aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/lib/protomatter/examples/simple
diff options
context:
space:
mode:
authorRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
committerRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
commit4fd287655a72b9aea14cdac715ad5b90ed082ed2 (patch)
tree65d393bc0e699dd12d05b29ba568e04cea666207 /circuitpython/lib/protomatter/examples/simple
parent0150f70ce9c39e9e6dd878766c0620c85e47bed0 (diff)
add circuitpython code
Diffstat (limited to 'circuitpython/lib/protomatter/examples/simple')
-rw-r--r--circuitpython/lib/protomatter/examples/simple/simple.ino298
1 files changed, 298 insertions, 0 deletions
diff --git a/circuitpython/lib/protomatter/examples/simple/simple.ino b/circuitpython/lib/protomatter/examples/simple/simple.ino
new file mode 100644
index 0000000..2f8d12d
--- /dev/null
+++ b/circuitpython/lib/protomatter/examples/simple/simple.ino
@@ -0,0 +1,298 @@
+/* ----------------------------------------------------------------------
+"Simple" Protomatter library example sketch (once you get past all
+the various pin configurations at the top, and all the comments).
+Shows basic use of Adafruit_Protomatter library with different devices.
+
+This example is written for a 64x32 matrix but can be adapted to others.
+
+Once the RGB matrix is initialized, most functions of the Adafruit_GFX
+library are available for drawing -- code from other projects that use
+LCDs or OLEDs can be easily adapted, or may be insightful for reference.
+GFX library is documented here:
+https://learn.adafruit.com/adafruit-gfx-graphics-library
+------------------------------------------------------------------------- */
+
+#include <Adafruit_Protomatter.h>
+
+/* ----------------------------------------------------------------------
+The RGB matrix must be wired to VERY SPECIFIC pins, different for each
+microcontroller board. This first section sets that up for a number of
+supported boards. Notes have been moved to the bottom of the code.
+------------------------------------------------------------------------- */
+
+#if defined(_VARIANT_MATRIXPORTAL_M4_) // MatrixPortal M4
+ uint8_t rgbPins[] = {7, 8, 9, 10, 11, 12};
+ uint8_t addrPins[] = {17, 18, 19, 20};
+ uint8_t clockPin = 14;
+ uint8_t latchPin = 15;
+ uint8_t oePin = 16;
+#elif defined(_VARIANT_FEATHER_M4_) // Feather M4 + RGB Matrix FeatherWing
+ uint8_t rgbPins[] = {6, 5, 9, 11, 10, 12};
+ uint8_t addrPins[] = {A5, A4, A3, A2};
+ uint8_t clockPin = 13;
+ uint8_t latchPin = 0;
+ uint8_t oePin = 1;
+#elif defined(__SAMD51__) // M4 Metro Variants (Express, AirLift)
+ uint8_t rgbPins[] = {6, 5, 9, 11, 10, 12};
+ uint8_t addrPins[] = {A5, A4, A3, A2};
+ uint8_t clockPin = 13;
+ uint8_t latchPin = 0;
+ uint8_t oePin = 1;
+#elif defined(_SAMD21_) // Feather M0 variants
+ uint8_t rgbPins[] = {6, 7, 10, 11, 12, 13};
+ uint8_t addrPins[] = {0, 1, 2, 3};
+ uint8_t clockPin = SDA;
+ uint8_t latchPin = 4;
+ uint8_t oePin = 5;
+#elif defined(NRF52_SERIES) // Special nRF52840 FeatherWing pinout
+ uint8_t rgbPins[] = {6, A5, A1, A0, A4, 11};
+ uint8_t addrPins[] = {10, 5, 13, 9};
+ uint8_t clockPin = 12;
+ uint8_t latchPin = PIN_SERIAL1_RX;
+ uint8_t oePin = PIN_SERIAL1_TX;
+#elif defined(ESP32)
+ // 'Safe' pins, not overlapping any peripherals:
+ // GPIO.out: 4, 12, 13, 14, 15, 21, 27, GPIO.out1: 32, 33
+ // Peripheral-overlapping pins, sorted from 'most expendible':
+ // 16, 17 (RX, TX)
+ // 25, 26 (A0, A1)
+ // 18, 5, 9 (MOSI, SCK, MISO)
+ // 22, 23 (SCL, SDA)
+ uint8_t rgbPins[] = {4, 12, 13, 14, 15, 21};
+ uint8_t addrPins[] = {16, 17, 25, 26};
+ uint8_t clockPin = 27; // Must be on same port as rgbPins
+ uint8_t latchPin = 32;
+ uint8_t oePin = 33;
+#elif defined(ARDUINO_TEENSY40)
+ uint8_t rgbPins[] = {15, 16, 17, 20, 21, 22}; // A1-A3, A6-A8, skip SDA,SCL
+ uint8_t addrPins[] = {2, 3, 4, 5};
+ uint8_t clockPin = 23; // A9
+ uint8_t latchPin = 6;
+ uint8_t oePin = 9;
+#elif defined(ARDUINO_TEENSY41)
+ uint8_t rgbPins[] = {26, 27, 38, 20, 21, 22}; // A12-14, A6-A8
+ uint8_t addrPins[] = {2, 3, 4, 5};
+ uint8_t clockPin = 23; // A9
+ uint8_t latchPin = 6;
+ uint8_t oePin = 9;
+#endif
+
+/* ----------------------------------------------------------------------
+Okay, here's where the RGB LED matrix is actually declared...
