summaryrefslogtreecommitdiff
path: root/drivers/edac/cortex_arm64_edac.c
blob: 28397c1915833b6fa936ae644e59e2cbca7677bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
/* Copyright (c) 2014-2016, The Linux Foundation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/edac.h>
#include <linux/interrupt.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/perf_event.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/cpu_pm.h>
#include <linux/of_irq.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/percpu.h>
#include <linux/msm_rtb.h>

#include <asm/cputype.h>
#include <asm/esr.h>

#include "edac_core.h"

#define A53_CPUMERRSR_FATAL(a)	((a) & (1LL << 63))
#define A53_CPUMERRSR_OTHER(a)	(((a) >> 40) & 0xff)
#define A53_CPUMERRSR_REPT(a)	(((a) >> 32) & 0xff)
#define A53_CPUMERRSR_VALID(a)	((a) & (1 << 31))
#define A53_CPUMERRSR_RAMID(a)	(((a) >> 24) & 0x7f)
#define A53_CPUMERRSR_CPUID(a)	(((a) >> 18) & 0x07)
#define A53_CPUMERRSR_ADDR(a)	((a) & 0xfff)

#define A53_L2MERRSR_FATAL(a)	((a) & (1LL << 63))
#define A53_L2MERRSR_OTHER(a)	(((a) >> 40) & 0xff)
#define A53_L2MERRSR_REPT(a)	(((a) >> 32) & 0xff)
#define A53_L2MERRSR_VALID(a)	((a) & (1 << 31))
#define A53_L2MERRSR_RAMID(a)	(((a) >> 24) & 0x7f)
#define A53_L2MERRSR_CPUID(a)	(((a) >> 18) & 0x0f)
#define A53_L2MERRSR_INDEX(a)	(((a) >> 3) & 0x3fff)

#define A57_CPUMERRSR_FATAL(a)	((a) & (1LL << 63))
#define A57_CPUMERRSR_OTHER(a)	(((a) >> 40) & 0xff)
#define A57_CPUMERRSR_REPT(a)	(((a) >> 32) & 0xff)
#define A57_CPUMERRSR_VALID(a)	((a) & (1 << 31))
#define A57_CPUMERRSR_RAMID(a)	(((a) >> 24) & 0x7f)
#define A57_CPUMERRSR_BANK(a)	(((a) >> 18) & 0x1f)
#define A57_CPUMERRSR_INDEX(a)	((a) & 0x1ffff)

#define A57_L2MERRSR_FATAL(a)	((a) & (1LL << 63))
#define A57_L2MERRSR_OTHER(a)	(((a) >> 40) & 0xff)
#define A57_L2MERRSR_REPT(a)	(((a) >> 32) & 0xff)
#define A57_L2MERRSR_VALID(a)	((a) & (1 << 31))
#define A57_L2MERRSR_RAMID(a)	(((a) >> 24) & 0x7f)
#define A57_L2MERRSR_CPUID(a)	(((a) >> 18) & 0x0f)
#define A57_L2MERRSR_INDEX(a)	((a) & 0x1ffff)

#define KRYO2XX_GOLD_L2MERRSR_FATAL(a)	((a) & (1LL << 63))
#define KRYO2XX_GOLD_L2MERRSR_OTHER(a)	(((a) >> 40) & 0x3f)
#define KRYO2XX_GOLD_L2MERRSR_REPT(a)	(((a) >> 32) & 0x3f)
#define KRYO2XX_GOLD_L2MERRSR_VALID(a)	((a) & (1 << 31))
#define KRYO2XX_GOLD_L2MERRSR_RAMID(a)	((a) & (1 << 24))
#define KRYO2XX_GOLD_L2MERRSR_WAY(a)	(((a) >> 18) & 0x0f)
#define KRYO2XX_GOLD_L2MERRSR_INDEX(a)	(((a) >> 3) & 0x3fff)

#define L2ECTLR_INT_ERR		(1 << 30)
#define L2ECTLR_EXT_ERR		(1 << 29)

#define ESR_SERROR(a)	((a) >> ESR_ELx_EC_SHIFT == ESR_ELx_EC_SERROR)
#define ESR_VALID(a)	((a) & BIT(24))
#define ESR_L2_DBE(a) (ESR_SERROR(a) && ESR_VALID(a) && \
			(((a) & 0x00C00003) == 0x1))

