VTYPE_PYOBJ); + emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_args); // arg3 = dest ptr + emit_call_with_imm_arg(emit, MP_F_UNPACK_SEQUENCE, n_args, REG_ARG_2); // arg2 = n_args +} + +STATIC void emit_native_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) { + DEBUG_printf("unpack_ex %d %d\n", n_left, n_right); + vtype_kind_t vtype_base; + emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq + assert(vtype_base == VTYPE_PYOBJ); + emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_left + n_right + 1); // arg3 = dest ptr + emit_call_with_imm_arg(emit, MP_F_UNPACK_EX, n_left | (n_right << 8), REG_ARG_2); // arg2 = n_left + n_right +} + +STATIC void emit_native_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { + // call runtime, with type info for args, or don't support dict/default params, or only support Python objects for them + emit_native_pre(emit); + if (n_pos_defaults == 0 && n_kw_defaults == 0) { + need_reg_all(emit); + ASM_MOV_REG_IMM(emit->as, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL); + ASM_MOV_REG_IMM(emit->as, REG_ARG_3, (mp_uint_t)MP_OBJ_NULL); + } else { + vtype_kind_t vtype_def_tuple, vtype_def_dict; + emit_pre_pop_reg_reg(emit, &vtype_def_dict, REG_ARG_3, &vtype_def_tuple, REG_ARG_2); + assert(vtype_def_tuple == VTYPE_PYOBJ); + assert(vtype_def_dict == VTYPE_PYOBJ); + need_reg_all(emit); + } + emit_load_reg_with_raw_code(emit, REG_ARG_1, scope->raw_code); + ASM_CALL_IND(emit->as, MP_F_MAKE_FUNCTION_FROM_RAW_CODE); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); +} + +STATIC void emit_native_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { + emit_native_pre(emit); + if (n_pos_defaults == 0 && n_kw_defaults == 0) { + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over); + ASM_MOV_REG_IMM(emit->as, REG_ARG_2, n_closed_over); + } else { + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over + 2); + ASM_MOV_REG_IMM(emit->as, REG_ARG_2, 0x100 | n_closed_over); + } + emit_load_reg_with_raw_code(emit, REG_ARG_1, scope->raw_code); + ASM_CALL_IND(emit->as, MP_F_MAKE_CLOSURE_FROM_RAW_CODE); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); +} + +STATIC void emit_native_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { + DEBUG_printf("call_function(n_pos=" UINT_FMT ", n_kw=" UINT_FMT ", star_flags=" UINT_FMT ")\n", n_positional, n_keyword, star_flags); + + // TODO: in viper mode, call special runtime routine with type info for args, + // and wanted type info for return, to remove need for boxing/unboxing + + emit_native_pre(emit); + vtype_kind_t vtype_fun = peek_vtype(emit, n_positional + 2 * n_keyword); + if (vtype_fun == VTYPE_BUILTIN_CAST) { + // casting operator + assert(n_positional == 1 && n_keyword == 0); + assert(!star_flags); + DEBUG_printf(" cast to %d\n", vtype_fun); + vtype_kind_t vtype_cast = peek_stack(emit, 1)->data.u_imm; + switch (peek_vtype(emit, 0)) { + case VTYPE_PYOBJ: { + vtype_kind_t vtype; + emit_pre_pop_reg(emit, &vtype, REG_ARG_1); + emit_pre_pop_discard(emit); + emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, vtype_cast, REG_ARG_2); // arg2 = type + emit_post_push_reg(emit, vtype_cast, REG_RET); + break; + } + case VTYPE_BOOL: + case VTYPE_INT: + case VTYPE_UINT: + case VTYPE_PTR: + case VTYPE_PTR8: + case VTYPE_PTR16: + case VTYPE_PTR32: + case VTYPE_PTR_NONE: + emit_fold_stack_top(emit, REG_ARG_1); + emit_post_top_set_vtype(emit, vtype_cast); + break; + default: + // this can happen when casting a cast: int(int) + mp_raise_NotImplementedError(MP_ERROR_TEXT("casting")); + } + } else { + assert(vtype_fun == VTYPE_PYOBJ); + if (star_flags) { + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 3); // pointer to args + emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 0, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); + } else { + if (n_positional != 0 || n_keyword != 0) { + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword); // pointer to args + } + emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function + emit_call_with_imm_arg(emit, MP_F_NATIVE_CALL_FUNCTION_N_KW, n_positional | (n_keyword << 