1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
|
/*
* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include "cpr3-regulator.h"
#define MSM8998_KBSS_FUSE_CORNERS 4
#define SDM660_KBSS_FUSE_CORNERS 5
#define SDM630_POWER_KBSS_FUSE_CORNERS 3
#define SDM630_PERF_KBSS_FUSE_CORNERS 5
/**
* struct cprh_kbss_fuses - KBSS specific fuse data
* @ro_sel: Ring oscillator select fuse parameter value for each
* fuse corner
* @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value
* for each fuse corner (raw, not converted to a voltage)
* @target_quot: CPR target quotient fuse parameter value for each fuse
* corner
* @quot_offset: CPR target quotient offset fuse parameter value for each
* fuse corner (raw, not unpacked) used for target quotient
* interpolation
* @speed_bin: Application processor speed bin fuse parameter value for
* the given chip
* @cpr_fusing_rev: CPR fusing revision fuse parameter value
* @force_highest_corner: Flag indicating that all corners must operate
* at the voltage of the highest corner. This is
* applicable to MSM8998 only.
* @aging_init_quot_diff: Initial quotient difference between CPR aging
* min and max sensors measured at time of manufacturing
*
* This struct holds the values for all of the fuses read from memory.
*/
struct cprh_kbss_fuses {
u64 *ro_sel;
u64 *init_voltage;
u64 *target_quot;
u64 *quot_offset;
u64 speed_bin;
u64 cpr_fusing_rev;
u64 force_highest_corner;
u64 aging_init_quot_diff;
};
/*
* Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 with speed bin fuse = 0.
* Fuse combos 8 - 15 map to CPR fusing revision 0 - 7 with speed bin fuse = 1.
* Fuse combos 16 - 23 map to CPR fusing revision 0 - 7 with speed bin fuse = 2.
* Fuse combos 24 - 31 map to CPR fusing revision 0 - 7 with speed bin fuse = 3.
* Fuse combos 32 - 39 map to CPR fusing revision 0 - 7 with speed bin fuse = 4.
*/
#define CPRH_MSM8998_KBSS_FUSE_COMBO_COUNT 32
#define CPRH_SDM660_KBSS_FUSE_COMBO_COUNT 40
#define CPRH_SDM630_KBSS_FUSE_COMBO_COUNT 32
/*
* Constants which define the name of each fuse corner.
*/
enum cprh_msm8998_kbss_fuse_corner {
CPRH_MSM8998_KBSS_FUSE_CORNER_LOWSVS = 0,
CPRH_MSM8998_KBSS_FUSE_CORNER_SVS = 1,
CPRH_MSM8998_KBSS_FUSE_CORNER_NOM = 2,
CPRH_MSM8998_KBSS_FUSE_CORNER_TURBO_L1 = 3,
};
static const char * const cprh_msm8998_kbss_fuse_corner_name[] = {
[CPRH_MSM8998_KBSS_FUSE_CORNER_LOWSVS] = "LowSVS",
[CPRH_MSM8998_KBSS_FUSE_CORNER_SVS] = "SVS",
[CPRH_MSM8998_KBSS_FUSE_CORNER_NOM] = "NOM",
[CPRH_MSM8998_KBSS_FUSE_CORNER_TURBO_L1] = "TURBO_L1",
};
enum cprh_sdm660_power_kbss_fuse_corner {
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_LOWSVS = 0,
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVS = 1,
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVSPLUS = 2,
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_NOM = 3,
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_TURBO_L1 = 4,
};
static const char * const cprh_sdm660_power_kbss_fuse_corner_name[] = {
[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_LOWSVS] = "LowSVS",
[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVS] = "SVS",
[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVSPLUS] = "SVSPLUS",
[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_NOM] = "NOM",
[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_TURBO_L1] = "TURBO_L1",
};
enum cprh_sdm660_perf_kbss_fuse_corner {
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVS = 0,
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVSPLUS = 1,
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_NOM = 2,
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO = 3,
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2 = 4,
};
static const char * const cprh_sdm660_perf_kbss_fuse_corner_name[] = {
[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVS] = "SVS",
[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVSPLUS] = "SVSPLUS",
[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_NOM] = "NOM",
[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO] = "TURBO",
[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2] = "TURBO_L2",
};
enum cprh_sdm630_power_kbss_fuse_corner {
CPRH_SDM630_POWER_KBSS_FUSE_CORNER_LOWSVS = 0,
CPRH_SDM630_POWER_KBSS_FUSE_CORNER_SVSPLUS = 1,
CPRH_SDM630_POWER_KBSS_FUSE_CORNER_TURBO_L1 = 2,
};
static const char * const cprh_sdm630_power_kbss_fuse_corner_name[] = {
[CPRH_SDM630_POWER_KBSS_FUSE_CORNER_LOWSVS] = "LowSVS",
[CPRH_SDM630_POWER_KBSS_FUSE_CORNER_SVSPLUS] = "SVSPLUS",
[CPRH_SDM630_POWER_KBSS_FUSE_CORNER_TURBO_L1] = "TURBO_L1",
};
enum cprh_sdm630_perf_kbss_fuse_corner {
CPRH_SDM630_PERF_KBSS_FUSE_CORNER_LOWSVS = 0,
CPRH_SDM630_PERF_KBSS_FUSE_CORNER_SVSPLUS = 1,
CPRH_SDM630_PERF_KBSS_FUSE_CORNER_NOM = 2,
CPRH_SDM630_PERF_KBSS_FUSE_CORNER_TURBO = 3,
CPRH_SDM630_PERF_KBSS_FUSE_CORNER_TURBO_L2 = 4,
};
static const char * const cprh_sdm630_perf_kbss_fuse_corner_name[] = {
[CPRH_SDM630_PERF_KBSS_FUSE_CORNER_LOWSVS] = "LowSVS",
[CPRH_SDM630_PERF_KBSS_FUSE_CORNER_SVSPLUS] = "SVSPLUS",
[CPRH_SDM630_PERF_KBSS_FUSE_CORNER_NOM] = "NOM",
[CPRH_SDM630_PERF_KBSS_FUSE_CORNER_TURBO] = "TURBO",
[CPRH_SDM630_PERF_KBSS_FUSE_CORNER_TURBO_L2] = "TURBO_L2",
};
/* KBSS cluster IDs */
#define CPRH_KBSS_POWER_CLUSTER_ID 0
#define CPRH_KBSS_PERFORMANCE_CLUSTER_ID 1
/* KBSS controller IDs */
#define CPRH_KBSS_MIN_CONTROLLER_ID 0
#define CPRH_KBSS_MAX_CONTROLLER_ID 1
/*
* MSM8998 KBSS fuse parameter locations:
*
* Structs are organized with the following dimensions:
* Outer: 0 or 1 for power or performance cluster
* Middle: 0 to 3 for fuse corners from lowest to highest corner
* Inner: large enough to hold the longest set of parameter segments which
* fully defines a fuse parameter, +1 (for NULL termination).
* Each segment corresponds to a contiguous group of bits from a
* single fuse row. These segments are concatentated together in
* order to form the full fuse parameter value. The segments for
* a given parameter may correspond to different fuse rows.