#define CCI_IMPRECISEERROR_REG	0x10

#define L1_CACHE		0
#define L2_CACHE		1
#define CCI			2

#define A53_L1_CE			0
#define A53_L1_UE			1
#define A53_L2_CE			2
#define A53_L2_UE			3
#define A57_L1_CE			4
#define A57_L1_UE			5
#define A57_L2_CE			6
#define A57_L2_UE			7
#define L2_EXT_UE			8
#define CCI_UE				9
#define KRYO2XX_SILVER_L1_CE		10
#define KRYO2XX_SILVER_L1_UE		11
#define KRYO2XX_SILVER_L2_CE		12
#define KRYO2XX_SILVER_L2_UE		13
#define KRYO2XX_GOLD_L2_CE		14
#define KRYO2XX_GOLD_L2_UE		15

#ifdef CONFIG_EDAC_CORTEX_ARM64_PANIC_ON_UE
#define ARM64_ERP_PANIC_ON_UE 1
#else
#define ARM64_ERP_PANIC_ON_UE 0
#endif

#ifdef CONFIG_EDAC_CORTEX_ARM64_PANIC_ON_CE
static int panic_on_ce = 1;
#else
static int panic_on_ce;
#endif
module_param(panic_on_ce, int, 0);

#define EDAC_CPU	"arm64"

enum error_type {
	SBE,
	DBE,
};

const char *err_name[] = {
	"Single-bit",
	"Double-bit",
};

struct erp_drvdata {
	struct edac_device_ctl_info *edev_ctl;
	void __iomem *cci_base;
	struct notifier_block nb_pm;
	struct notifier_block nb_cpu;
	struct notifier_block nb_panic;
	struct work_struct work;
	struct perf_event *memerr_counters[NR_CPUS];
};

static struct erp_drvdata *panic_handler_drvdata;

struct erp_local_data {
	struct erp_drvdata *drv;
	enum error_type err;
};

#define MEM_ERROR_EVENT		0x1A

struct errors_edac {
	const char * const msg;
	void (*func)(struct edac_device_ctl_info *edac_dev,
			int inst_nr, int block_nr, const char *msg);
};

static const struct errors_edac errors[] = {
	{"A53 L1 Correctable Error", edac_device_handle_ce },
	{"A53 L1 Uncorrectable Error", edac_device_handle_ue },
	{"A53 L2 Correctable Error", edac_device_handle_ce },
	{"A53 L2 Uncorrectable Error", edac_device_handle_ue },
	{"A57 L1 Correctable Error", edac_device_handle_ce },
	{"A57 L1 Uncorrectable Error", edac_device_handle_ue },
	{"A57 L2 Correctable Error", edac_device_handle_ce },
	{"A57 L2 Uncorrectable Error", edac_device_handle_ue },
	{"L2 External Error", edac_device_handle_ue },
	{"CCI Error", edac_device_handle_ue },
	{"Kryo2xx Silver L1 Correctable Error", edac_device_handle_ce },
	{"Kryo2xx Silver L1 Uncorrectable Error", edac_device_handle_ue },
	{"Kryo2xx Silver L2 Correctable Error", edac_device_handle_ce },
	{"Kryo2xx Silver L2 Uncorrectable Error", edac_device_handle_ue },
	{"Kryo2xx Gold L2 Correctable Error", edac_device_handle_ce },
	{"Kryo2xx Gold L2 Uncorrectable Error", edac_device_handle_ue },
};

#define read_l2merrsr_el1 ({                                           \
	u64 __val;                                                     \
	asm("mrs %0, s3_1_c15_c2_3" : "=r" (__val));                  \
	__val;                                                         \
})

#define read_l2ectlr_el1 ({						\
	u32 __val;							\
	asm("mrs %0, s3_1_c11_c0_3" : "=r" (__val));			\
	__val;								\
})

#define read_cpumerrsr_el1 ({						\
	u64 __val;							\
	asm("mrs %0, s3_1_c15_c2_2" : "=r" (__val));			\
	__val;								\
})

#define read_esr_el1 ({							\
	u64 __val;							\
	asm("mrs %0, esr_el1" : "=r" (__val));				\
	__val;								\
})