+
+First argument is the matrix width, in pixels. Usually 32 or
+64, but might go larger if you're chaining multiple matrices.
+
+Second argument is the "bit depth," which determines color
+fidelity, applied to red, green and blue (e.g. "4" here means
+4 bits red, 4 green, 4 blue = 2^4 x 2^4 x 2^4 = 4096 colors).
+There is a trade-off between bit depth and RAM usage. Most
+programs will tend to use either 1 (R,G,B on/off, 8 colors,
+best for text, LED sand, etc.) or the maximum of 6 (best for
+shaded images...though, because the GFX library was designed
+for LCDs, only 5 of those bits are available for red and blue.
+
+Third argument is the number of concurrent (parallel) matrix
+outputs. THIS SHOULD ALWAYS BE "1" FOR NOW. Fourth is a uint8_t
+array listing six pins: red, green and blue data out for the
+top half of the display, and same for bottom half. There are
+hard constraints as to which pins can be used -- they must all
+be on the same PORT register, ideally all within the same byte
+of that PORT.
+
+Fifth argument is the number of "address" (aka row select) pins,
+from which the matrix height is inferred. "4" here means four
+address lines, matrix height is then (2 x 2^4) = 32 pixels.
+16-pixel-tall matrices will have 3 pins here, 32-pixel will have
+4, 64-pixel will have 5. Sixth argument is a uint8_t array
+listing those pin numbers. No PORT constraints here.
+
+Next three arguments are pin numbers for other RGB matrix
+control lines: clock, latch and output enable (active low).
+Clock pin MUST be on the same PORT register as RGB data pins
+(and ideally in same byte). Other pins have no special rules.
+
+Last argument is a boolean (true/false) to enable double-
+buffering for smooth animation (requires 2X the RAM). See the
+"doublebuffer" example for a demonstration.
+------------------------------------------------------------------------- */
+
+Adafruit_Protomatter matrix(
+ 64, // Width of matrix (or matrix chain) in pixels
+ 4, // Bit depth, 1-6
+ 1, rgbPins, // # of matrix chains, array of 6 RGB pins for each
+ 4, addrPins, // # of address pins (height is inferred), array of pins
+ clockPin, latchPin, oePin, // Other matrix control pins
+ false); // No double-buffering here (see "doublebuffer" example)
+
+// SETUP - RUNS ONCE AT PROGRAM START --------------------------------------
+
+void setup(void) {
+ Serial.begin(9600);
+
+ // Initialize matrix...
+ ProtomatterStatus status = matrix.begin();
+ Serial.print("Protomatter begin() status: ");
+ Serial.println((int)status);
+ if(status != PROTOMATTER_OK) {
+ // DO NOT CONTINUE if matrix setup encountered an error.
+ for(;;);
+ }
+
+ // Since this is a simple program with no animation, all the
+ // drawing can be done here in setup() rather than loop():
+
+ // Make four color bars (red, green, blue, white) with brightness ramp:
+ for(int x=0; x<matrix.width(); x++) {
+ uint8_t level = x * 256 / matrix.width(); // 0-255 brightness
+ matrix.drawPixel(x, matrix.height() - 4, matrix.color565(level, 0, 0));
+ matrix.drawPixel(x, matrix.height() - 3, matrix.color565(0, level, 0));
+ matrix.drawPixel(x, matrix.height() - 2, matrix.color565(0, 0, level));
+ matrix.drawPixel(x, matrix.height() - 1,
+ matrix.color565(level, level, level));
+ }
+ // You'll notice the ramp looks smoother as bit depth increases
+ // (second argument to the matrix constructor call above setup()).