*
*/
static const struct cpr3_fuse_param
msm8998_kbss_ro_sel_param[2][MSM8998_KBSS_FUSE_CORNERS][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{67, 12, 15}, {} },
{{67, 8, 11}, {} },
{{67, 4, 7}, {} },
{{67, 0, 3}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{69, 26, 29}, {} },
{{69, 22, 25}, {} },
{{69, 18, 21}, {} },
{{69, 14, 17}, {} },
},
};
static const struct cpr3_fuse_param
sdm660_kbss_ro_sel_param[2][SDM660_KBSS_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{67, 12, 15}, {} },
{{67, 8, 11}, {} },
{{65, 56, 59}, {} },
{{67, 4, 7}, {} },
{{67, 0, 3}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{68, 61, 63}, {69, 0, 0} },
{{69, 1, 4}, {} },
{{68, 57, 60}, {} },
{{68, 53, 56}, {} },
{{66, 14, 17}, {} },
},
};
static const struct cpr3_fuse_param
sdm630_kbss_ro_sel_param[2][SDM630_PERF_KBSS_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{67, 12, 15}, {} },
{{65, 56, 59}, {} },
{{67, 0, 3}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{68, 61, 63}, {69, 0, 0} },
{{69, 1, 4}, {} },
{{68, 57, 60}, {} },
{{68, 53, 56}, {} },
{{66, 14, 17}, {} },
},
};
static const struct cpr3_fuse_param
msm8998_kbss_init_voltage_param[2][MSM8998_KBSS_FUSE_CORNERS][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{67, 34, 39}, {} },
{{67, 28, 33}, {} },
{{67, 22, 27}, {} },
{{67, 16, 21}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{69, 48, 53}, {} },
{{69, 42, 47}, {} },
{{69, 36, 41}, {} },
{{69, 30, 35}, {} },
},
};
static const struct cpr3_fuse_param
sdm660_kbss_init_voltage_param[2][SDM660_KBSS_FUSE_CORNERS][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{67, 34, 39}, {} },
{{67, 28, 33}, {} },
{{71, 3, 8}, {} },
{{67, 22, 27}, {} },
{{67, 16, 21}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{69, 17, 22}, {} },
{{69, 23, 28}, {} },
{{69, 11, 16}, {} },
{{69, 5, 10}, {} },
{{70, 42, 47}, {} },
},
};
static const struct cpr3_fuse_param
sdm630_kbss_init_voltage_param[2][SDM630_PERF_KBSS_FUSE_CORNERS][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{67, 34, 39}, {} },
{{71, 3, 8}, {} },
{{67, 16, 21}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{69, 17, 22}, {} },
{{69, 23, 28}, {} },
{{69, 11, 16}, {} },
{{69, 5, 10}, {} },
{{70, 42, 47}, {} },
},
};
static const struct cpr3_fuse_param
msm8998_kbss_target_quot_param[2][MSM8998_KBSS_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{68, 18, 29}, {} },
{{68, 6, 17}, {} },
{{67, 58, 63}, {68, 0, 5} },
{{67, 46, 57}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{70, 32, 43}, {} },
{{70, 20, 31}, {} },
{{70, 8, 19}, {} },
{{69, 60, 63}, {70, 0, 7}, {} },
},
};
static const struct cpr3_fuse_param
sdm660_kbss_target_quot_param[2][SDM660_KBSS_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{68, 12, 23}, {} },
{{68, 0, 11}, {} },
{{71, 9, 20}, {} },
{{67, 52, 63}, {} },
{{67, 40, 51}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{69, 53, 63}, {70, 0, 0}, {} },
{{70, 1, 12}, {} },
{{69, 41, 52}, {} },
{{69, 29, 40}, {} },
{{70, 48, 59}, {} },
},
};
static const struct cpr3_fuse_param
sdm630_kbss_target_quot_param[2][SDM630_PERF_KBSS_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{68, 12, 23}, {} },
{{71, 9, 20}, {} },
{{67, 40, 51}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{69, 53, 63}, {70, 0, 0}, {} },
{{70, 1, 12}, {} },
{{69, 41, 52}, {} },
{{69, 29, 40}, {} },
{{70, 48, 59}, {} },
},
};
static const struct cpr3_fuse_param
msm8998_kbss_quot_offset_param[2][MSM8998_KBSS_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{} },
{{68, 63, 63}, {69, 0, 5}, {} },
{{68, 56, 62}, {} },
{{68, 49, 55}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{} },
{{71, 13, 15}, {71, 21, 24}, {} },
{{71, 6, 12}, {} },
{{70, 63, 63}, {71, 0, 5}, {} },
},
};
static const struct cpr3_fuse_param
sdm660_kbss_quot_offset_param[2][SDM660_KBSS_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{} },
{{68, 38, 44}, {} },
{{71, 21, 27}, {} },
{{68, 31, 37}, {} },
{{68, 24, 30}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{} },
{{70, 27, 33}, {} },
{{70, 20, 26}, {} },
{{70, 13, 19}, {} },
{{70, 60, 63}, {71, 0, 2}, {} },
},
};
static const struct cpr3_fuse_param
sdm630_kbss_quot_offset_param[2][SDM630_PERF_KBSS_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{} },
{{71, 21, 27}, {} },
{{68, 24, 30}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{} },
{{70, 27, 33}, {} },
{{70, 20, 26}, {} },
{{70, 13, 19}, {} },
{{70, 60, 63}, {71, 0, 2}, {} },
},
};
static const struct cpr3_fuse_param msm8998_cpr_fusing_rev_param[] = {
{39, 51, 53},
{},
};
static const struct cpr3_fuse_param sdm660_cpr_fusing_rev_param[] = {
{71, 28, 30},
{},
};
static const struct cpr3_fuse_param sdm630_cpr_fusing_rev_param[] = {
{71, 28, 30},
{},
};
static const struct cpr3_fuse_param kbss_speed_bin_param[] = {
{38, 29, 31},
{},
};
static const struct cpr3_fuse_param
msm8998_cpr_force_highest_corner_param[] = {
{100, 45, 45},
{},
};
static const struct cpr3_fuse_param
msm8998_kbss_aging_init_quot_diff_param[2][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{69, 6, 13},
{},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{71, 25, 32},
{},
},
};
static const struct cpr3_fuse_param
sdm660_kbss_aging_init_quot_diff_param[2][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{68, 45, 52},
{},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{70, 34, 41},
{},
},
};
static const struct cpr3_fuse_param
sdm630_kbss_aging_init_quot_diff_param[2][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{68, 45, 52},
{},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{70, 34, 41},
{},
},
};
/*
* Open loop voltage fuse reference voltages in microvolts for MSM8998 v1
*/
static const int
msm8998_v1_kbss_fuse_ref_volt[MSM8998_KBSS_FUSE_CORNERS] = {
696000,
768000,
896000,
1112000,
};
/*
* Open loop voltage fuse reference voltages in microvolts for MSM8998 v2
*/
static const int
msm8998_v2_kbss_fuse_ref_volt[2][MSM8998_KBSS_FUSE_CORNERS] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
688000,
756000,
828000,
1056000,
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
756000,
756000,
828000,
1056000,
},
};
/*
* Open loop voltage fuse reference voltages in microvolts for SDM660
*/
static const int
sdm660_kbss_fuse_ref_volt[2][SDM660_KBSS_FUSE_CORNERS] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
644000,
724000,
788000,
868000,
1068000,
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
724000,
788000,
868000,
988000,
1068000,
},
};
/*
* Open loop voltage fuse reference voltages in microvolts for SDM630
*/
static const int
sdm630_kbss_fuse_ref_volt[2][SDM630_PERF_KBSS_FUSE_CORNERS] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
644000,
788000,
1068000,
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
644000,
788000,
868000,
988000,
1068000,
},
};
static const int
sdm630_perf_kbss_speed_bin_2_fuse_ref_volt[SDM630_PERF_KBSS_FUSE_CORNERS] = {
644000,
788000,
868000,
988000,
1140000,
};
#define CPRH_KBSS_FUSE_STEP_VOLT 10000
#define CPRH_KBSS_VOLTAGE_FUSE_SIZE 6
#define CPRH_KBSS_QUOT_OFFSET_SCALE 5
#define CPRH_KBSS_AGING_INIT_QUOT_DIFF_SIZE 8
#define CPRH_KBSS_AGING_INIT_QUOT_DIFF_SCALE 1
#define CPRH_KBSS_CPR_CLOCK_RATE 19200000
#define CPRH_KBSS_MAX_CORNER_BAND_COUNT 4
#define CPRH_KBSS_MAX_CORNER_COUNT 40
#define CPRH_KBSS_CPR_SDELTA_CORE_COUNT 4
#define CPRH_KBSS_MAX_TEMP_POINTS 3
/*
* msm8998 configuration
*/
#define MSM8998_KBSS_POWER_CPR_SENSOR_COUNT 6
#define MSM8998_KBSS_PERFORMANCE_CPR_SENSOR_COUNT 9
#define MSM8998_KBSS_POWER_TEMP_SENSOR_ID_START 1
#define MSM8998_KBSS_POWER_TEMP_SENSOR_ID_END 5
#define MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START 6
#define MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END 10
#define MSM8998_KBSS_POWER_AGING_SENSOR_ID 0
#define MSM8998_KBSS_POWER_AGING_BYPASS_MASK0 0
#define MSM8998_KBSS_PERFORMANCE_AGING_SENSOR_ID 0
#define MSM8998_KBSS_PERFORMANCE_AGING_BYPASS_MASK0 0
/*
* sdm660 configuration
*/
#define SDM660_KBSS_POWER_CPR_SENSOR_COUNT 6
#define SDM660_KBSS_PERFORMANCE_CPR_SENSOR_COUNT 9
#define SDM660_KBSS_POWER_TEMP_SENSOR_ID_START 10
#define SDM660_KBSS_POWER_TEMP_SENSOR_ID_END 11
#define SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START 4
#define SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END 9
#define SDM660_KBSS_POWER_AGING_SENSOR_ID 0
#define SDM660_KBSS_POWER_AGING_BYPASS_MASK0 0
#define SDM660_KBSS_PERFORMANCE_AGING_SENSOR_ID 0
#define SDM660_KBSS_PERFORMANCE_AGING_BYPASS_MASK0 0
/*
* sdm630 configuration
*/
#define SDM630_KBSS_POWER_CPR_SENSOR_COUNT 6
#define SDM630_KBSS_PERFORMANCE_CPR_SENSOR_COUNT 6
/*
* SOC IDs
*/
enum soc_id {
MSM8998_V1_SOC_ID = 1,
MSM8998_V2_SOC_ID = 2,
SDM660_SOC_ID = 3,
SDM630_SOC_ID = 4,
};
/**
* cprh_msm8998_kbss_read_fuse_data() - load msm8998 KBSS specific fuse
* parameter values
* @vreg: Pointer to the CPR3 regulator
* @fuse: KBSS specific fuse data
*
* This function fills cprh_kbss_fuses struct with values read out of hardware
* fuses.
