1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
|
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Per-File-Key (PFK).
*
* This driver is used for storing eCryptfs information (mainly file
* encryption key) in file node as part of eCryptfs hardware enhanced solution
* provided by Qualcomm Technologies, Inc.
*
* The information is stored in node when file is first opened (eCryptfs
* will fire a callback notifying PFK about this event) and will be later
* accessed by Block Device Driver to actually load the key to encryption hw.
*
* PFK exposes API's for loading and removing keys from encryption hw
* and also API to determine whether 2 adjacent blocks can be agregated by
* Block Layer in one request to encryption hw.
* PFK is only supposed to be used by eCryptfs, except the below.
*
* Please note, the only API that uses EXPORT_SYMBOL() is pfk_remove_key,
* this is intentionally, as it is the only API that is intended to be used
* by any kernel module, including dynamically loaded ones. All other API's,
* as mentioned above are only supposed to be used by eCryptfs which is
* a static module.
*/
/* Uncomment the line below to enable debug messages */
/* #define DEBUG 1 */
#define pr_fmt(fmt) "pfk [%s]: " fmt, __func__
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/printk.h>
#include <linux/bio.h>
#include <linux/security.h>
#include <linux/lsm_hooks.h>
#include <crypto/ice.h>
#include <linux/pfk.h>
#include <linux/ecryptfs.h>
#include "pfk_kc.h"
#include "objsec.h"
#include "ecryptfs_kernel.h"
#include "pfk_ice.h"
static DEFINE_MUTEX(pfk_lock);
static bool pfk_ready;
static int g_events_handle;
/* might be replaced by a table when more than one cipher is supported */
#define PFK_SUPPORTED_CIPHER "aes_xts"
#define PFK_SUPPORTED_KEY_SIZE 32
#define PFK_SUPPORTED_SALT_SIZE 32
static int pfk_inode_alloc_security(struct inode *inode)
{
struct inode_security_struct *i_sec = NULL;
if (inode == NULL)
return -EINVAL;
i_sec = kzalloc(sizeof(*i_sec), GFP_KERNEL);
if (i_sec == NULL)
return -ENOMEM;
inode->i_security = i_sec;
return 0;
}
static void pfk_inode_free_security(struct inode *inode)
{
if (inode == NULL)
return;
kzfree(inode->i_security);
}
static struct security_hook_list pfk_hooks[] = {
LSM_HOOK_INIT(inode_alloc_security, pfk_inode_alloc_security),
LSM_HOOK_INIT(inode_free_security, pfk_inode_free_security),
LSM_HOOK_INIT(allow_merge_bio, pfk_allow_merge_bio),
};
static int __init pfk_lsm_init(void)
{
/* Check if PFK is the chosen lsm via security_module_enable() */
if (security_module_enable("pfk")) {
security_add_hooks(pfk_hooks, ARRAY_SIZE(pfk_hooks));
pr_debug("pfk is the chosen lsm, registered successfully !\n");
} else {
pr_debug("pfk is not the chosen lsm.\n");
if (!selinux_is_enabled()) {
pr_err("se linux is not enabled.\n");
return -ENODEV;
}
}
return 0;
}
/**
* pfk_is_ready() - driver is initialized and ready.
*
* Return: true if the driver is ready.
*/
static inline bool pfk_is_ready(void)
{
return pfk_ready;
}
/**
* pfk_get_page_index() - get the inode from a bio.
* @bio: Pointer to BIO structure.
*
* Walk the bio struct links to get the inode.
* Please note, that in general bio may consist of several pages from
* several files, but in our case we always assume that all pages come
* from the same file, since our logic ensures it. That is why we only
* walk through the first page to look for inode.
*
* Return: pointer to the inode struct if successful, or NULL otherwise.
