diff options
author | Raghuram Subramani <raghus2247@gmail.com> | 2022-06-19 19:47:51 +0530 |
---|---|---|
committer | Raghuram Subramani <raghus2247@gmail.com> | 2022-06-19 19:47:51 +0530 |
commit | 4fd287655a72b9aea14cdac715ad5b90ed082ed2 (patch) | |
tree | 65d393bc0e699dd12d05b29ba568e04cea666207 /circuitpython/extmod/ulab/code/numpy/vector.c | |
parent | 0150f70ce9c39e9e6dd878766c0620c85e47bed0 (diff) |
add circuitpython code
Diffstat (limited to 'circuitpython/extmod/ulab/code/numpy/vector.c')
-rw-r--r-- | circuitpython/extmod/ulab/code/numpy/vector.c | 844 |
1 files changed, 844 insertions, 0 deletions
diff --git a/circuitpython/extmod/ulab/code/numpy/vector.c b/circuitpython/extmod/ulab/code/numpy/vector.c new file mode 100644 index 0000000..97ab66d --- /dev/null +++ b/circuitpython/extmod/ulab/code/numpy/vector.c @@ -0,0 +1,844 @@ + +/* + * This file is part of the micropython-ulab project, + * + * https://github.com/v923z/micropython-ulab + * + * The MIT License (MIT) + * + * Copyright (c) 2019-2021 Zoltán Vörös + * 2020 Jeff Epler for Adafruit Industries + * 2020 Scott Shawcroft for Adafruit Industries + * 2020 Taku Fukada +*/ + +#include <math.h> +#include <stdio.h> +#include <stdlib.h> +#include "py/runtime.h" +#include "py/binary.h" +#include "py/obj.h" +#include "py/objarray.h" + +#include "../ulab.h" +#include "../ulab_tools.h" +#include "carray/carray_tools.h" +#include "vector.h" + +//| """Element-by-element functions +//| +//| These functions can operate on numbers, 1-D iterables, and arrays of 1 to 4 dimensions by +//| applying the function to every element in the array. This is typically +//| much more efficient than expressing the same operation as a Python loop.""" +//| + +static mp_obj_t vector_generic_vector(mp_obj_t o_in, mp_float_t (*f)(mp_float_t)) { + // Return a single value, if o_in is not iterable + if(mp_obj_is_float(o_in) || mp_obj_is_int(o_in)) { + return mp_obj_new_float(f(mp_obj_get_float(o_in))); + } + ndarray_obj_t *ndarray = NULL; + if(mp_obj_is_type(o_in, &ulab_ndarray_type)) { + ndarray_obj_t *source = MP_OBJ_TO_PTR(o_in); + COMPLEX_DTYPE_NOT_IMPLEMENTED(source->dtype) + uint8_t *sarray = (uint8_t *)source->array; + ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_FLOAT); + mp_float_t *array = (mp_float_t *)ndarray->array; + + #if ULAB_VECTORISE_USES_FUN_POINTER + + mp_float_t (*func)(void *) = ndarray_get_float_function(source->dtype); + + #if ULAB_MAX_DIMS > 3 + size_t i = 0; + do { + #endif + #if ULAB_MAX_DIMS > 2 + size_t j = 0; + do { + #endif + #if ULAB_MAX_DIMS > 1 + size_t k = 0; + do { + #endif + size_t l = 0; + do { + mp_float_t value = func(sarray); + *array++ = f(value); + sarray += source->strides[ULAB_MAX_DIMS - 1]; + l++; + } while(l < source->shape[ULAB_MAX_DIMS - 1]); + #if ULAB_MAX_DIMS > 1 + sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1]; + sarray += source->strides[ULAB_MAX_DIMS - 2]; + k++; + } while(k < source->shape[ULAB_MAX_DIMS - 2]); + #endif /* ULAB_MAX_DIMS > 1 */ + #if ULAB_MAX_DIMS > 2 + sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2]; + sarray += source->strides[ULAB_MAX_DIMS - 3]; + j++; + } while(j < source->shape[ULAB_MAX_DIMS - 3]); + #endif /* ULAB_MAX_DIMS > 2 */ + #if ULAB_MAX_DIMS > 3 + sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3]; + sarray += source->strides[ULAB_MAX_DIMS - 4]; + i++; + } while(i < source->shape[ULAB_MAX_DIMS - 4]); + #endif /* ULAB_MAX_DIMS > 3 */ + #else + if(source->dtype == NDARRAY_UINT8) { + ITERATE_VECTOR(uint8_t, array, source, sarray); + } else if(source->dtype == NDARRAY_INT8) { + ITERATE_VECTOR(int8_t, array, source, sarray); + } else if(source->dtype == NDARRAY_UINT16) { + ITERATE_VECTOR(uint16_t, array, source, sarray); + } else if(source->dtype == NDARRAY_INT16) { + ITERATE_VECTOR(int16_t, array, source, sarray); + } else { + ITERATE_VECTOR(mp_float_t, array, source, sarray); + } + #endif /* ULAB_VECTORISE_USES_FUN_POINTER */ + } else { + ndarray = ndarray_from_mp_obj(o_in, 0); + mp_float_t *narray = (mp_float_t *)ndarray->array; + for(size_t i = 0; i < ndarray->len; i++) { + *narray = f(*narray); + narray++; + } + } + return MP_OBJ_FROM_PTR(ndarray); +} + +#if ULAB_NUMPY_HAS_ACOS +//| def acos(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the inverse cosine function""" +//| ... +//| + +MATH_FUN_1(acos, acos); +MP_DEFINE_CONST_FUN_OBJ_1(vector_acos_obj, vector_acos); +#endif + +#if ULAB_NUMPY_HAS_ACOSH +//| def acosh(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the inverse hyperbolic cosine function""" +//| ... +//| + +MATH_FUN_1(acosh, acosh); +MP_DEFINE_CONST_FUN_OBJ_1(vector_acosh_obj, vector_acosh); +#endif + +#if ULAB_NUMPY_HAS_ASIN +//| def asin(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the inverse sine function""" +//| ... +//| + +MATH_FUN_1(asin, asin); +MP_DEFINE_CONST_FUN_OBJ_1(vector_asin_obj, vector_asin); +#endif + +#if ULAB_NUMPY_HAS_ASINH +//| def asinh(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the inverse hyperbolic sine function""" +//| ... +//| + +MATH_FUN_1(asinh, asinh); +MP_DEFINE_CONST_FUN_OBJ_1(vector_asinh_obj, vector_asinh); +#endif + +#if ULAB_NUMPY_HAS_AROUND +//| def around(a: _ArrayLike, *, decimals: int = 0) -> ulab.numpy.ndarray: +//| """Returns a new float array in which each element is rounded to +//| ``decimals`` places.""" +//| ... +//| + +mp_obj_t vector_around(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { + static const mp_arg_t allowed_args[] = { + { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none} }, + { MP_QSTR_decimals, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0 } } + }; + + mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; + mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); + if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { + mp_raise_TypeError(translate("first argument must be an ndarray")); + } + int8_t n = args[1].u_int; + mp_float_t mul = MICROPY_FLOAT_C_FUN(pow)(10.0, n); + ndarray_obj_t *source = MP_OBJ_TO_PTR(args[0].u_obj); + COMPLEX_DTYPE_NOT_IMPLEMENTED(source->dtype) + ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_FLOAT); + mp_float_t *narray = (mp_float_t *)ndarray->array; + uint8_t *sarray = (uint8_t *)source->array; + + mp_float_t (*func)(void *) = ndarray_get_float_function(source->dtype); + + #if ULAB_MAX_DIMS > 3 + size_t i = 0; + do { + #endif + #if ULAB_MAX_DIMS > 2 + size_t j = 0; + do { + #endif + #if ULAB_MAX_DIMS > 1 + size_t k = 0; + do { + #endif + size_t l = 0; + do { + mp_float_t f = func(sarray); + *narray++ = MICROPY_FLOAT_C_FUN(round)(f * mul) / mul; + sarray += source->strides[ULAB_MAX_DIMS - 1]; + l++; + } while(l < source->shape[ULAB_MAX_DIMS - 1]); + #if ULAB_MAX_DIMS > 1 + sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1]; + sarray += source->strides[ULAB_MAX_DIMS - 2]; + k++; + } while(k < source->shape[ULAB_MAX_DIMS - 2]); + #endif + #if ULAB_MAX_DIMS > 2 + sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2]; + sarray += source->strides[ULAB_MAX_DIMS - 3]; + j++; + } while(j < source->shape[ULAB_MAX_DIMS - 3]); + #endif + #if ULAB_MAX_DIMS > 3 + sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3]; + sarray += source->strides[ULAB_MAX_DIMS - 4]; + i++; + } while(i < source->shape[ULAB_MAX_DIMS - 4]); + #endif + return MP_OBJ_FROM_PTR(ndarray); +} + +MP_DEFINE_CONST_FUN_OBJ_KW(vector_around_obj, 1, vector_around); +#endif + +#if ULAB_NUMPY_HAS_ATAN +//| def atan(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the inverse tangent function; the return values are in the +//| range [-pi/2,pi/2].""" +//| ... +//| + +MATH_FUN_1(atan, atan); +MP_DEFINE_CONST_FUN_OBJ_1(vector_atan_obj, vector_atan); +#endif + +#if ULAB_NUMPY_HAS_ARCTAN2 +//| def arctan2(ya: _ArrayLike, xa: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the inverse tangent function of y/x; the return values are in +//| the range [-pi, pi].""" +//| ... +//| + +mp_obj_t vector_arctan2(mp_obj_t y, mp_obj_t x) { + ndarray_obj_t *ndarray_x = ndarray_from_mp_obj(x, 0); + COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray_x->dtype) + + ndarray_obj_t *ndarray_y = ndarray_from_mp_obj(y, 0); + COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray_y->dtype) + + uint8_t ndim = 0; + size_t *shape = m_new(size_t, ULAB_MAX_DIMS); + int32_t *xstrides = m_new(int32_t, ULAB_MAX_DIMS); + int32_t *ystrides = m_new(int32_t, ULAB_MAX_DIMS); + if(!ndarray_can_broadcast(ndarray_x, ndarray_y, &ndim, shape, xstrides, ystrides)) { + mp_raise_ValueError(translate("operands could not be broadcast together")); + m_del(size_t, shape, ULAB_MAX_DIMS); + m_del(int32_t, xstrides, ULAB_MAX_DIMS); + m_del(int32_t, ystrides, ULAB_MAX_DIMS); + } + + uint8_t *xarray = (uint8_t *)ndarray_x->array; + uint8_t *yarray = (uint8_t *)ndarray_y->array; + + ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT); + mp_float_t *rarray = (mp_float_t *)results->array; + + mp_float_t (*funcx)(void *) = ndarray_get_float_function(ndarray_x->dtype); + mp_float_t (*funcy)(void *) = ndarray_get_float_function(ndarray_y->dtype); + + #if ULAB_MAX_DIMS > 3 + size_t i = 0; + do { + #endif + #if ULAB_MAX_DIMS > 2 + size_t j = 0; + do { + #endif + #if ULAB_MAX_DIMS > 1 + size_t k = 0; + do { + #endif + size_t l = 0; + do { + mp_float_t _x = funcx(xarray); + mp_float_t _y = funcy(yarray); + *rarray++ = MICROPY_FLOAT_C_FUN(atan2)(_y, _x); + xarray += xstrides[ULAB_MAX_DIMS - 1]; + yarray += ystrides[ULAB_MAX_DIMS - 1]; + l++; + } while(l < results->shape[ULAB_MAX_DIMS - 1]); + #if ULAB_MAX_DIMS > 1 + xarray -= xstrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1]; + xarray += xstrides[ULAB_MAX_DIMS - 2]; + yarray -= ystrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1]; + yarray += ystrides[ULAB_MAX_DIMS - 2]; + k++; + } while(k < results->shape[ULAB_MAX_DIMS - 2]); + #endif + #if ULAB_MAX_DIMS > 2 + xarray -= xstrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2]; + xarray += xstrides[ULAB_MAX_DIMS - 3]; + yarray -= ystrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2]; + yarray += ystrides[ULAB_MAX_DIMS - 3]; + j++; + } while(j < results->shape[ULAB_MAX_DIMS - 3]); + #endif + #if ULAB_MAX_DIMS > 3 + xarray -= xstrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3]; + xarray += xstrides[ULAB_MAX_DIMS - 4]; + yarray -= ystrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3]; + yarray += ystrides[ULAB_MAX_DIMS - 4]; + i++; + } while(i < results->shape[ULAB_MAX_DIMS - 4]); + #endif + + return MP_OBJ_FROM_PTR(results); +} + +MP_DEFINE_CONST_FUN_OBJ_2(vector_arctan2_obj, vector_arctan2); +#endif /* ULAB_VECTORISE_HAS_ARCTAN2 */ + +#if ULAB_NUMPY_HAS_ATANH +//| def atanh(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the inverse hyperbolic tangent function""" +//| ... +//| + +MATH_FUN_1(atanh, atanh); +MP_DEFINE_CONST_FUN_OBJ_1(vector_atanh_obj, vector_atanh); +#endif + +#if ULAB_NUMPY_HAS_CEIL +//| def ceil(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Rounds numbers up to the next whole number""" +//| ... +//| + +MATH_FUN_1(ceil, ceil); +MP_DEFINE_CONST_FUN_OBJ_1(vector_ceil_obj, vector_ceil); +#endif + +#if ULAB_NUMPY_HAS_COS +//| def cos(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the cosine function""" +//| ... +//| + +MATH_FUN_1(cos, cos); +MP_DEFINE_CONST_FUN_OBJ_1(vector_cos_obj, vector_cos); +#endif + +#if ULAB_NUMPY_HAS_COSH +//| def cosh(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the hyperbolic cosine function""" +//| ... +//| + +MATH_FUN_1(cosh, cosh); +MP_DEFINE_CONST_FUN_OBJ_1(vector_cosh_obj, vector_cosh); +#endif + +#if ULAB_NUMPY_HAS_DEGREES +//| def degrees(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Converts angles from radians to degrees""" +//| ... +//| + +static mp_float_t vector_degrees_(mp_float_t value) { + return value * MICROPY_FLOAT_CONST(180.0) / MP_PI; +} + +static mp_obj_t vector_degrees(mp_obj_t x_obj) { + return vector_generic_vector(x_obj, vector_degrees_); +} + +MP_DEFINE_CONST_FUN_OBJ_1(vector_degrees_obj, vector_degrees); +#endif + +#if ULAB_SCIPY_SPECIAL_HAS_ERF +//| def erf(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the error function, which has applications in statistics""" +//| ... +//| + +MATH_FUN_1(erf, erf); +MP_DEFINE_CONST_FUN_OBJ_1(vector_erf_obj, vector_erf); +#endif + +#if ULAB_SCIPY_SPECIAL_HAS_ERFC +//| def erfc(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the complementary error function, which has applications in statistics""" +//| ... +//| + +MATH_FUN_1(erfc, erfc); +MP_DEFINE_CONST_FUN_OBJ_1(vector_erfc_obj, vector_erfc); +#endif + +#if ULAB_NUMPY_HAS_EXP +//| def exp(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the exponent function.""" +//| ... +//| + +static mp_obj_t vector_exp(mp_obj_t o_in) { + #if ULAB_SUPPORTS_COMPLEX + if(mp_obj_is_type(o_in, &mp_type_complex)) { + mp_float_t real, imag; + mp_obj_get_complex(o_in, &real, &imag); + mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real); + return mp_obj_new_complex(exp_real * MICROPY_FLOAT_C_FUN(cos)(imag), exp_real * MICROPY_FLOAT_C_FUN(sin)(imag)); + } else if(mp_obj_is_type(o_in, &ulab_ndarray_type)) { + ndarray_obj_t *source = MP_OBJ_TO_PTR(o_in); + if(source->dtype == NDARRAY_COMPLEX) { + uint8_t *sarray = (uint8_t *)source->array; + ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_COMPLEX); + mp_float_t *array = (mp_float_t *)ndarray->array; + uint8_t itemsize = sizeof(mp_float_t); + + #if ULAB_MAX_DIMS > 3 + size_t i = 0; + do { + #endif + #if ULAB_MAX_DIMS > 2 + size_t