#define write_l2merrsr_el1(val) ({					\
	asm("msr s3_1_c15_c2_3, %0" : : "r" (val));			\
})

#define write_l2ectlr_el1(val) ({					\
	asm("msr s3_1_c11_c0_3, %0" : : "r" (val));			\
})

#define write_cpumerrsr_el1(val) ({					\
	asm("msr s3_1_c15_c2_2, %0" : : "r" (val));			\
})

static void kryo2xx_print_error_state_regs(void)
{
	u64 l2merrsr;
	u64 cpumerrsr;
	u32 esr_el1;
	u32 l2ectlr;

	cpumerrsr = read_cpumerrsr_el1;
	l2merrsr = read_l2merrsr_el1;
	esr_el1 = read_esr_el1;
	l2ectlr = read_l2ectlr_el1;

	/* store data in uncached rtb logs */
	uncached_logk_pc(LOGK_READL, __builtin_return_address(0),
				(void *)cpumerrsr);
	uncached_logk_pc(LOGK_READL, __builtin_return_address(0),
				(void *)l2merrsr);
	uncached_logk_pc(LOGK_READL, __builtin_return_address(0),
				(void *)((u64)esr_el1));
	uncached_logk_pc(LOGK_READL, __builtin_return_address(0),
				(void *)((u64)l2ectlr));

	edac_printk(KERN_CRIT, EDAC_CPU, "CPUMERRSR value = %#llx\n",
								cpumerrsr);
	edac_printk(KERN_CRIT, EDAC_CPU, "L2MERRSR value = %#llx\n", l2merrsr);

	edac_printk(KERN_CRIT, EDAC_CPU, "ESR value = %#x\n", esr_el1);
	edac_printk(KERN_CRIT, EDAC_CPU, "L2ECTLR value = %#x\n", l2ectlr);
	if (ESR_L2_DBE(esr_el1))
		edac_printk(KERN_CRIT, EDAC_CPU,
			"Double bit error on dirty L2 cacheline\n");
}

static void kryo2xx_gold_print_error_state_regs(void)
{
	u64 l2merrsr;
	u32 esr_el1;
	u32 l2ectlr;

	l2merrsr = read_l2merrsr_el1;
	esr_el1 = read_esr_el1;
	l2ectlr = read_l2ectlr_el1;

	uncached_logk_pc(LOGK_READL, __builtin_return_address(0),
				(void *)l2merrsr);
	uncached_logk_pc(LOGK_READL, __builtin_return_address(0),
				(void *)((u64)esr_el1));
	uncached_logk_pc(LOGK_READL, __builtin_return_address(0),
				(void *)((u64)l2ectlr));

	edac_printk(KERN_CRIT, EDAC_CPU, "L2MERRSR value = %#llx\n", l2merrsr);

	edac_printk(KERN_CRIT, EDAC_CPU, "ESR value = %#x\n", esr_el1);
	edac_printk(KERN_CRIT, EDAC_CPU, "L2ECTLR value = %#x\n", l2ectlr);
	if (ESR_L2_DBE(esr_el1))
		edac_printk(KERN_CRIT, EDAC_CPU,
			"Double bit error on dirty L2 cacheline\n");
}

static void kryo2xx_silver_parse_cpumerrsr(struct erp_local_data *ed)
{
	u64 cpumerrsr;
	int cpuid;

	cpumerrsr = read_cpumerrsr_el1;

	if (!A53_CPUMERRSR_VALID(cpumerrsr))
		return;

	if (A53_CPUMERRSR_FATAL(cpumerrsr))
		ed->err = DBE;

	edac_printk(KERN_CRIT, EDAC_CPU,
			"Kryo2xx Silver CPU%d L1 %s Error detected\n",
			smp_processor_id(), err_name[ed->err]);

	kryo2xx_print_error_state_regs();
	if (ed->err == DBE)
		edac_printk(KERN_CRIT, EDAC_CPU, "Fatal error\n");

	cpuid = A53_CPUMERRSR_CPUID(cpumerrsr);