*
* Return: 0 on success, errno on failure
*/
static int cprh_msm8998_kbss_read_fuse_data(struct cpr3_regulator *vreg,
struct cprh_kbss_fuses *fuse)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
int i, id, rc;
rc = cpr3_read_fuse_param(base, msm8998_cpr_fusing_rev_param,
&fuse->cpr_fusing_rev);
if (rc) {
cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
id = vreg->thread->ctrl->ctrl_id;
for (i = 0; i < MSM8998_KBSS_FUSE_CORNERS; i++) {
rc = cpr3_read_fuse_param(base,
msm8998_kbss_init_voltage_param[id][i],
&fuse->init_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msm8998_kbss_target_quot_param[id][i],
&fuse->target_quot[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msm8998_kbss_ro_sel_param[id][i],
&fuse->ro_sel[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msm8998_kbss_quot_offset_param[id][i],
&fuse->quot_offset[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
i, rc);
return rc;
}
}
rc = cpr3_read_fuse_param(base,
msm8998_kbss_aging_init_quot_diff_param[id],
&fuse->aging_init_quot_diff);
if (rc) {
cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msm8998_cpr_force_highest_corner_param,
&fuse->force_highest_corner);
if (rc) {
cpr3_err(vreg, "Unable to read CPR force highest corner fuse, rc=%d\n",
rc);
return rc;
}
if (fuse->force_highest_corner)
cpr3_info(vreg, "Fusing requires all operation at the highest corner\n");
vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
if (vreg->fuse_combo >= CPRH_MSM8998_KBSS_FUSE_COMBO_COUNT) {
cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
vreg->fuse_combo);
return -EINVAL;
}
return rc;
};
/**
* cprh_sdm660_kbss_read_fuse_data() - load SDM660 KBSS specific fuse parameter
* values
* @vreg: Pointer to the CPR3 regulator
* @fuse: KBSS specific fuse data
*
* This function fills cprh_kbss_fuses struct with values read out of hardware
* fuses.
*
* Return: 0 on success, errno on failure
*/
static int cprh_sdm660_kbss_read_fuse_data(struct cpr3_regulator *vreg,
struct cprh_kbss_fuses *fuse)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
int i, id, rc;
rc = cpr3_read_fuse_param(base, sdm660_cpr_fusing_rev_param,
&fuse->cpr_fusing_rev);
if (rc) {
cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
id = vreg->thread->ctrl->ctrl_id;
for (i = 0; i < SDM660_KBSS_FUSE_CORNERS; i++) {
rc = cpr3_read_fuse_param(base,
sdm660_kbss_init_voltage_param[id][i],
&fuse->init_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm660_kbss_target_quot_param[id][i],
&fuse->target_quot[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm660_kbss_ro_sel_param[id][i],
&fuse->ro_sel[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm660_kbss_quot_offset_param[id][i],
&fuse->quot_offset[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
i, rc);
return rc;
}
}
rc = cpr3_read_fuse_param(base,
sdm660_kbss_aging_init_quot_diff_param[id],
&fuse->aging_init_quot_diff);
if (rc) {
cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
rc);
return rc;
}
vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
if (vreg->fuse_combo >= CPRH_SDM660_KBSS_FUSE_COMBO_COUNT) {
cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
vreg->fuse_combo);
return -EINVAL;
}
return rc;
};
/**
* cprh_sdm630_kbss_read_fuse_data() - load SDM630 KBSS specific fuse parameter
* values
* @vreg: Pointer to the CPR3 regulator
* @fuse: KBSS specific fuse data
*
* This function fills cprh_kbss_fuses struct with values read out of hardware
* fuses.
*
* Return: 0 on success, errno on failure
*/
static int cprh_sdm630_kbss_read_fuse_data(struct cpr3_regulator *vreg,
struct cprh_kbss_fuses *fuse)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
int i, id, rc, fuse_corners;
rc = cpr3_read_fuse_param(base, sdm630_cpr_fusing_rev_param,
&fuse->cpr_fusing_rev);
if (rc) {
cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
id = vreg->thread->ctrl->ctrl_id;
if (id == CPRH_KBSS_POWER_CLUSTER_ID)
fuse_corners = SDM630_POWER_KBSS_FUSE_CORNERS;
else
fuse_corners = SDM630_PERF_KBSS_FUSE_CORNERS;
for (i = 0; i < fuse_corners; i++) {
rc = cpr3_read_fuse_param(base,
sdm630_kbss_init_voltage_param[id][i],
&fuse->init_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm630_kbss_target_quot_param[id][i],
&fuse->target_quot[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm630_kbss_ro_sel_param[id][i],
&fuse->ro_sel[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm630_kbss_quot_offset_param[id][i],
&fuse->quot_offset[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
i, rc);
return rc;
}
}
rc = cpr3_read_fuse_param(base,
sdm630_kbss_aging_init_quot_diff_param[id],
&fuse->aging_init_quot_diff);
if (rc) {
cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
rc);
return rc;
}
vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
if (vreg->fuse_combo >= CPRH_SDM630_KBSS_FUSE_COMBO_COUNT) {
cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
vreg->fuse_combo);
return -EINVAL;
}
return rc;
};
/**
* cprh_kbss_read_fuse_data() - load KBSS specific fuse parameter values
* @vreg: Pointer to the CPR3 regulator
*
* This function allocates a cprh_kbss_fuses struct, fills it with values
* read out of hardware fuses, and finally copies common fuse values
* into the CPR3 regulator struct.
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_read_fuse_data(struct cpr3_regulator *vreg)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
struct cprh_kbss_fuses *fuse;
int rc, fuse_corners;
enum soc_id soc_revision;
fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
if (!fuse)
return -ENOMEM;
soc_revision = vreg->thread->ctrl->soc_revision;
switch (soc_revision) {
case SDM660_SOC_ID:
fuse_corners = SDM660_KBSS_FUSE_CORNERS;
break;
case SDM630_SOC_ID:
if (vreg->thread->ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID)
fuse_corners = SDM630_POWER_KBSS_FUSE_CORNERS;
else
fuse_corners = SDM630_PERF_KBSS_FUSE_CORNERS;
break;
case MSM8998_V1_SOC_ID:
case MSM8998_V2_SOC_ID:
fuse_corners = MSM8998_KBSS_FUSE_CORNERS;
break;
default:
cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision);
return -EINVAL;
}
fuse->ro_sel = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
sizeof(*fuse->ro_sel), GFP_KERNEL);
fuse->init_voltage = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
sizeof(*fuse->init_voltage), GFP_KERNEL);
fuse->target_quot = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
sizeof(*fuse->target_quot), GFP_KERNEL);
fuse->quot_offset = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
sizeof(*fuse->quot_offset), GFP_KERNEL);
if (!fuse->ro_sel || !fuse->init_voltage || !fuse->target_quot
|| !fuse->quot_offset)
return -ENOMEM;
rc = cpr3_read_fuse_param(base, kbss_speed_bin_param, &fuse->speed_bin);
if (rc) {
cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc);
return rc;
}
cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin);
switch (soc_revision) {
case SDM660_SOC_ID:
rc = cprh_sdm660_kbss_read_fuse_data(vreg, fuse);
if (rc) {
cpr3_err(vreg, "sdm660 kbss fuse data read failed, rc=%d\n",
rc);
return rc;
}
break;
case SDM630_SOC_ID:
rc = cprh_sdm630_kbss_read_fuse_data(vreg, fuse);
if (rc) {
cpr3_err(vreg, "sdm630 kbss fuse data read failed, rc=%d\n",
rc);
return rc;
}
break;
case MSM8998_V1_SOC_ID:
case MSM8998_V2_SOC_ID:
rc = cprh_msm8998_kbss_read_fuse_data(vreg, fuse);
if (rc) {
cpr3_err(vreg, "msm8998 kbss fuse data read failed, rc=%d\n",
rc);
return rc;
}
break;
default:
cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision);
return -EINVAL;
}
vreg->speed_bin_fuse = fuse->speed_bin;
vreg->cpr_rev_fuse = fuse->cpr_fusing_rev;
vreg->fuse_corner_count = fuse_corners;
vreg->platform_fuses = fuse;
return 0;
}
/**
* cprh_kbss_parse_corner_data() - parse KBSS corner data from device tree
* properties of the CPR3 regulator's device node
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_parse_corner_data(struct cpr3_regulator *vreg)
{
int rc;
rc = cpr3_parse_common_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
return rc;
}
/*
* A total of CPRH_KBSS_MAX_CORNER_COUNT - 1 corners
* may be specified in device tree as an additional corner
* must be allocated to correspond to the APM crossover voltage.