*
*/
static int pfk_get_page_index(const struct bio *bio, pgoff_t *page_index)
{
if (!bio || !page_index)
return -EPERM;
/* check bio vec count > 0 before using the bio->bi_io_vec[] array */
if (!bio->bi_vcnt)
return -EINVAL;
if (!bio->bi_io_vec)
return -EINVAL;
if (!bio->bi_io_vec->bv_page)
return -EINVAL;
*page_index = bio->bi_io_vec->bv_page->index;
return 0;
}
/**
* pfk_bio_get_inode() - get the inode from a bio.
* @bio: Pointer to BIO structure.
*
* Walk the bio struct links to get the inode.
* Please note, that in general bio may consist of several pages from
* several files, but in our case we always assume that all pages come
* from the same file, since our logic ensures it. That is why we only
* walk through the first page to look for inode.
*
* Return: pointer to the inode struct if successful, or NULL otherwise.
*
*/
static struct inode *pfk_bio_get_inode(const struct bio *bio)
{
if (!bio)
return NULL;
/* check bio vec count > 0 before using the bio->bi_io_vec[] array */
if (!bio->bi_vcnt)
return NULL;
if (!bio->bi_io_vec)
return NULL;
if (!bio->bi_io_vec->bv_page)
return NULL;
if (PageAnon(bio->bi_io_vec->bv_page)) {
struct inode *inode;
/* Using direct-io (O_DIRECT) without page cache */
inode = dio_bio_get_inode((struct bio *)bio);
pr_debug("inode on direct-io, inode = 0x%p.\n", inode);
return inode;
}
if (!bio->bi_io_vec->bv_page->mapping)
return NULL;
if (!bio->bi_io_vec->bv_page->mapping->host)
return NULL;
return bio->bi_io_vec->bv_page->mapping->host;
}
/**
* pfk_get_ecryptfs_data() - retrieves ecryptfs data stored inside node
* @inode: inode
*
* Return the data or NULL if there isn't any or in case of error
* Should be invoked under lock
*/
static void *pfk_get_ecryptfs_data(const struct inode *inode)
{
struct inode_security_struct *isec = NULL;
if (!inode)
return NULL;
isec = inode->i_security;
if (!isec) {
pr_debug("i_security is NULL, could be irrelevant file\n");
return NULL;
}
return isec->pfk_data;
}
/**
* pfk_set_ecryptfs_data() - stores ecryptfs data inside node
* @inode: inode to update
* @data: data to put inside the node
*
* Returns 0 in case of success, error otherwise
* Should be invoked under lock
*/
static int pfk_set_ecryptfs_data(struct inode *inode, void *ecryptfs_data)
{
struct inode_security_struct *isec = NULL;
if (!inode)
return -EPERM;
isec = inode->i_security;
if (!isec) {
pr_err("i_security is NULL, not ready yet\n");
return -EINVAL;
}
isec->pfk_data = ecryptfs_data;
return 0;
}
/**
* pfk_parse_cipher() - translate string cipher to enum
* @cipher: cipher in string as received from ecryptfs
* @algo: pointer to store the output enum (can be null)
*
* return 0 in case of success, error otherwise (i.e not supported cipher)
*/
static int pfk_parse_cipher(const unsigned char *cipher,
enum ice_cryto_algo_mode *algo)
{
/*
* currently only AES XTS algo is supported
* in the future, table with supported ciphers might
* be introduced
*/
if (!cipher)
return -EPERM;
if (!strcmp(cipher, PFK_SUPPORTED_CIPHER) == 0) {
pr_debug("not supported alghoritm %s\n", cipher);
return -EINVAL;
}
if (algo)
*algo = ICE_CRYPTO_ALGO_MODE_AES_XTS;
return 0;
}
/**
* pfk_key_size_to_key_type() - translate key size to key size enum
* @key_size: key size in bytes
* @key_size_type: pointer to store the output enum (can be null)
*
* return 0 in case of success, error otherwise (i.e not supported key size)
*/
static int pfk_key_size_to_key_type(size_t key_size,
enum ice_crpto_key_size *key_size_type)
{
/*
* currently only 32 bit key size is supported
* in the future, table with supported key sizes might
* be introduced
*/
if (key_size != PFK_SUPPORTED_KEY_SIZE) {
pr_err("not supported key size %lu\n", key_size);
return -EINVAL;
}
if (key_size_type)
*key_size_type = ICE_CRYPTO_KEY_SIZE_256;
return 0;
}
/**
* pfk_load_key() - loads the encryption key to the ICE
* @bio: Pointer to the BIO structure
* @ice_setting: Pointer to ice setting structure that will be filled with
* ice configuration values, including the index to which the key was loaded
*
* Via bio gets access to ecryptfs key stored in auxiliary structure inside
* inode and loads it to encryption hw.