	switch (A53_CPUMERRSR_RAMID(cpumerrsr)) {
	case 0x0:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L1 Instruction tag RAM way is %d\n", cpuid);
		break;
	case 0x1:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L1 Instruction data RAM bank is %d\n", cpuid);
		break;
	case 0x8:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L1 Data tag RAM cpu %d way is %d\n",
				cpuid / 4, cpuid % 4);
		break;
	case 0x9:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L1 Data data RAM cpu %d way is %d\n",
				cpuid / 4, cpuid % 4);
		break;
	case 0xA:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L1 Data dirty RAM cpu %d way is %d\n",
				cpuid / 4, cpuid % 4);
		break;
	case 0x18:
		edac_printk(KERN_CRIT, EDAC_CPU, "TLB RAM way is %d\n", cpuid);
		break;
	default:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"Error in unknown RAM ID: %d\n",
				(int) A53_CPUMERRSR_RAMID(cpumerrsr));
		break;
	}

	edac_printk(KERN_CRIT, EDAC_CPU, "Repeated error count: %d\n",
					 (int) A53_CPUMERRSR_REPT(cpumerrsr));
	edac_printk(KERN_CRIT, EDAC_CPU, "Other error count: %d\n",
					 (int) A53_CPUMERRSR_OTHER(cpumerrsr));

	if (ed->err == SBE)
		errors[KRYO2XX_SILVER_L1_CE].func(ed->drv->edev_ctl, smp_processor_id(),
					L1_CACHE, errors[KRYO2XX_SILVER_L1_CE].msg);
	else if (ed->err == DBE)
		errors[KRYO2XX_SILVER_L1_UE].func(ed->drv->edev_ctl, smp_processor_id(),
					L1_CACHE, errors[KRYO2XX_SILVER_L1_UE].msg);
	write_cpumerrsr_el1(0);
}

static void kryo2xx_silver_parse_l2merrsr(struct erp_local_data *ed)
{
	u64 l2merrsr;
	u32 l2ectlr;
	int cpuid;

	l2merrsr = read_l2merrsr_el1;
	l2ectlr = read_l2ectlr_el1;

	if (!A53_L2MERRSR_VALID(l2merrsr))
		return;

	if (A53_L2MERRSR_FATAL(l2merrsr))
		ed->err = DBE;

	edac_printk(KERN_CRIT, EDAC_CPU, "Kyro2xx Silver L2 %s Error detected\n",
			err_name[ed->err]);
	kryo2xx_print_error_state_regs();
	if (ed->err == DBE)
		edac_printk(KERN_CRIT, EDAC_CPU, "Fatal error\n");

	cpuid = A53_L2MERRSR_CPUID(l2merrsr);

	switch (A53_L2MERRSR_RAMID(l2merrsr)) {
	case 0x10:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L2 tag RAM way is %d\n", cpuid);
		break;
	case 0x11:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L2 data RAM bank is %d\n", cpuid);
		break;
	case 0x12:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"SCU snoop filter RAM cpu %d way is %d\n",
				cpuid / 4, cpuid % 4);
		break;
	default:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"Error in unknown RAM ID: %d\n",
				(int) A53_L2MERRSR_RAMID(l2merrsr));
		break;
	}

	edac_printk(KERN_CRIT, EDAC_CPU, "Repeated error count: %d\n",
					 (int) A53_L2MERRSR_REPT(l2merrsr));
	edac_printk(KERN_CRIT, EDAC_CPU, "Other error count: %d\n",
					 (int) A53_L2MERRSR_OTHER(l2merrsr));

	if (ed->err == SBE)
		errors[KRYO2XX_SILVER_L2_CE].func(ed->drv->edev_ctl, smp_processor_id(),
					L2_CACHE, errors[KRYO2XX_SILVER_L2_CE].msg);
	else if (ed->err == DBE)
		errors[KRYO2XX_SILVER_L2_UE].func(ed->drv->edev_ctl, smp_processor_id(),
					L2_CACHE, errors[KRYO2XX_SILVER_L2_UE].msg);
	write_l2merrsr_el1(0);
}


static void ca57_parse_cpumerrsr(struct erp_local_data *ed)
{
	u64 cpumerrsr;
	int bank;

	cpumerrsr = read_cpumerrsr_el1;

	if (!A57_CPUMERRSR_VALID(cpumerrsr))
		return;

	if (A57_CPUMERRSR_FATAL(cpumerrsr))
		ed->err = DBE;