*/
if (vreg->corner_count > CPRH_KBSS_MAX_CORNER_COUNT - 1) {
cpr3_err(vreg, "corner count %d exceeds supported maximum %d\n",
vreg->corner_count, CPRH_KBSS_MAX_CORNER_COUNT - 1);
return -EINVAL;
}
return rc;
}
/**
* cprh_kbss_calculate_open_loop_voltages() - calculate the open-loop
* voltage for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* If open-loop voltage interpolation is allowed in device tree, then this
* function calculates the open-loop voltage for a given corner using linear
* interpolation. This interpolation is performed using the processor
* frequencies of the lower and higher Fmax corners along with their fused
* open-loop voltages.
*
* If open-loop voltage interpolation is not allowed, then this function uses
* the Fmax fused open-loop voltage for all of the corners associated with a
* given fuse corner.
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_calculate_open_loop_voltages(struct cpr3_regulator *vreg)
{
struct device_node *node = vreg->of_node;
struct cprh_kbss_fuses *fuse = vreg->platform_fuses;
int i, j, id, rc = 0;
bool allow_interpolation;
u64 freq_low, volt_low, freq_high, volt_high;
const int *ref_volt;
int *fuse_volt;
int *fmax_corner;
const char * const *corner_name;
enum soc_id soc_revision;
fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
GFP_KERNEL);
fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
GFP_KERNEL);
if (!fuse_volt || !fmax_corner) {
rc = -ENOMEM;
goto done;
}
id = vreg->thread->ctrl->ctrl_id;
soc_revision = vreg->thread->ctrl->soc_revision;
switch (soc_revision) {
case SDM660_SOC_ID:
ref_volt = sdm660_kbss_fuse_ref_volt[id];
if (id == CPRH_KBSS_POWER_CLUSTER_ID)
corner_name = cprh_sdm660_power_kbss_fuse_corner_name;
else
corner_name = cprh_sdm660_perf_kbss_fuse_corner_name;
break;
case SDM630_SOC_ID:
ref_volt = sdm630_kbss_fuse_ref_volt[id];
if (id == CPRH_KBSS_PERFORMANCE_CLUSTER_ID
&& vreg->speed_bin_fuse == 2)
ref_volt = sdm630_perf_kbss_speed_bin_2_fuse_ref_volt;
if (id == CPRH_KBSS_POWER_CLUSTER_ID)
corner_name = cprh_sdm630_power_kbss_fuse_corner_name;
else
corner_name = cprh_sdm630_perf_kbss_fuse_corner_name;
break;
case MSM8998_V1_SOC_ID:
ref_volt = msm8998_v1_kbss_fuse_ref_volt;
corner_name = cprh_msm8998_kbss_fuse_corner_name;
break;
case MSM8998_V2_SOC_ID:
ref_volt = msm8998_v2_kbss_fuse_ref_volt[id];
corner_name = cprh_msm8998_kbss_fuse_corner_name;
break;
default:
cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision);
rc = -EINVAL;
goto done;
}
for (i = 0; i < vreg->fuse_corner_count; i++) {
fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(ref_volt[i],
CPRH_KBSS_FUSE_STEP_VOLT, fuse->init_voltage[i],
CPRH_KBSS_VOLTAGE_FUSE_SIZE);
/* SDM660 speed bin #3 does not support TURBO_L1/L2 */
if (soc_revision == SDM660_SOC_ID && vreg->speed_bin_fuse == 3
&& (id == CPRH_KBSS_PERFORMANCE_CLUSTER_ID)
&& (i == CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2))
continue;
/* Log fused open-loop voltage values for debugging purposes. */
cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n", corner_name[i],
fuse_volt[i]);
}
rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
if (rc) {
cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
rc);
goto done;
}
allow_interpolation = of_property_read_bool(node,
"qcom,allow-voltage-interpolation");
for (i = 1; i < vreg->fuse_corner_count; i++) {
if (fuse_volt[i] < fuse_volt[i - 1]) {
cpr3_info(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
i, fuse_volt[i], i - 1, fuse_volt[i - 1],
i, fuse_volt[i - 1]);
fuse_volt[i] = fuse_volt[i - 1];
}
}
if (!allow_interpolation) {
/* Use fused open-loop voltage for lower frequencies. */
for (i = 0; i < vreg->corner_count; i++)
vreg->corner[i].open_loop_volt
= fuse_volt[vreg->corner[i].cpr_fuse_corner];
goto done;
}
/* Determine highest corner mapped to each fuse corner */
j = vreg->fuse_corner_count - 1;
for (i = vreg->corner_count - 1; i >= 0; i--) {
if (vreg->corner[i].cpr_fuse_corner == j) {
fmax_corner[j] = i;
j--;
}
}
if (j >= 0) {
cpr3_err(vreg, "invalid fuse corner mapping\n");
rc = -EINVAL;
goto done;
}
/*
* Interpolation is not possible for corners mapped to the lowest fuse
* corner so use the fuse corner value directly.
*/
for (i = 0; i <= fmax_corner[0]; i++)
vreg->corner[i].open_loop_volt = fuse_volt[0];
/* Interpolate voltages for the higher fuse corners. */
for (i = 1; i < vreg->fuse_corner_count; i++) {
freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
volt_low = fuse_volt[i - 1];
freq_high = vreg->corner[fmax_corner[i]].proc_freq;
volt_high = fuse_volt[i];
for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
vreg->corner[j].open_loop_volt = cpr3_interpolate(
freq_low, volt_low, freq_high, volt_high,
vreg->corner[j].proc_freq);
}
done:
if (rc == 0) {
cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
for (i = 0; i < vreg->corner_count; i++)
cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
vreg->corner[i].open_loop_volt);
rc = cpr3_adjust_open_loop_voltages(vreg);
if (rc)
cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
rc);
}
kfree(fuse_volt);
kfree(fmax_corner);
return rc;
}
/**
* cprh_msm8998_partial_binning_override() - override the voltage and quotient
* settings for low corners based upon special partial binning
* fuse values
*
* @vreg: Pointer to the CPR3 regulator
*
* Some parts are not able to operate at low voltages. The force highest
* corner fuse specifies if a given part must operate with voltages
* corresponding to the highest corner.
*
* Return: 0 on success, errno on failure
*/
static int cprh_msm8998_partial_binning_override(struct cpr3_regulator *vreg)
{
struct cprh_kbss_fuses *fuse = vreg->platform_fuses;
struct cpr3_corner *corner;
struct cpr4_sdelta *sdelta;
int i;
u32 proc_freq;
if (fuse->force_highest_corner) {
cpr3_info(vreg, "overriding CPR parameters for corners 0 to %d with quotients and voltages of corner %d\n",
vreg->corner_count - 2, vreg->corner_count - 1);
corner = &vreg->corner[vreg->corner_count - 1];
for (i = 0; i < vreg->corner_count - 1; i++) {
proc_freq = vreg->corner[i].proc_freq;
sdelta = vreg->corner[i].sdelta;
if (sdelta) {
if (sdelta->table)
devm_kfree(vreg->thread->ctrl->dev,
sdelta->table);
if (sdelta->boost_table)
devm_kfree(vreg->thread->ctrl->dev,
sdelta->boost_table);
devm_kfree(vreg->thread->ctrl->dev,
sdelta);
}
vreg->corner[i] = *corner;
vreg->corner[i].proc_freq = proc_freq;
}
return 0;
}
return 0;
};
/**
* cprh_kbss_parse_core_count_temp_adj_properties() - load device tree
* properties associated with per-corner-band and temperature
* voltage adjustments.