+
+ // Simple shapes and text, showing GFX library calls:
+ matrix.drawCircle(12, 10, 9, matrix.color565(255, 0, 0));
+ matrix.drawRect(14, 6, 17, 17, matrix.color565(0, 255, 0));
+ matrix.drawTriangle(32, 9, 41, 27, 23, 27, matrix.color565(0, 0, 255));
+ matrix.println("ADAFRUIT"); // Default text color is white
+
+ // AFTER DRAWING, A show() CALL IS REQUIRED TO UPDATE THE MATRIX!
+
+ matrix.show(); // Copy data to matrix buffers
+}
+
+// LOOP - RUNS REPEATEDLY AFTER SETUP --------------------------------------
+
+void loop(void) {
+ // Since there's nothing more to be drawn, this loop() function just
+ // shows the approximate refresh rate of the matrix at current settings.
+ Serial.print("Refresh FPS = ~");
+ Serial.println(matrix.getFrameCount());
+ delay(1000);
+}
+
+// MORE NOTES --------------------------------------------------------------
+
+/*
+The "RGB and clock bits on same PORT register" constraint requires
+considerable planning and knowledge of the underlying microcontroller
+hardware. These are some earlier notes on various devices' PORT registers
+and bits and their corresponding Arduino pin numbers. You probably won't
+need this -- it's all codified in the #if defined() sections at the top
+of this sketch now -- but keeping it around for reference if needed.
+
+METRO M0 PORT-TO-PIN ASSIGNMENTS BY BYTE:
+PA00 PA08 D4 PA16 D11 PB00 PB08 A1
+PA01 PA09 D3 PA17 D13 PB01 PB09 A2
+PA02 A0 PA10 D1 PA18 D10 PB02 A5 PB10 MOSI
+PA03 PA11 D0 PA19 D12 PB03 PB11 SCK
+PA04 A3 PA12 MISO PA20 D6 PB04 PB12
+PA05 A4 PA13 PA21 D7 PB05 PB13
+PA06 D8 PA14 D2 PA22 SDA PB06 PB14
+PA07 D9 PA15 D5 PA23 SCL PB07 PB15
+
+SAME, METRO M4:
+PA00 PA08 PA16 D13 PB00 PB08 A4 PB16 D3
+PA01 PA09 PA17 D12 PB01 PB09 A5 PB17 D2
+PA02 A0 PA10 PA18 D10 PB02 SDA PB10 PB18
+PA03 PA11 PA19 D11 PB03 SCL PB11 PB19
+PA04 A3 PA12 MISO PA20 D9 PB04 PB12 D7 PB20
+PA05 A1 PA13 SCK PA21 D8 PB05 PB13 D4 PB21
+PA06 A2 PA14 MISO PA22 D1 PB06 PB14 D5 PB22
+PA07 PA15 PA23 D0 PB07 PB15 D6 PB23
+
+FEATHER M4:
+PA00 PA08 PA16 D5 PB08 A2 PB16 D1/TX
+PA01 PA09 PA17 SCK PB09 A3 PB17 D0/RX
+PA02 A0 PA10 PA18 D6 PB10 PB18
+PA03 PA11 PA19 D9 PB11 PB19
+PA04 A4 PA12 SDA PA20 D10 PB12 PB20
+PA05 A1 PA13 SCL PA21 D11 PB13 PB21
+PA06 A5 PA14 D4 PA22 D12 PB14 PB22 MISO
+PA07 PA15 PA23 D13 PB15 PB23 MOSI
+
+FEATHER M0:
+PA00 PA08 PA16 D11 PB00 PB08 A1
+PA01 PA09 PA17 D13 PB01 PB09 A2
+PA02 A0 PA10 TX/D1 PA18 D10 PB02 A5 PB10 MOSI
+PA03 PA11 RX/D0 PA19 D12 PB03 PB11 SCK
+PA04 A3 PA12 MISO PA20 D6 PB04 PB12
+PA05 A4 PA13 PA21 D7 PB05 PB13