* Returns the index where the key is stored in encryption hw and additional
* information that will be used later for configuration of the encryption hw.
*
*/
int pfk_load_key(const struct bio *bio, struct ice_crypto_setting *ice_setting)
{
struct inode *inode = NULL;
int ret = 0;
const unsigned char *key = NULL;
const unsigned char *salt = NULL;
const unsigned char *cipher = NULL;
void *ecryptfs_data = NULL;
u32 key_index = 0;
enum ice_cryto_algo_mode algo_mode = 0;
enum ice_crpto_key_size key_size_type = 0;
size_t key_size = 0;
size_t salt_size = 0;
pgoff_t offset;
bool is_metadata = false;
if (!pfk_is_ready())
return -ENODEV;
if (!bio)
return -EPERM;
if (!ice_setting) {
pr_err("ice setting is NULL\n");
return -EPERM;
}
inode = pfk_bio_get_inode(bio);
if (!inode)
return -EINVAL;
ecryptfs_data = pfk_get_ecryptfs_data(inode);
if (!ecryptfs_data) {
ret = -EINVAL;
goto end;
}
ret = pfk_get_page_index(bio, &offset);
if (ret != 0) {
pr_err("could not get page index from bio, probably bug %d\n",
ret);
ret = -EINVAL;
goto end;
}
is_metadata = ecryptfs_is_page_in_metadata(ecryptfs_data, offset);
if (is_metadata == true) {
pr_debug("ecryptfs metadata, bypassing ICE\n");
ret = -ESPIPE;
goto end;
}
key = ecryptfs_get_key(ecryptfs_data);
if (!key) {
pr_err("could not parse key from ecryptfs\n");
ret = -EINVAL;
goto end;
}
key_size = ecryptfs_get_key_size(ecryptfs_data);
if (!key_size) {
pr_err("could not parse key size from ecryptfs\n");
ret = -EINVAL;
goto end;
}
salt = ecryptfs_get_salt(ecryptfs_data);
if (!salt) {
pr_err("could not parse salt from ecryptfs\n");
ret = -EINVAL;
goto end;
}
salt_size = ecryptfs_get_salt_size(ecryptfs_data);
if (!salt_size) {
pr_err("could not parse salt size from ecryptfs\n");
ret = -EINVAL;
goto end;
}
cipher = ecryptfs_get_cipher(ecryptfs_data);
if (!cipher) {
pr_err("could not parse key from ecryptfs\n");
ret = -EINVAL;
goto end;
}
ret = pfk_parse_cipher(cipher, &algo_mode);
if (ret != 0) {
pr_debug("not supported cipher\n");
return ret;
}
ret = pfk_key_size_to_key_type(key_size, &key_size_type);
if (ret != 0)
return ret;
ret = pfk_kc_load_key(key, key_size, salt, salt_size, &key_index);
if (ret != 0) {
pr_err("could not load key into pfk key cache, error %d\n",
ret);
return -EINVAL;
}
ice_setting->key_size = key_size_type;
ice_setting->algo_mode = algo_mode;
/* hardcoded for now */
ice_setting->key_mode = ICE_CRYPTO_USE_LUT_SW_KEY;
ice_setting->key_index = key_index;
return 0;
end:
return ret;
}
/**
* pfk_remove_key() - removes key from hw
* @key: pointer to the key
* @key_size: key size
*
* Will be used by external clients to remove a particular key for security
* reasons.