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_parse_core_count_temp_adj_properties(
struct cpr3_regulator *vreg)
{
struct cpr3_controller *ctrl = vreg->thread->ctrl;
struct device_node *node = vreg->of_node;
u32 *temp, *combo_corner_bands, *speed_bin_corner_bands;
int rc, i, len, temp_point_count;
vreg->allow_core_count_adj = of_find_property(node,
"qcom,corner-band-allow-core-count-adjustment",
NULL);
vreg->allow_temp_adj = of_find_property(node,
"qcom,corner-band-allow-temp-adjustment",
NULL);
if (!vreg->allow_core_count_adj && !vreg->allow_temp_adj)
return 0;
combo_corner_bands = kcalloc(vreg->fuse_combos_supported,
sizeof(*combo_corner_bands),
GFP_KERNEL);
if (!combo_corner_bands)
return -ENOMEM;
rc = of_property_read_u32_array(node, "qcom,cpr-corner-bands",
combo_corner_bands,
vreg->fuse_combos_supported);
if (rc == -EOVERFLOW) {
/* Single value case */
rc = of_property_read_u32(node, "qcom,cpr-corner-bands",
combo_corner_bands);
for (i = 1; i < vreg->fuse_combos_supported; i++)
combo_corner_bands[i] = combo_corner_bands[0];
}
if (rc) {
cpr3_err(vreg, "error reading property qcom,cpr-corner-bands, rc=%d\n",
rc);
kfree(combo_corner_bands);
return rc;
}
vreg->fuse_combo_corner_band_offset = 0;
vreg->fuse_combo_corner_band_sum = 0;
for (i = 0; i < vreg->fuse_combos_supported; i++) {
vreg->fuse_combo_corner_band_sum += combo_corner_bands[i];
if (i < vreg->fuse_combo)
vreg->fuse_combo_corner_band_offset +=
combo_corner_bands[i];
}
vreg->corner_band_count = combo_corner_bands[vreg->fuse_combo];
kfree(combo_corner_bands);
if (vreg->corner_band_count <= 0 ||
vreg->corner_band_count > CPRH_KBSS_MAX_CORNER_BAND_COUNT ||
vreg->corner_band_count > vreg->corner_count) {
cpr3_err(vreg, "invalid corner band count %d > %d (max) for %d corners\n",
vreg->corner_band_count,
CPRH_KBSS_MAX_CORNER_BAND_COUNT,
vreg->corner_count);
return -EINVAL;
}
vreg->speed_bin_corner_band_offset = 0;
vreg->speed_bin_corner_band_sum = 0;
if (vreg->speed_bins_supported > 0) {
speed_bin_corner_bands = kcalloc(vreg->speed_bins_supported,
sizeof(*speed_bin_corner_bands),
GFP_KERNEL);
if (!speed_bin_corner_bands)
return -ENOMEM;
rc = of_property_read_u32_array(node,
"qcom,cpr-speed-bin-corner-bands",
speed_bin_corner_bands,
vreg->speed_bins_supported);
if (rc) {
cpr3_err(vreg, "error reading property qcom,cpr-speed-bin-corner-bands, rc=%d\n",
rc);
kfree(speed_bin_corner_bands);
return rc;
}
for (i = 0; i < vreg->speed_bins_supported; i++) {
vreg->speed_bin_corner_band_sum +=
speed_bin_corner_bands[i];
if (i < vreg->speed_bin_fuse)
vreg->speed_bin_corner_band_offset +=
speed_bin_corner_bands[i];
}
if (speed_bin_corner_bands[vreg->speed_bin_fuse]
!= vreg->corner_band_count) {
cpr3_err(vreg, "qcom,cpr-corner-bands and qcom,cpr-speed-bin-corner-bands conflict on number of corners bands: %d vs %u\n",
vreg->corner_band_count,
speed_bin_corner_bands[vreg->speed_bin_fuse]);
kfree(speed_bin_corner_bands);
return -EINVAL;
}
kfree(speed_bin_corner_bands);
}
vreg->corner_band = devm_kcalloc(ctrl->dev,
vreg->corner_band_count,
sizeof(*vreg->corner_band),
GFP_KERNEL);
temp = kcalloc(vreg->corner_band_count, sizeof(*temp), GFP_KERNEL);
if (!vreg->corner_band || !temp) {
rc = -ENOMEM;
goto free_temp;
}
rc = cpr3_parse_corner_band_array_property(vreg,
"qcom,cpr-corner-band-map",
1, temp);
if (rc) {
cpr3_err(vreg, "could not load corner band map, rc=%d\n",
rc);
goto free_temp;
}
for (i = 1; i < vreg->corner_band_count; i++) {
if (temp[i - 1] > temp[i]) {
cpr3_err(vreg, "invalid corner band mapping: band %d corner %d, band %d corner %d\n",
i - 1, temp[i - 1],
i, temp[i]);
rc = -EINVAL;
goto free_temp;
}
}
for (i = 0; i < vreg->corner_band_count; i++)
vreg->corner_band[i].corner = temp[i] - CPR3_CORNER_OFFSET;
if (!of_find_property(ctrl->dev->of_node,
"qcom,cpr-temp-point-map", &len)) {
/*
* Temperature based adjustments are not defined. Single
* temperature band is still valid for per-online-core
* adjustments.
*/
ctrl->temp_band_count = 1;
rc = 0;
goto free_temp;
}
if (!vreg->allow_temp_adj) {
rc = 0;
goto free_temp;
}
temp_point_count = len / sizeof(u32);
if (temp_point_count <= 0 || temp_point_count >
CPRH_KBSS_MAX_TEMP_POINTS) {
cpr3_err(ctrl, "invalid number of temperature points %d > %d (max)\n",
temp_point_count, CPRH_KBSS_MAX_TEMP_POINTS);
rc = -EINVAL;
goto free_temp;
}
ctrl->temp_points = devm_kcalloc(ctrl->dev, temp_point_count,
sizeof(*ctrl->temp_points), GFP_KERNEL);
if (!ctrl->temp_points) {
rc = -ENOMEM;
goto free_temp;
}
rc = of_property_read_u32_array(ctrl->dev->of_node,
"qcom,cpr-temp-point-map",
ctrl->temp_points, temp_point_count);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,cpr-temp-point-map, rc=%d\n",
rc);
goto free_temp;
}
for (i = 0; i < temp_point_count; i++)
cpr3_debug(ctrl, "Temperature Point %d=%d\n", i,
ctrl->temp_points[i]);
/*
* If t1, t2, and t3 are the temperature points, then the temperature
* bands are: (-inf, t1], (t1, t2], (t2, t3], and (t3, inf).
*/
ctrl->temp_band_count = temp_point_count + 1;
cpr3_debug(ctrl, "Number of temp bands=%d\n",
ctrl->temp_band_count);
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-initial-temp-band",
&ctrl->initial_temp_band);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-initial-temp-band, rc=%d\n",
rc);
goto free_temp;
}
if (ctrl->initial_temp_band >= ctrl->temp_band_count) {
cpr3_err(ctrl, "Initial temperature band value %d should be in range [0 - %d]\n",
ctrl->initial_temp_band, ctrl->temp_band_count - 1);
rc = -EINVAL;
goto free_temp;
}
switch (ctrl->soc_revision) {
case SDM660_SOC_ID:
ctrl->temp_sensor_id_start = ctrl->ctrl_id ==
CPRH_KBSS_POWER_CLUSTER_ID
? SDM660_KBSS_POWER_TEMP_SENSOR_ID_START :
SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START;
ctrl->temp_sensor_id_end = ctrl->ctrl_id ==
CPRH_KBSS_POWER_CLUSTER_ID
? SDM660_KBSS_POWER_TEMP_SENSOR_ID_END :
SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END;
break;
case MSM8998_V1_SOC_ID:
case MSM8998_V2_SOC_ID:
ctrl->temp_sensor_id_start = ctrl->ctrl_id ==
CPRH_KBSS_POWER_CLUSTER_ID
? MSM8998_KBSS_POWER_TEMP_SENSOR_ID_START :
MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START;
ctrl->temp_sensor_id_end = ctrl->ctrl_id ==
CPRH_KBSS_POWER_CLUSTER_ID
? MSM8998_KBSS_POWER_TEMP_SENSOR_ID_END :
MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END;
break;
default:
cpr3_err(ctrl, "unsupported soc id = %d\n", ctrl->soc_revision);
rc = -EINVAL;
goto free_temp;
}
ctrl->allow_temp_adj = true;
free_temp:
kfree(temp);
return rc;
}
/**
* cprh_kbss_apm_crossover_as_corner() - introduce a corner whose floor,
* open-loop, and ceiling voltages correspond to the APM
* crossover voltage.
* @vreg: Pointer to the CPR3 regulator
*
* The APM corner is utilized as a crossover corner by OSM and CPRh
* hardware to set the VDD supply voltage during the APM switch
* routine.
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_apm_crossover_as_corner(struct cpr3_regulator *vreg)
{
struct cpr3_controller *ctrl = vreg->thread->ctrl;
struct cpr3_corner *corner;
if (!ctrl->apm_crossover_volt) {
/* APM voltage crossover corner not required. */
return 0;
}
corner = &vreg->corner[vreg->corner_count];
/*
* 0 MHz indicates this corner is not to be
* used as active DCVS set point.
*/
corner->proc_freq = 0;
corner->floor_volt = ctrl->apm_crossover_volt;
corner->ceiling_volt = ctrl->apm_crossover_volt;
corner->open_loop_volt = ctrl->apm_crossover_volt;
corner->abs_ceiling_volt = ctrl->apm_crossover_volt;
corner->use_open_loop = true;
vreg->corner_count++;
return 0;
}
/**
* cprh_kbss_mem_acc_crossover_as_corner() - introduce a corner whose floor,
* open-loop, and ceiling voltages correspond to the MEM ACC
* crossover voltage.
* @vreg: Pointer to the CPR3 regulator
*
* The MEM ACC corner is utilized as a crossover corner by OSM and CPRh
* hardware to set the VDD supply voltage during the MEM ACC switch
* routine.