j = 0; + do { + #endif + #if ULAB_MAX_DIMS > 1 + size_t k = 0; + do { + #endif + size_t l = 0; + do { + mp_float_t real = *(mp_float_t *)sarray; + mp_float_t imag = *(mp_float_t *)(sarray + itemsize); + mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real); + *array++ = exp_real * MICROPY_FLOAT_C_FUN(cos)(imag); + *array++ = exp_real * MICROPY_FLOAT_C_FUN(sin)(imag); + sarray += source->strides[ULAB_MAX_DIMS - 1]; + l++; + } while(l < source->shape[ULAB_MAX_DIMS - 1]); + #if ULAB_MAX_DIMS > 1 + sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1]; + sarray += source->strides[ULAB_MAX_DIMS - 2]; + k++; + } while(k < source->shape[ULAB_MAX_DIMS - 2]); + #endif /* ULAB_MAX_DIMS > 1 */ + #if ULAB_MAX_DIMS > 2 + sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2]; + sarray += source->strides[ULAB_MAX_DIMS - 3]; + j++; + } while(j < source->shape[ULAB_MAX_DIMS - 3]); + #endif /* ULAB_MAX_DIMS > 2 */ + #if ULAB_MAX_DIMS > 3 + sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3]; + sarray += source->strides[ULAB_MAX_DIMS - 4]; + i++; + } while(i < source->shape[ULAB_MAX_DIMS - 4]); + #endif /* ULAB_MAX_DIMS > 3 */ + return MP_OBJ_FROM_PTR(ndarray); + } + } + #endif + return vector_generic_vector(o_in, MICROPY_FLOAT_C_FUN(exp)); +} + +MP_DEFINE_CONST_FUN_OBJ_1(vector_exp_obj, vector_exp); +#endif + +#if ULAB_NUMPY_HAS_EXPM1 +//| def expm1(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes $e^x-1$. In certain applications, using this function preserves numeric accuracy better than the `exp` function.""" +//| ... +//| + +MATH_FUN_1(expm1, expm1); +MP_DEFINE_CONST_FUN_OBJ_1(vector_expm1_obj, vector_expm1); +#endif + +#if ULAB_NUMPY_HAS_FLOOR +//| def floor(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Rounds numbers up to the next whole number""" +//| ... +//| + +MATH_FUN_1(floor, floor); +MP_DEFINE_CONST_FUN_OBJ_1(vector_floor_obj, vector_floor); +#endif + +#if ULAB_SCIPY_SPECIAL_HAS_GAMMA +//| def gamma(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the gamma function""" +//| ... +//| + +MATH_FUN_1(gamma, tgamma); +MP_DEFINE_CONST_FUN_OBJ_1(vector_gamma_obj, vector_gamma); +#endif + +#if ULAB_SCIPY_SPECIAL_HAS_GAMMALN +//| def lgamma(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the natural log of the gamma function""" +//| ... +//| + +MATH_FUN_1(lgamma, lgamma); +MP_DEFINE_CONST_FUN_OBJ_1(vector_lgamma_obj, vector_lgamma); +#endif + +#if ULAB_NUMPY_HAS_LOG +//| def log(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the natural log""" +//| ... +//| + +MATH_FUN_1(log, log); +MP_DEFINE_CONST_FUN_OBJ_1(vector_log_obj, vector_log); +#endif + +#if ULAB_NUMPY_HAS_LOG10 +//| def log10(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the log base 10""" +//| ... +//| + +MATH_FUN_1(log10, log10); +MP_DEFINE_CONST_FUN_OBJ_1(vector_log10_obj, vector_log10); +#endif + +#if ULAB_NUMPY_HAS_LOG2 +//| def log2(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the log base 2""" +//| ... +//| + +MATH_FUN_1(log2, log2); +MP_DEFINE_CONST_FUN_OBJ_1(vector_log2_obj, vector_log2); +#endif + +#if ULAB_NUMPY_HAS_RADIANS +//| def radians(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Converts angles from degrees to radians""" +//| ... +//| + +static mp_float_t vector_radians_(mp_float_t value) { + return value * MP_PI / MICROPY_FLOAT_CONST(180.0); +} + +static mp_obj_t vector_radians(mp_obj_t