* The only API that can be used by dynamically loaded modules,
* see explanations above at the beginning of this file.
* The key is removed securely (by memsetting the previous value)
*/
int pfk_remove_key(const unsigned char *key, size_t key_size)
{
int ret = 0;
if (!pfk_is_ready())
return -ENODEV;
if (!key)
return -EPERM;
ret = pfk_kc_remove_key(key, key_size);
return ret;
}
EXPORT_SYMBOL(pfk_remove_key);
/**
* pfk_allow_merge_bio() - Check if 2 BIOs can be merged.
* @bio1: Pointer to first BIO structure.
* @bio2: Pointer to second BIO structure.
*
* Prevent merging of BIOs from encrypted and non-encrypted
* files, or files encrypted with different key.
* Also prevent non encrypted and encrypted data from the same file
* to be merged (ecryptfs header if stored inside file should be non
* encrypted)
* This API is called by the file system block layer.
*
* Return: true if the BIOs allowed to be merged, false
* otherwise.
*/
bool pfk_allow_merge_bio(struct bio *bio1, struct bio *bio2)
{
int ret;
void *ecryptfs_data1 = NULL;
void *ecryptfs_data2 = NULL;
pgoff_t offset1, offset2;
bool res = false;
struct inode *inode1 = NULL;
struct inode *inode2 = NULL;
if (!pfk_is_ready())
return -ENODEV;
if (!bio1 || !bio2)
return -EPERM;
inode1 = pfk_bio_get_inode(bio1);
inode2 = pfk_bio_get_inode(bio2);
ecryptfs_data1 = pfk_get_ecryptfs_data(pfk_bio_get_inode(bio1));
ecryptfs_data2 = pfk_get_ecryptfs_data(pfk_bio_get_inode(bio2));
/*
* if we have 2 different encrypted files or 1 encrypted and 1 regular,
* merge is forbidden
*/
if (!ecryptfs_is_data_equal(ecryptfs_data1, ecryptfs_data2)) {
res = false;
goto end;
}
/*
* if both are equall in their NULLINNESS, we have 2 unencrypted files,
* allow merge
*/
if (!ecryptfs_data1) {
res = true;
goto end;
}
/*
* at this point both bio's are in the same file which is probably
* encrypted, last thing to check is header vs data
* We are assuming that we are not working in O_DIRECT mode,
* since it is not currently supported by eCryptfs
*/
ret = pfk_get_page_index(bio1, &offset1);
if (ret != 0) {
pr_err("could not get page index from bio1, probably bug %d\n",
ret);
res = false;
goto end;
}
ret = pfk_get_page_index(bio2, &offset2);
if (ret != 0) {
pr_err("could not get page index from bio2, bug %d\n", ret);
res = false;
goto end;
}
res = (ecryptfs_is_page_in_metadata(ecryptfs_data1, offset1) ==
ecryptfs_is_page_in_metadata(ecryptfs_data2, offset2));
/* fall through */
end:
return res;
}
/**
* pfk_open_cb() - callback function for file open event
* @inode: file inode
* @data: data provided by eCryptfs
*
* Will be invoked from eCryptfs in case of file open event
*/
static void pfk_open_cb(struct inode *inode, void *ecryptfs_data)
{
size_t key_size;
const unsigned char *cipher = NULL;
if (!pfk_is_ready())
return;
if (!inode) {
pr_err("inode is null\n");
return;
}
key_size = ecryptfs_get_key_size(ecryptfs_data);
if (!(key_size)) {
pr_err("could not parse key size from ecryptfs\n");
return;
}
cipher = ecryptfs_get_cipher(ecryptfs_data);
if (!cipher) {
pr_err("could not parse key from ecryptfs\n");