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_mem_acc_crossover_as_corner(struct cpr3_regulator *vreg)
{
struct cpr3_controller *ctrl = vreg->thread->ctrl;
struct cpr3_corner *corner;
if (!ctrl->mem_acc_crossover_volt) {
/* MEM ACC voltage crossover corner not required. */
return 0;
}
corner = &vreg->corner[vreg->corner_count];
/*
* 0 MHz indicates this corner is not to be
* used as active DCVS set point.
*/
corner->proc_freq = 0;
corner->floor_volt = ctrl->mem_acc_crossover_volt;
corner->ceiling_volt = ctrl->mem_acc_crossover_volt;
corner->open_loop_volt = ctrl->mem_acc_crossover_volt;
corner->abs_ceiling_volt = ctrl->mem_acc_crossover_volt;
corner->use_open_loop = true;
vreg->corner_count++;
return 0;
}
/**
* cprh_kbss_set_no_interpolation_quotients() - use the fused target quotient
* values for lower frequencies.
* @vreg: Pointer to the CPR3 regulator
* @volt_adjust: Pointer to array of per-corner closed-loop adjustment
* voltages
* @volt_adjust_fuse: Pointer to array of per-fuse-corner closed-loop
* adjustment voltages
* @ro_scale: Pointer to array of per-fuse-corner RO scaling factor
* values with units of QUOT/V
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_set_no_interpolation_quotients(struct cpr3_regulator *vreg,
int *volt_adjust, int *volt_adjust_fuse, int *ro_scale)
{
struct cprh_kbss_fuses *fuse = vreg->platform_fuses;
u32 quot, ro;
int quot_adjust;
int i, fuse_corner;
for (i = 0; i < vreg->corner_count; i++) {
fuse_corner = vreg->corner[i].cpr_fuse_corner;
quot = fuse->target_quot[fuse_corner];
quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
volt_adjust_fuse[fuse_corner] +
volt_adjust[i]);
ro = fuse->ro_sel[fuse_corner];
vreg->corner[i].target_quot[ro] = quot + quot_adjust;
cpr3_debug(vreg, "corner=%d RO=%u target quot=%u\n",
i, ro, quot);
if (quot_adjust)
cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n",
i, ro, quot, vreg->corner[i].target_quot[ro],
volt_adjust_fuse[fuse_corner] +
volt_adjust[i]);
}
return 0;
}
/**
* cprh_kbss_calculate_target_quotients() - calculate the CPR target
* quotient for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* If target quotient interpolation is allowed in device tree, then this
* function calculates the target quotient for a given corner using linear
* interpolation. This interpolation is performed using the processor
* frequencies of the lower and higher Fmax corners along with the fused
* target quotient and quotient offset of the higher Fmax corner.
*
* If target quotient interpolation is not allowed, then this function uses
* the Fmax fused target quotient for all of the corners associated with a
* given fuse corner.
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_calculate_target_quotients(struct cpr3_regulator *vreg)
{
struct cprh_kbss_fuses *fuse = vreg->platform_fuses;
int rc;
bool allow_interpolation;
u64 freq_low, freq_high, prev_quot;
u64 *quot_low;
u64 *quot_high;
u32 quot, ro;
int i, j, fuse_corner, quot_adjust;
int *fmax_corner;
int *volt_adjust, *volt_adjust_fuse, *ro_scale;
int lowest_fuse_corner, highest_fuse_corner;
const char * const *corner_name;
switch (vreg->thread->ctrl->soc_revision) {
case SDM660_SOC_ID:
if (vreg->thread->ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) {
corner_name = cprh_sdm660_power_kbss_fuse_corner_name;
lowest_fuse_corner =
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_LOWSVS;
highest_fuse_corner =
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_TURBO_L1;
} else {
corner_name = cprh_sdm660_perf_kbss_fuse_corner_name;
lowest_fuse_corner =
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVS;
highest_fuse_corner =
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2;
/* speed-bin 3 does not have Turbo_L2 fuse */
if (vreg->speed_bin_fuse == 3)
highest_fuse_corner =
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO;
}
break;
case SDM630_SOC_ID:
if (vreg->thread->ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) {
corner_name = cprh_sdm630_power_kbss_fuse_corner_name;
lowest_fuse_corner =
CPRH_SDM630_POWER_KBSS_FUSE_CORNER_LOWSVS;
highest_fuse_corner =
CPRH_SDM630_POWER_KBSS_FUSE_CORNER_TURBO_L1;
} else {
corner_name = cprh_sdm630_perf_kbss_fuse_corner_name;
lowest_fuse_corner =
CPRH_SDM630_PERF_KBSS_FUSE_CORNER_LOWSVS;
highest_fuse_corner =
CPRH_SDM630_PERF_KBSS_FUSE_CORNER_TURBO_L2;
}
break;
case MSM8998_V1_SOC_ID:
case MSM8998_V2_SOC_ID:
corner_name = cprh_msm8998_kbss_fuse_corner_name;
lowest_fuse_corner =
CPRH_MSM8998_KBSS_FUSE_CORNER_LOWSVS;
highest_fuse_corner =
CPRH_MSM8998_KBSS_FUSE_CORNER_TURBO_L1;
break;
default:
cpr3_err(vreg, "unsupported soc id = %d\n",
vreg->thread->ctrl->soc_revision);
return -EINVAL;
}
/* Log fused quotient values for debugging purposes. */
cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu\n",
corner_name[lowest_fuse_corner],
fuse->ro_sel[lowest_fuse_corner],
fuse->target_quot[lowest_fuse_corner]);
for (i = lowest_fuse_corner + 1; i <= highest_fuse_corner; i++)
cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n",
corner_name[i], fuse->ro_sel[i], fuse->target_quot[i],
fuse->ro_sel[i], fuse->quot_offset[i] *
CPRH_KBSS_QUOT_OFFSET_SCALE);
allow_interpolation = of_property_read_bool(vreg->of_node,
"qcom,allow-quotient-interpolation");
volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
GFP_KERNEL);
volt_adjust_fuse = kcalloc(vreg->fuse_corner_count,
sizeof(*volt_adjust_fuse), GFP_KERNEL);
ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale),
GFP_KERNEL);
fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
GFP_KERNEL);
quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low),
GFP_KERNEL);
quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high),
GFP_KERNEL);
if (!volt_adjust || !volt_adjust_fuse || !ro_scale ||
!fmax_corner || !quot_low || !quot_high) {
rc = -ENOMEM;
goto done;
}
rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0],
volt_adjust, volt_adjust_fuse, ro_scale);
if (rc) {
cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
rc);
goto done;
}
if (!allow_interpolation) {
/* Use fused target quotients for lower frequencies. */
return cprh_kbss_set_no_interpolation_quotients(vreg,
volt_adjust, volt_adjust_fuse, ro_scale);
}
/* Determine highest corner mapped to each fuse corner */
j = vreg->fuse_corner_count - 1;
for (i = vreg->corner_count - 1; i >= 0; i--) {
if (vreg->corner[i].cpr_fuse_corner == j) {
fmax_corner[j] = i;
j--;
}
}
if (j >= 0) {
cpr3_err(vreg, "invalid fuse corner mapping\n");
rc = -EINVAL;
goto done;
}
/*
* Interpolation is not possible for corners mapped to the lowest fuse
* corner so use the fuse corner value directly.