x_obj) { + return vector_generic_vector(x_obj, vector_radians_); +} + +MP_DEFINE_CONST_FUN_OBJ_1(vector_radians_obj, vector_radians); +#endif + +#if ULAB_NUMPY_HAS_SIN +//| def sin(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the sine function""" +//| ... +//| + +MATH_FUN_1(sin, sin); +MP_DEFINE_CONST_FUN_OBJ_1(vector_sin_obj, vector_sin); +#endif + +#if ULAB_NUMPY_HAS_SINH +//| def sinh(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the hyperbolic sine""" +//| ... +//| + +MATH_FUN_1(sinh, sinh); +MP_DEFINE_CONST_FUN_OBJ_1(vector_sinh_obj, vector_sinh); +#endif + + +#if ULAB_NUMPY_HAS_SQRT +//| def sqrt(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the square root""" +//| ... +//| + +#if ULAB_SUPPORTS_COMPLEX +mp_obj_t vector_sqrt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { + static const mp_arg_t allowed_args[] = { + { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } }, + { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(NDARRAY_FLOAT) } }, + }; + + mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; + mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); + + mp_obj_t o_in = args[0].u_obj; + uint8_t dtype = mp_obj_get_int(args[1].u_obj); + if((dtype != NDARRAY_FLOAT) && (dtype != NDARRAY_COMPLEX)) { + mp_raise_TypeError(translate("dtype must be float, or complex")); + } + + if(mp_obj_is_type(o_in, &mp_type_complex)) { + mp_float_t real, imag; + mp_obj_get_complex(o_in, &real, &imag); + mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(sqrt)(real * real + imag * imag); + sqrt_abs = MICROPY_FLOAT_C_FUN(sqrt)(sqrt_abs); + mp_float_t theta = MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(atan2)(imag, real); + return mp_obj_new_complex(sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta), sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta)); + } else if(mp_obj_is_type(o_in, &ulab_ndarray_type)) { + ndarray_obj_t *source = MP_OBJ_TO_PTR(o_in); + if((source->dtype == NDARRAY_COMPLEX) && (dtype == NDARRAY_FLOAT)) { + mp_raise_TypeError(translate("can't convert complex to float")); + } + + if(dtype == NDARRAY_COMPLEX) { + if(source->dtype == NDARRAY_COMPLEX) { + uint8_t *sarray = (uint8_t *)source->array; + ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_COMPLEX); + mp_float_t *array = (mp_float_t *)ndarray->array; + uint8_t itemsize = sizeof(mp_float_t); + + #if ULAB_MAX_DIMS > 3 + size_t i = 0; + do { + #endif + #if ULAB_MAX_DIMS > 2 + size_t j = 0; + do { + #endif + #if ULAB_MAX_DIMS > 1 + size_t k = 0; + do { + #endif + size_t l = 0; + do { + mp_float_t real = *(mp_float_t *)sarray; + mp_float_t imag = *(mp_float_t *)(sarray + itemsize); + mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(sqrt)(real * real + imag * imag); + sqrt_abs = MICROPY_FLOAT_C_FUN(sqrt)(sqrt_abs); + mp_float_t theta = MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(atan2)(imag, real); + *array++ = sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta); + *array++ = sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta); + sarray += source->strides[ULAB_MAX_DIMS - 1]; + l++; + } while(l < source->shape[ULAB_MAX_DIMS - 1]); + #if ULAB_MAX_DIMS > 1 + sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1]; + sarray += source->strides[ULAB_MAX_DIMS - 2]; + k++; + } while(k < source->shape[ULAB_MAX_DIMS - 2]); + #endif /* ULAB_MAX_DIMS > 1 */ + #if ULAB_MAX_DIMS > 2 + sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2]; + sarray += source->strides[ULAB_MAX_DIMS - 3]; + j++; + } while(j < source->shape[ULAB_MAX_DIMS - 3]); + #endif /* ULAB_MAX_DIMS > 2 */ + #if ULAB_MAX_DIMS > 3 + sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3]; + sarray += source->strides[ULAB_MAX_DIMS - 4]; + i++; + } while(i < source->shape[ULAB_MAX_DIMS - 4]); + #endif /* ULAB_MAX_DIMS > 3 */ + return MP_OBJ_FROM_PTR(ndarray); + } else if(source->dtype == NDARRAY_FLOAT) { + uint8_t *sarray = (uint8_t *)source->array; + ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_COMPLEX); + mp_float_t *array = (mp_float_t *)ndarray->array; + + #if ULAB_MAX_DIMS > 3 + size_t i = 0; + do { + #endif + #if ULAB_MAX_DIMS > 2 + size_t j = 0; + do { + #endif + #if ULAB_MAX_DIMS > 1 + size_t k = 0; + do { + #endif + size_t l = 0; + do { + mp_float_t value = *(mp_float_t *)sarray; + if(value >= MICROPY_FLOAT_CONST(0.0)) { + *array++ = MICROPY_FLOAT_C_FUN(sqrt)(value); + array++; + } else { + array++; + *array++ = MICROPY_FLOAT_C_FUN(sqrt)(-value); + } + sarray += source->strides[ULAB_MAX_DIMS - 1]; + l++; + } while(l < source->shape[ULAB_MAX_DIMS - 1]); + #if ULAB_MAX_DIMS > 1 + sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1]; + sarray += source->strides[ULAB_MAX_DIMS - 2]; + k++; + } while(k < source->shape[ULAB_MAX_DIMS - 2]); + #endif /* ULAB_MAX_DIMS > 1 */ + #if ULAB_MAX_DIMS > 2 + sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2]; + sarray += source->strides[ULAB_MAX_DIMS - 3]; + j++; + } while(j < source->shape[ULAB_MAX_DIMS - 3]); + #endif /* ULAB_MAX_DIMS > 2 */ + #if ULAB_MAX_DIMS > 3 + sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3]; + sarray += source->strides[ULAB_MAX_DIMS - 4]; + i++; + } while(i < source->shape[ULAB_MAX_DIMS - 4]); + #endif /* ULAB_MAX_DIMS > 3 */ + return MP_OBJ_FROM_PTR(ndarray); + } else { + mp_raise_TypeError(translate("input dtype must be float or complex")); + } + } + } + return vector_generic_vector(o_in, MICROPY_FLOAT_C_FUN(sqrt)); +} +MP_DEFINE_CONST_FUN_OBJ_KW(vector_sqrt_obj, 1, vector_sqrt); +#else +MATH_FUN_1(sqrt, sqrt); +MP_DEFINE_CONST_FUN_OBJ_1(vector_sqrt_obj, vector_sqrt); +#endif /* ULAB_SUPPORTS_COMPLEX */ + +#endif /* ULAB_NUMPY_HAS_SQRT */ + +#if ULAB_NUMPY_HAS_TAN +//| def tan(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the tangent""" +//| ... +//| + +MATH_FUN_1(tan, tan); +MP_DEFINE_CONST_FUN_OBJ_1(vector_tan_obj, vector_tan); +#endif + +#if ULAB_NUMPY_HAS_TANH +//| def tanh(a: _ArrayLike) -> ulab.numpy.ndarray: +//| """Computes the hyperbolic tangent""" +//| ... + +MATH_FUN_1(tanh, tanh); +MP_DEFINE_CONST_FUN_OBJ_1(vector_tanh_obj, vector_tanh); +#endif + +#if ULAB_NUMPY_HAS_VECTORIZE +static mp_obj_t vector_vectorized_function_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { + (void) n_args; + (void) n_kw; + vectorized_function_obj_t *self = MP_OBJ_TO_PTR(self_in); + mp_obj_t avalue[1]; + mp_obj_t fvalue; + if(mp_obj_is_type(args[0], &ulab_ndarray_type)) { + ndarray_obj_t *source = MP_OBJ_TO_PTR(args[0]); + COMPLEX_DTYPE_NOT_IMPLEMENTED(source->dtype) + ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, self->otypes); + for(size_t i=0; i < source->len; i++) { + avalue[0] = mp_binary_get_val_array(source->dtype, source->array, i); + fvalue = self->type->MP_TYPE_CALL(self->fun, 1, 