8), REG_ARG_2); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); + } + } +} + +STATIC void emit_native_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { + if (star_flags) { + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 4); // pointer to args + emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 1, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); + } else { + emit_native_pre(emit); + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_positional + 2 * n_keyword); // pointer to items, including meth and self + emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, n_positional, REG_ARG_1, n_keyword, REG_ARG_2); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); + } +} + +STATIC void emit_native_return_value(emit_t *emit) { + DEBUG_printf("return_value\n"); + + if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { + // Save pointer to current stack position for caller to access return value + emit_get_stack_pointer_to_reg_for_pop(emit, REG_TEMP0, 1); + emit_native_mov_state_reg(emit, OFFSETOF_CODE_STATE_SP, REG_TEMP0); + + // Put return type in return value slot + ASM_MOV_REG_IMM(emit->as, REG_TEMP0, MP_VM_RETURN_NORMAL); + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_TEMP0); + + // Do the unwinding jump to get to the return handler + emit_native_unwind_jump(emit, emit->exit_label, emit->exc_stack_size); + emit->last_emit_was_return_value = true; + return; + } + + if (emit->do_viper_types) { + vtype_kind_t return_vtype = emit->scope->scope_flags >> MP_SCOPE_FLAG_VIPERRET_POS; + if (peek_vtype(emit, 0) == VTYPE_PTR_NONE) { + emit_pre_pop_discard(emit); + if (return_vtype == VTYPE_PYOBJ) { + emit_native_mov_reg_const(emit, REG_PARENT_RET, MP_F_CONST_NONE_OBJ); + } else { + ASM_MOV_REG_IMM(emit->as, REG_ARG_1, 0); + } + } else { + vtype_kind_t vtype; + emit_pre_pop_reg(emit, &vtype, return_vtype == VTYPE_PYOBJ ? REG_PARENT_RET : REG_ARG_1); + if (vtype != return_vtype) { + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, + MP_ERROR_TEXT("return expected '%q' but got '%q'"), + vtype_to_qstr(return_vtype), vtype_to_qstr(vtype)); + } + } + if (return_vtype != VTYPE_PYOBJ) { + emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, return_vtype, REG_ARG_2); + #if REG_RET != REG_PARENT_RET + ASM_MOV_REG_REG(emit->as, REG_PARENT_RET, REG_RET); + #endif + } + } else { + vtype_kind_t vtype; + emit_pre_pop_reg(emit, &vtype, REG_PARENT_RET); + assert(vtype == VTYPE_PYOBJ); + } + if (NEED_GLOBAL_EXC_HANDLER(emit)) { + // Save return value for the global exception handler to use + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_PARENT_RET); + } + emit_native_unwind_jump(emit, emit->exit_label, emit->exc_stack_size); + emit->last_emit_was_return_value = true; +} + +STATIC void emit_native_raise_varargs(emit_t *emit, mp_uint_t n_args) { + (void)n_args; + assert(n_args == 1); + vtype_kind_t vtype_exc; + emit_pre_pop_reg(emit, &vtype_exc, REG_ARG_1); // arg1 = object to raise + if (vtype_exc != VTYPE_PYOBJ) { + EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("must raise an object")); + } + // TODO probably make this 1 call to the runtime (which could even call convert, native_raise(obj, type)) + emit_call(emit, MP_F_NATIVE_RAISE); +} + +STATIC void emit_native_yield(emit_t *emit, int kind) { + // Note: 1 (yield) or 3 (yield from) labels are reserved for this function, starting at *emit->label_slot + + if (emit->do_viper_types) { + mp_raise_NotImplementedError(MP_ERROR_TEXT("native yield")); + } + emit->scope->scope_flags |= MP_SCOPE_FLAG_GENERATOR; + + need_stack_settled(emit); + + if (kind == MP_EMIT_YIELD_FROM) { + + // Top of yield-from loop, conceptually implementing: + // for item in generator: + // yield item + + // Jump to start of loop + emit_native_jump(emit, *emit->label_slot + 2); + + // Label for top of loop + emit_native_label_assign(emit, *emit->label_slot + 1); + } + + // Save pointer to current stack position for caller to access yielded value + emit_get_stack_pointer_to_reg_for_pop(emit, REG_TEMP0, 1); + emit_native_mov_state_reg(emit, OFFSETOF_CODE_STATE_SP, REG_TEMP0); + + // Put return type in return value slot + ASM_MOV_REG_IMM(emit->as, REG_TEMP0, MP_VM_RETURN_YIELD); + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_TEMP0); + + // Save re-entry PC + ASM_MOV_REG_PCREL(emit->as, REG_TEMP0, *emit->label_slot); + emit_native_mov_state_reg(emit, LOCAL_IDX_GEN_PC(emit), REG_TEMP0); + + // Jump to exit handler + ASM_JUMP(emit->as, emit->exit_label); + + // Label re-entry point + mp_asm_base_label_assign(&emit->as->base, *emit->label_slot); + + // Re-open any active exception handler + if (emit->exc_stack_size > 0) { + // Find innermost active exception handler, to restore as current handler + exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1]; + for (; e >= emit->exc_stack; --e) { + if (e->is_active) { + // Found active handler, get its PC + ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label); + ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET); + break; + } + } + } + + emit_native_adjust_stack_size(emit, 1); // send_value + + if (kind == MP_EMIT_YIELD_VALUE) { + // Check LOCAL_IDX_EXC_VAL for any injected value + ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); + emit_call(emit, MP_F_NATIVE_RAISE); + } else { + // Label loop entry + emit_native_label_assign(emit, *emit->label_slot + 2); + + // Get the next item from the delegate generator + vtype_kind_t vtype; + emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // send_value + emit_access_stack(emit, 1, &vtype, REG_ARG_1); // generator + ASM_MOV_REG_LOCAL(emit->as, REG_ARG_3, LOCAL_IDX_EXC_VAL(emit)); // throw_value + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_3); + emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 1); // ret_value + emit_call(emit, MP_F_NATIVE_YIELD_FROM); + + // If returned non-zero then generator continues + ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, *emit->label_slot + 1, true); + + // Pop exhausted gen, replace with ret_value + emit_native_adjust_stack_size(emit, 1); // ret_value + emit_fold_stack_top(emit, REG_ARG_1); + } +} + +STATIC void emit_native_start_except_handler(emit_t *emit) { + // Protected block has finished so leave the current exception handler + emit_native_leave_exc_stack(emit, true); + + // Get and push nlr_buf.ret_val + ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, LOCAL_IDX_EXC_VAL(emit)); + emit_post_push_reg(emit, VTYPE_PYOBJ, REG_TEMP0); +} + +STATIC void emit_native_end_except_handler(emit_t *emit) { + adjust_stack(emit, -1); // pop the exception (end_finally didn't use it) +} + +const emit_method_table_t EXPORT_FUN(method_table) = { + #if MICROPY_DYNAMIC_COMPILER + EXPORT_FUN(new), + EXPORT_FUN(free), + #endif + + emit_native_start_pass, + emit_native_end_pass, + emit_native_last_emit_was_return_value, + emit_native_adjust_stack_size, + emit_native_set_source_line, + + { + emit_native_load_local, + emit_native_load_global, + }, + { + emit_native_store_local, + emit_native_store_global, + }, + { + emit_native_delete_local, + emit_native_delete_global, + }, + + emit_native_label_assign, + emit_native_import, + emit_native_load_const_tok, + emit_native_load_const_small_int, + emit_native_load_const_str, + emit_native_load_const_obj, + emit_native_load_null, + emit_native_load_method, + emit_native_load_build_class, + emit_native_subscr, + emit_native_attr, + emit_native_dup_top, + emit_native_dup_top_two, + emit_native_pop_top, + emit_native_rot_two, + emit_native_rot_three, + emit_native_jump, + emit_native_pop_jump_if, + emit_native_jump_if_or_pop, + emit_native_unwind_jump, + emit_native_setup_block, + emit_native_with_cleanup, + emit_native_end_finally, + emit_native_get_iter, + emit_native_for_iter, + emit_native_for_iter_end, + emit_native_pop_except_jump, + emit_native_unary_op, + emit_native_binary_op, + emit_native_build, + emit_native_store_map, + emit_native_store_comp, + emit_native_unpack_sequence, + emit_native_unpack_ex, + emit_native_make_function, + emit_native_make_closure, + emit_native_call_function, + emit_native_call_method, + emit_native_return_value, + emit_native_raise_varargs, + emit_native_yield, + + emit_native_start_except_handler, + emit_native_end_except_handler, +}; + +#endif |