*/
i = lowest_fuse_corner;
quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]);
quot = fuse->target_quot[i] + quot_adjust;
quot_high[i] = quot_low[i] = quot;
ro = fuse->ro_sel[i];
if (quot_adjust)
cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n",
i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]);
for (i = 0; i <= fmax_corner[lowest_fuse_corner]; i++)
vreg->corner[i].target_quot[ro] = quot;
for (i = lowest_fuse_corner + 1; i < vreg->fuse_corner_count; i++) {
quot_high[i] = fuse->target_quot[i];
if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
quot_low[i] = quot_high[i - 1];
else
quot_low[i] = quot_high[i]
- fuse->quot_offset[i]
* CPRH_KBSS_QUOT_OFFSET_SCALE;
if (quot_high[i] < quot_low[i]) {
cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n",
i, quot_high[i], i, quot_low[i],
i, quot_low[i]);
quot_high[i] = quot_low[i];
}
}
/* Perform per-fuse-corner target quotient adjustment */
for (i = 1; i < vreg->fuse_corner_count; i++) {
quot_adjust = cpr3_quot_adjustment(ro_scale[i],
volt_adjust_fuse[i]);
if (quot_adjust) {
prev_quot = quot_high[i];
quot_high[i] += quot_adjust;
cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n",
i, fuse->ro_sel[i], prev_quot, quot_high[i],
volt_adjust_fuse[i]);
}
if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
quot_low[i] = quot_high[i - 1];
else
quot_low[i] += cpr3_quot_adjustment(ro_scale[i],
volt_adjust_fuse[i - 1]);
if (quot_high[i] < quot_low[i]) {
cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n",
i, quot_high[i], i, quot_low[i],
i, quot_low[i]);
quot_high[i] = quot_low[i];
}
}
/* Interpolate voltages for the higher fuse corners. */
for (i = 1; i < vreg->fuse_corner_count; i++) {
freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
freq_high = vreg->corner[fmax_corner[i]].proc_freq;
ro = fuse->ro_sel[i];
for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
vreg->corner[j].target_quot[ro] = cpr3_interpolate(
freq_low, quot_low[i], freq_high, quot_high[i],
vreg->corner[j].proc_freq);
}
/* Perform per-corner target quotient adjustment */
for (i = 0; i < vreg->corner_count; i++) {
fuse_corner = vreg->corner[i].cpr_fuse_corner;
ro = fuse->ro_sel[fuse_corner];
quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
volt_adjust[i]);
if (quot_adjust) {
prev_quot = vreg->corner[i].target_quot[ro];
vreg->corner[i].target_quot[ro] += quot_adjust;
cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n",
i, ro, prev_quot,
vreg->corner[i].target_quot[ro],
volt_adjust[i]);
}
}
/* Ensure that target quotients increase monotonically */
for (i = 1; i < vreg->corner_count; i++) {
ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner];
if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro
&& vreg->corner[i].target_quot[ro]
< vreg->corner[i - 1].target_quot[ro]) {
cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
i, ro, vreg->corner[i].target_quot[ro],
i - 1, ro, vreg->corner[i - 1].target_quot[ro],
i, ro, vreg->corner[i - 1].target_quot[ro]);
vreg->corner[i].target_quot[ro]
= vreg->corner[i - 1].target_quot[ro];
}
}
done:
kfree(volt_adjust);
kfree(volt_adjust_fuse);
kfree(ro_scale);
kfree(fmax_corner);
kfree(quot_low);
kfree(quot_high);
return rc;
}
/**
* cprh_kbss_print_settings() - print out KBSS CPR configuration settings into
* the kernel log for debugging purposes
* @vreg: Pointer to the CPR3 regulator
*/
static void cprh_kbss_print_settings(struct cpr3_regulator *vreg)
{
struct cpr3_corner *corner;
int i;
cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
for (i = 0; i < vreg->corner_count; i++) {
corner = &vreg->corner[i];
cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
i, corner->proc_freq, corner->cpr_fuse_corner,
corner->floor_volt, corner->open_loop_volt,
corner->ceiling_volt);
}
}
/**
* cprh_kbss_init_thread() - perform steps necessary to initialize the
* configuration data for a CPR3 thread
* @thread: Pointer to the CPR3 thread
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_init_thread(struct cpr3_thread *thread)
{
int rc;
rc = cpr3_parse_common_thread_data(thread);
if (rc) {
cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n",
thread->thread_id, rc);
return rc;
}
return 0;
}
/**
* cprh_kbss_init_regulator() - perform all steps necessary to initialize the
* configuration data for a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_init_regulator(struct cpr3_regulator *vreg)
{
struct cprh_kbss_fuses *fuse;
int rc;
rc = cprh_kbss_read_fuse_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
return rc;
}
fuse = vreg->platform_fuses;
rc = cprh_kbss_parse_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
rc);
return rc;
}
rc = cprh_kbss_calculate_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
rc);
return rc;
}
rc = cpr3_limit_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
rc);
return rc;
}
cprh_adjust_voltages_for_apm(vreg);
cprh_adjust_voltages_for_mem_acc(vreg);
cpr3_open_loop_voltage_as_ceiling(vreg);
rc = cpr3_limit_floor_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
return rc;
}
rc = cprh_kbss_calculate_target_quotients(vreg);
if (rc) {
cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n",
rc);
return rc;
}
rc = cprh_kbss_parse_core_count_temp_adj_properties(vreg);
if (rc) {
cpr3_err(vreg, "unable to parse core count and temperature adjustment properties, rc=%d\n",
rc);
return rc;
}
rc = cpr4_parse_core_count_temp_voltage_adj(vreg, true);
if (rc) {
cpr3_err(vreg, "unable to parse temperature and core count voltage adjustments, rc=%d\n",
rc);
return rc;
}
if (vreg->allow_core_count_adj && (vreg->max_core_count <= 0
|| vreg->max_core_count >
CPRH_KBSS_CPR_SDELTA_CORE_COUNT)) {
cpr3_err(vreg, "qcom,max-core-count has invalid value = %d\n",
vreg->max_core_count);
return -EINVAL;
}
rc = cprh_msm8998_partial_binning_override(vreg);
if (rc) {
cpr3_err(vreg, "unable to override CPR parameters based on partial binning fuse values, rc=%d\n",
rc);
return rc;
}
rc = cprh_kbss_apm_crossover_as_corner(vreg);
if (rc) {
cpr3_err(vreg, "unable to introduce APM voltage crossover corner, rc=%d\n",
rc);
return rc;
}
rc = cprh_kbss_mem_acc_crossover_as_corner(vreg);
if (rc) {
cpr3_err(vreg, "unable to introduce MEM ACC voltage crossover corner, rc=%d\n",
rc);
return rc;
}
cprh_kbss_print_settings(vreg);
return 0;
}
/**
* cprh_kbss_init_aging() - perform KBSS CPRh controller specific aging
* initializations
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_init_aging(struct cpr3_controller *ctrl)
{
struct cprh_kbss_fuses *fuse = NULL;
struct cpr3_regulator *vreg = NULL;
u32 aging_ro_scale;
int i, j, rc = 0;
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
if (ctrl->thread[i].vreg[j].aging_allowed) {
ctrl->aging_required = true;
vreg = &ctrl->thread[i].vreg[j];
fuse = vreg->platform_fuses;
break;
}
}
}
if (!ctrl->aging_required || !fuse || !vreg)
return 0;
rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor",
1, &aging_ro_scale);
if (rc)
return rc;
if (aging_ro_scale == 0) {
cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n",
aging_ro_scale);
return -EINVAL;
}
ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL;
ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE;
ctrl->aging_sensor_count = 1;
ctrl->aging_sensor = devm_kzalloc(ctrl->dev,
sizeof(*ctrl->aging_sensor),
GFP_KERNEL);
if (!ctrl->aging_sensor)
return -ENOMEM;
switch (ctrl->soc_revision) {
case SDM660_SOC_ID:
if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) {
ctrl->aging_sensor->sensor_id
= SDM660_KBSS_POWER_AGING_SENSOR_ID;
ctrl->aging_sensor->bypass_mask[0]
= SDM660_KBSS_POWER_AGING_BYPASS_MASK0;
} else {
ctrl->aging_sensor->sensor_id
= SDM660_KBSS_PERFORMANCE_AGING_SENSOR_ID;
ctrl->aging_sensor->bypass_mask[0]
= SDM660_KBSS_PERFORMANCE_AGING_BYPASS_MASK0;
}
break;
case MSM8998_V1_SOC_ID:
case MSM8998_V2_SOC_ID:
if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) {
ctrl->aging_sensor->sensor_id
= MSM8998_KBSS_POWER_AGING_SENSOR_ID;
ctrl->aging_sensor->bypass_mask[0]
= MSM8998_KBSS_POWER_AGING_BYPASS_MASK0;
} else {
ctrl->aging_sensor->sensor_id
= MSM8998_KBSS_PERFORMANCE_AGING_SENSOR_ID;
ctrl->aging_sensor->bypass_mask[0]
= MSM8998_KBSS_PERFORMANCE_AGING_BYPASS_MASK0;
}
break;
default:
cpr3_err(ctrl, "unsupported soc id = %d\n", ctrl->soc_revision);
return -EINVAL;
}
ctrl->aging_sensor->ro_scale = aging_ro_scale;
ctrl->aging_sensor->init_quot_diff
= cpr3_convert_open_loop_voltage_fuse(0,
CPRH_KBSS_AGING_INIT_QUOT_DIFF_SCALE,
fuse->aging_init_quot_diff,
CPRH_KBSS_AGING_INIT_QUOT_DIFF_SIZE);
cpr3_debug(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n",
ctrl->aging_sensor->sensor_id,
ctrl->aging_sensor->init_quot_diff,
ctrl->aging_sensor->ro_scale);
return 0;