0, avalue); + ndarray_set_value(self->otypes, ndarray->array, i, fvalue); + } + return MP_OBJ_FROM_PTR(ndarray); + } else if(mp_obj_is_type(args[0], &mp_type_tuple) || mp_obj_is_type(args[0], &mp_type_list) || + mp_obj_is_type(args[0], &mp_type_range)) { // i.e., the input is a generic iterable + size_t len = (size_t)mp_obj_get_int(mp_obj_len_maybe(args[0])); + ndarray_obj_t *ndarray = ndarray_new_linear_array(len, self->otypes); + mp_obj_iter_buf_t iter_buf; + mp_obj_t iterable = mp_getiter(args[0], &iter_buf); + size_t i=0; + while ((avalue[0] = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { + fvalue = self->type->MP_TYPE_CALL(self->fun, 1, 0, avalue); + ndarray_set_value(self->otypes, ndarray->array, i, fvalue); + i++; + } + return MP_OBJ_FROM_PTR(ndarray); + } else if(mp_obj_is_int(args[0]) || mp_obj_is_float(args[0])) { + ndarray_obj_t *ndarray = ndarray_new_linear_array(1, self->otypes); + fvalue = self->type->MP_TYPE_CALL(self->fun, 1, 0, args); + ndarray_set_value(self->otypes, ndarray->array, 0, fvalue); + return MP_OBJ_FROM_PTR(ndarray); + } else { + mp_raise_ValueError(translate("wrong input type")); + } + return mp_const_none; +} + +const mp_obj_type_t vector_function_type = { + { &mp_type_type }, + .flags = MP_TYPE_FLAG_EXTENDED, + .name = MP_QSTR_, + MP_TYPE_EXTENDED_FIELDS( + .call = vector_vectorized_function_call, + ) +}; + +//| def vectorize( +//| f: Union[Callable[[int], _float], Callable[[_float], _float]], +//| *, +//| otypes: Optional[_DType] = None +//| ) -> Callable[[_ArrayLike], ulab.numpy.ndarray]: +//| """ +//| :param callable f: The function to wrap +//| :param otypes: List of array types that may be returned by the function. None is interpreted to mean the return value is float. +//| +//| Wrap a Python function ``f`` so that it can be applied to arrays. +//| The callable must return only values of the types specified by ``otypes``, or the result is undefined.""" +//| ... +//| + +static mp_obj_t vector_vectorize(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { + static const mp_arg_t allowed_args[] = { + { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none} }, + { MP_QSTR_otypes, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none} } + }; + mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; + mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); + const mp_obj_type_t *type = mp_obj_get_type(args[0].u_obj); + if(mp_type_get_call_slot(type) == NULL) { + mp_raise_TypeError(translate("first argument must be a callable")); + } + mp_obj_t _otypes = args[1].u_obj; + uint8_t otypes = NDARRAY_FLOAT; + if(_otypes == mp_const_none) { + // TODO: is this what numpy does? + otypes = NDARRAY_FLOAT; + } else if(mp_obj_is_int(_otypes)) { + otypes = mp_obj_get_int(_otypes); + if(otypes != NDARRAY_FLOAT && otypes != NDARRAY_UINT8 && otypes != NDARRAY_INT8 && + otypes != NDARRAY_UINT16 && otypes != NDARRAY_INT16) { + mp_raise_ValueError(translate("wrong output type")); + } + } + else { + mp_raise_ValueError(translate("wrong output type")); + } + vectorized_function_obj_t *function = m_new_obj(vectorized_function_obj_t); + function->base.type = &vector_function_type; + function->otypes = otypes; + function->fun = args[0].u_obj; + function->type = type; + return MP_OBJ_FROM_PTR(function); +} + +MP_DEFINE_CONST_FUN_OBJ_KW(vector_vectorize_obj, 1, vector_vectorize); +#endif |