+PA06 PA14 PA22 SDA PB06 PB14
+PA07 D9 PA15 D5 PA23 SCL PB07 PB15
+
+FEATHER nRF52840:
+P0.00 P0.08 D12 P0.24 RXD P1.08 D5
+P0.01 P0.09 P0.25 TXD P1.09 D13
+P0.02 A4 P0.10 D2 (NFC) P0.26 D9 P1.10
+P0.03 A5 P0.11 SCL P0.27 D10 P1.11
+P0.04 A0 P0.12 SDA P0.28 A3 P1.12
+P0.05 A1 P0.13 MOSI P0.29 P1.13
+P0.06 D11 P0.14 SCK P0.30 A2 P1.14
+P0.07 D6 P0.15 MISO P0.31 P1.15
+
+FEATHER ESP32:
+P0.00 P0.08 P0.16 16/RX P0.24 P1.00 32/A7
+P0.01 P0.09 P0.17 17/TX P0.25 25/A1 P1.01 33/A9/SS
+P0.02 P0.10 P0.18 18/MOSI P0.26 26/A0 P1.02 34/A2 (in)
+P0.03 P0.11 P0.19 19/MISO P0.27 27/A10 P1.03
+P0.04 4/A5 P0.12 12/A11 P0.20 P0.28 P1.04 36/A4 (in)
+P0.05 5/SCK P0.13 13/A12 P0.21 21 P0.29 P1.05
+P0.06 P0.14 14/A6 P0.22 22/SCL P0.30 P1.06
+P0.07 P0.15 15/A8 P0.23 23/SDA P0.31 P1.07 39/A3 (in)
+
+GRAND CENTRAL M4: (___ = byte boundaries)
+PA00 PB00 D12 PC00 A3 PD00
+PA01 PB01 D13 (LED) PC01 A4 PD01
+PA02 A0 PB02 D9 PC02 A5 PD02
+PA03 84 (AREF) PB03 A2 PC03 A6 PD03
+PA04 A13 PB04 A7 PC04 D48 PD04
+PA05 A1 PB05 A8 PC05 D49 PD05
+PA06 A14 PB06 A9 PC06 D46 PD06
+PA07 A15 ______ PB07 A10 ______ PC07 D47 _____ PD07 __________
+PA08 PB08 A11 PC08 PD08 D51 (SCK)
+PA09 PB09 A12 PC09 PD09 D52 (MOSI)
+PA10 PB10 PC10 D45 PD10 D53
+PA11 PB11 PC11 D44 PD11 D50 (MISO)
+PA12 D26 PB12 D18 PC12 D41 PD12 D22
+PA13 D27 PB13 D19 PC13 D40 PD13
+PA14 D28 PB14 D39 PC14 D43 PD14
+PA15 D23 ______ PB15 D38 ______ PC15 D42 _____ PD15 __________
+PA16 D37 PB16 D14 PC16 D25 PD16
+PA17 D36 PB17 D15 PC17 D24 PD17
+PA18 D35 PB18 D8 PC18 D2 PD18
+PA19 D34 PB19 D29 PC19 D3 PD19
+PA20 D33 PB20 D20 (SDA) PC20 D4 PD20 D6
+PA21 D32 PB21 D21 (SCL) PC21 D5 PD21 D7
+PA22 D31 PB22 D10 PC22 D16 PD22
+PA23 D30 ______ PB23 D11 ______ PC23 D17 _____ PD23 __________
+PA24 PB24 D1
+PA25 PB25 D0
+PA26 PB26
+PA27 PB27
+PA28 PB28
+PA29 PB29
+PA30 PB30 96 (SWO)
+PA31 __________ PB31 95 (SD CD) ______________________________
+
+RGB MATRIX FEATHERWING NOTES:
+R1 D6 A A5
+G1 D5 B A4
+B1 D9 C A3
+R2 D11 D A2
+G2 D10 LAT D0/RX
+B2 D12 OE D1/TX
+CLK D13
+RGB+clock fit in one PORT byte on Feather M4!
+RGB+clock are on same PORT but not within same byte on Feather M0 --
+the code could run there, but would be super RAM-inefficient. Avoid.
+Should be fine on other M0 devices like a Metro, if wiring manually
+so one can pick a contiguous byte of PORT bits.
+Original RGB Matrix FeatherWing will NOT work on Feather nRF52840
+because RGB+clock are on different PORTs. This was resolved by making
+a unique version of the FeatherWing that works with that board!
+*/