}
/**
* cprh_kbss_init_controller() - perform KBSS CPRh controller specific
* initializations
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_init_controller(struct cpr3_controller *ctrl)
{
int rc;
ctrl->ctrl_type = CPR_CTRL_TYPE_CPRH;
rc = cpr3_parse_common_ctrl_data(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-controller-id",
&ctrl->ctrl_id);
if (rc) {
cpr3_err(ctrl, "could not read DT property qcom,cpr-controller-id, rc=%d\n",
rc);
return rc;
}
if (ctrl->ctrl_id < CPRH_KBSS_MIN_CONTROLLER_ID ||
ctrl->ctrl_id > CPRH_KBSS_MAX_CONTROLLER_ID) {
cpr3_err(ctrl, "invalid qcom,cpr-controller-id specified\n");
return -EINVAL;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-down-error-step-limit",
&ctrl->down_error_step_limit);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-down-error-step-limit, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-up-error-step-limit",
&ctrl->up_error_step_limit);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-up-error-step-limit, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,voltage-base",
&ctrl->base_volt);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,voltage-base, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-up-down-delay-time",
&ctrl->up_down_delay_time);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,cpr-up-down-delay-time, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,apm-threshold-voltage",
&ctrl->apm_threshold_volt);
if (rc) {
cpr3_debug(ctrl, "qcom,apm-threshold-voltage not specified\n");
} else {
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,apm-crossover-voltage",
&ctrl->apm_crossover_volt);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,apm-crossover-voltage, rc=%d\n",
rc);
return rc;
}
}
of_property_read_u32(ctrl->dev->of_node, "qcom,apm-hysteresis-voltage",
&ctrl->apm_adj_volt);
ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt);
ctrl->saw_use_unit_mV = of_property_read_bool(ctrl->dev->of_node,
"qcom,cpr-saw-use-unit-mV");
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,mem-acc-threshold-voltage",
&ctrl->mem_acc_threshold_volt);
if (!rc) {
ctrl->mem_acc_threshold_volt
= CPR3_ROUND(ctrl->mem_acc_threshold_volt, ctrl->step_volt);
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,mem-acc-crossover-voltage",
&ctrl->mem_acc_crossover_volt);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,mem-acc-crossover-voltage, rc=%d\n",
rc);
return rc;
}
ctrl->mem_acc_crossover_volt
= CPR3_ROUND(ctrl->mem_acc_crossover_volt, ctrl->step_volt);
}
/*
* Use fixed step quotient if specified otherwise use dynamically
* calculated per RO step quotient
*/
of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-step-quot-fixed",
&ctrl->step_quot_fixed);
ctrl->use_dynamic_step_quot = !ctrl->step_quot_fixed;
of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-voltage-settling-time",
&ctrl->voltage_settling_time);
of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-corner-switch-delay-time",
&ctrl->corner_switch_delay_time);
switch (ctrl->soc_revision) {
case SDM660_SOC_ID:
if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID)
ctrl->sensor_count =
SDM660_KBSS_POWER_CPR_SENSOR_COUNT;
else
ctrl->sensor_count =
SDM660_KBSS_PERFORMANCE_CPR_SENSOR_COUNT;
break;
case SDM630_SOC_ID:
if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID)
ctrl->sensor_count =
SDM630_KBSS_POWER_CPR_SENSOR_COUNT;
else
ctrl->sensor_count =
SDM630_KBSS_PERFORMANCE_CPR_SENSOR_COUNT;
break;
case MSM8998_V1_SOC_ID:
case MSM8998_V2_SOC_ID:
if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID)
ctrl->sensor_count =
MSM8998_KBSS_POWER_CPR_SENSOR_COUNT;
else
ctrl->sensor_count =
MSM8998_KBSS_PERFORMANCE_CPR_SENSOR_COUNT;
break;
default:
cpr3_err(ctrl, "unsupported soc id = %d\n", ctrl->soc_revision);
return -EINVAL;
}
/*
* KBSS only has one thread (0) per controller so the zeroed
* array does not need further modification.
*/
ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
sizeof(*ctrl->sensor_owner), GFP_KERNEL);
if (!ctrl->sensor_owner)
return -ENOMEM;
ctrl->cpr_clock_rate = CPRH_KBSS_CPR_CLOCK_RATE;
ctrl->supports_hw_closed_loop = true;
ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node,
"qcom,cpr-hw-closed-loop");
return 0;
}
/**
* cprh_kbss_populate_opp_table() - populate an Operating Performance Point
* table with the frequencies associated with each corner.
* This table may be used to resolve corner to frequency to
* open-loop voltage mappings.
* @pdev: Pointer to the platform device
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_populate_opp_table(struct cpr3_controller *ctrl)
{
struct device *dev = ctrl->dev;
struct cpr3_regulator *vreg = &ctrl->thread[0].vreg[0];
struct cpr3_corner *corner;
int rc, i;
for (i = 0; i < vreg->corner_count; i++) {
corner = &vreg->corner[i];
if (!corner->proc_freq) {
/*
* 0 MHz indicates this corner is not to be
* used as active DCVS set point. Don't add it
* to the OPP table.
*/
continue;
}
rc = dev_pm_opp_add(dev, corner->proc_freq, i + 1);
if (rc) {
cpr3_err(ctrl, "could not add OPP for corner %d with frequency %u MHz, rc=%d\n",
i + 1, corner->proc_freq, rc);
return rc;
}
}
return 0;
}
static int cprh_kbss_regulator_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_suspend(ctrl);
}
static int cprh_kbss_regulator_resume(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_resume(ctrl);
}
/* Data corresponds to the SoC revision */
static const struct of_device_id cprh_regulator_match_table[] = {
{
.compatible = "qcom,cprh-msm8998-v1-kbss-regulator",
.data = (void *)(uintptr_t)MSM8998_V1_SOC_ID,
},
{
.compatible = "qcom,cprh-msm8998-v2-kbss-regulator",
.data = (void *)(uintptr_t)MSM8998_V2_SOC_ID,
},
{
.compatible = "qcom,cprh-msm8998-kbss-regulator",
.data = (void *)(uintptr_t)MSM8998_V2_SOC_ID,
},
{
.compatible = "qcom,cprh-sdm660-kbss-regulator",
.data = (void *)(uintptr_t)SDM660_SOC_ID,
},
{
.compatible = "qcom,cprh-sdm630-kbss-regulator",
.data = (void *)(uintptr_t)SDM630_SOC_ID,
},
{}
};
static int cprh_kbss_regulator_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct of_device_id *match;
struct cpr3_controller *ctrl;
int rc;
if (!dev->of_node) {
dev_err(dev, "Device tree node is missing\n");
return -EINVAL;
}
ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return -ENOMEM;
ctrl->dev = dev;
ctrl->cpr_allowed_hw = true;
rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
&ctrl->name);
if (rc) {
cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
rc);
return rc;
}
match = of_match_node(cprh_regulator_match_table, dev->of_node);
if (match)
ctrl->soc_revision = (uintptr_t)match->data;
else
cpr3_err(ctrl, "could not find compatible string match\n");
rc = cpr3_map_fuse_base(ctrl, pdev);
if (rc) {
cpr3_err(ctrl, "could not map fuse base address\n");
return rc;
}
rc = cpr3_allocate_threads(ctrl, 0, 0);
if (rc) {
cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
rc);
return rc;
}
if (ctrl->thread_count != 1) {
cpr3_err(ctrl, "expected 1 thread but found %d\n",
ctrl->thread_count);
return -EINVAL;
} else if (ctrl->thread[0].vreg_count != 1) {
cpr3_err(ctrl, "expected 1 regulator but found %d\n",
ctrl->thread[0].vreg_count);
return -EINVAL;
}
rc = cprh_kbss_init_controller(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
rc);
return rc;
}
rc = cprh_kbss_init_thread(&ctrl->thread[0]);
if (rc) {
cpr3_err(ctrl, "thread initialization failed, rc=%d\n", rc);
return rc;
}
rc = cprh_kbss_init_regulator(&ctrl->thread[0].vreg[0]);
if (rc) {
cpr3_err(&ctrl->thread[0].vreg[0], "regulator initialization failed, rc=%d\n",
rc);
return rc;
}
rc = cprh_kbss_init_aging(ctrl);
if (rc) {
cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n",
rc);
return rc;
}
platform_set_drvdata(pdev, ctrl);
rc = cprh_kbss_populate_opp_table(ctrl);
if (rc)
panic("cprh-kbss-regulator OPP table initialization failed\n");
return cpr3_regulator_register(pdev, ctrl);
}
static int cprh_kbss_regulator_remove(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_unregister(ctrl);
}
static struct platform_driver cprh_kbss_regulator_driver = {
.driver = {
.name = "qcom,cprh-kbss-regulator",
.of_match_table = cprh_regulator_match_table,
.owner = THIS_MODULE,
},
.probe = cprh_kbss_regulator_probe,
.remove = cprh_kbss_regulator_remove,
.suspend = cprh_kbss_regulator_suspend,
.resume = cprh_kbss_regulator_resume,
};
static int cpr_regulator_init(void)
{
return platform_driver_register(&cprh_kbss_regulator_driver);
}
static void cpr_regulator_exit(void)
{
platform_driver_unregister(&cprh_kbss_regulator_driver);
}
MODULE_DESCRIPTION("CPRh KBSS regulator driver");
MODULE_LICENSE("GPL v2");
arch_initcall(cpr_regulator_init);
module_exit(cpr_regulator_exit);
|