return;
}
if (0 != pfk_parse_cipher(cipher, NULL)) {
pr_debug("open_cb: not supported cipher\n");
return;
}
if (0 != pfk_key_size_to_key_type(key_size, NULL))
return;
mutex_lock(&pfk_lock);
pfk_set_ecryptfs_data(inode, ecryptfs_data);
mutex_unlock(&pfk_lock);
}
/**
* pfk_release_cb() - callback function for file release event
* @inode: file inode
*
* Will be invoked from eCryptfs in case of file release event
*/
static void pfk_release_cb(struct inode *inode)
{
const unsigned char *key = NULL;
const unsigned char *salt = NULL;
size_t key_size = 0;
size_t salt_size = 0;
void *data = NULL;
if (!pfk_is_ready())
return;
if (!inode) {
pr_err("inode is null\n");
return;
}
data = pfk_get_ecryptfs_data(inode);
if (!data) {
pr_debug("could not get ecryptfs data from inode\n");
return;
}
key = ecryptfs_get_key(data);
if (!key) {
pr_err("could not parse key from ecryptfs\n");
return;
}
key_size = ecryptfs_get_key_size(data);
if (!(key_size)) {
pr_err("could not parse key size from ecryptfs\n");
return;
}
salt = ecryptfs_get_salt(data);
if (!salt) {
pr_err("could not parse salt from ecryptfs\n");
return;
}
salt_size = ecryptfs_get_salt_size(data);
if (!salt_size) {
pr_err("could not parse salt size from ecryptfs\n");
return;
}
pfk_kc_remove_key_with_salt(key, key_size, salt, salt_size);
mutex_lock(&pfk_lock);
pfk_set_ecryptfs_data(inode, NULL);
mutex_unlock(&pfk_lock);
}
static bool pfk_is_cipher_supported_cb(const char *cipher)
{
if (!pfk_is_ready())
return false;
if (!cipher)
return false;
return (pfk_parse_cipher(cipher, NULL)) == 0;
}
static bool pfk_is_hw_crypt_cb(void)
{
if (!pfk_is_ready())
return false;
return true;
}
static size_t pfk_get_salt_key_size_cb(const char *cipher)
{
if (!pfk_is_ready())
return 0;
if (!pfk_is_cipher_supported_cb(cipher))
return 0;
return PFK_SUPPORTED_SALT_SIZE;
}
static void __exit pfk_exit(void)
{
pfk_ready = false;
ecryptfs_unregister_from_events(g_events_handle);
pfk_kc_deinit();
}
static int __init pfk_init(void)
{
int ret = 0;
struct ecryptfs_events events = {0};
events.open_cb = pfk_open_cb;
events.release_cb = pfk_release_cb;
events.is_cipher_supported_cb = pfk_is_cipher_supported_cb;
events.is_hw_crypt_cb = pfk_is_hw_crypt_cb;
events.get_salt_key_size_cb = pfk_get_salt_key_size_cb;
g_events_handle = ecryptfs_register_to_events(&events);
if (0 == g_events_handle) {
pr_err("could not register with eCryptfs, error %d\n", ret);
goto fail;
}
ret = pfk_kc_init();
if (ret != 0) {
pr_err("could init pfk key cache, error %d\n", ret);
ecryptfs_unregister_from_events(g_events_handle);
goto fail;
}
ret = pfk_lsm_init();
if (ret != 0) {
pr_debug("neither pfk nor se-linux sec modules are enabled\n");
pr_debug("not an error, just don't enable pfk\n");
pfk_kc_deinit();
ecryptfs_unregister_from_events(g_events_handle);
return 0;
}
pfk_ready = true;
pr_info("Driver initialized successfully\n");
return 0;
fail:
pr_err("Failed to init driver\n");
return -ENODEV;
}
module_init(pfk_init);
module_exit(pfk_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Per-File-Key driver");
|