	edac_printk(KERN_CRIT, EDAC_CPU, "Cortex A57 CPU%d L1 %s Error detected\n",
					 smp_processor_id(), err_name[ed->err]);
	kryo2xx_print_error_state_regs();
	if (ed->err == DBE)
		edac_printk(KERN_CRIT, EDAC_CPU, "Fatal error\n");

	bank = A57_CPUMERRSR_BANK(cpumerrsr);

	switch (A57_CPUMERRSR_RAMID(cpumerrsr)) {
	case 0x0:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L1 Instruction tag RAM bank %d\n", bank);
		break;
	case 0x1:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L1 Instruction data RAM bank %d\n", bank);
		break;
	case 0x8:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L1 Data tag RAM bank %d\n", bank);
		break;
	case 0x9:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L1 Data data RAM bank %d\n", bank);
		break;
	case 0x18:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"TLB RAM bank %d\n", bank);
		break;
	default:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"Error in unknown RAM ID: %d\n",
				(int) A57_CPUMERRSR_RAMID(cpumerrsr));
		break;
	}

	edac_printk(KERN_CRIT, EDAC_CPU, "Repeated error count: %d\n",
					 (int) A57_CPUMERRSR_REPT(cpumerrsr));
	edac_printk(KERN_CRIT, EDAC_CPU, "Other error count: %d\n",
					 (int) A57_CPUMERRSR_OTHER(cpumerrsr));

	if (ed->err == SBE)
		errors[A57_L1_CE].func(ed->drv->edev_ctl, smp_processor_id(),
					L1_CACHE, errors[A57_L1_CE].msg);
	else if (ed->err == DBE)
		errors[A57_L1_UE].func(ed->drv->edev_ctl, smp_processor_id(),
					L1_CACHE, errors[A57_L1_UE].msg);
	write_cpumerrsr_el1(0);
}

static void ca57_parse_l2merrsr(struct erp_local_data *ed)
{
	u64 l2merrsr;
	u32 l2ectlr;
	int cpuid;

	l2merrsr = read_l2merrsr_el1;
	l2ectlr = read_l2ectlr_el1;

	if (!A57_L2MERRSR_VALID(l2merrsr))
		return;

	if (A57_L2MERRSR_FATAL(l2merrsr))
		ed->err = DBE;

	edac_printk(KERN_CRIT, EDAC_CPU, "CortexA57 L2 %s Error detected\n",
							err_name[ed->err]);
	kryo2xx_print_error_state_regs();
	if (ed->err == DBE)
		edac_printk(KERN_CRIT, EDAC_CPU, "Fatal error\n");

	cpuid = A57_L2MERRSR_CPUID(l2merrsr);

	switch (A57_L2MERRSR_RAMID(l2merrsr)) {
	case 0x10:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L2 tag RAM cpu %d way is %d\n",
				cpuid / 2, cpuid % 2);
		break;
	case 0x11:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L2 data RAM cpu %d bank is %d\n",
				cpuid / 2, cpuid % 2);
		break;
	case 0x12:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"SCU snoop tag RAM bank is %d\n", cpuid);
		break;
	case 0x14:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L2 dirty RAM cpu %d bank is %d\n",
				cpuid / 2, cpuid % 2);
		break;
	case 0x18:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"L2 inclusion PF RAM bank is %d\n", cpuid);
		break;
	default:
		edac_printk(KERN_CRIT, EDAC_CPU,
				"Error in unknown RAM ID: %d\n",
				(int) A57_L2MERRSR_RAMID(l2merrsr));
		break;
	}

	edac_printk(KERN_CRIT, EDAC_CPU, "Repeated error count: %d\n",
					 (int) A57_L2MERRSR_REPT(l2merrsr));
	edac_printk(KERN_CRIT, EDAC_CPU, "Other error count: %d\n",
					 (int) A57_L2MERRSR_OTHER(l2merrsr));

	if (ed->err == SBE) {
		errors[A57_L2_CE].func(ed->drv->edev_ctl, smp_processor_id(),
					L2_CACHE, errors[A57_L2_CE].msg);
	} else if (ed->err == DBE) {
		errors[A57_L2_UE].func(ed->drv->edev_ctl, smp_processor_id(),
					L2_CACHE, errors[A57_L2_UE].msg);
	}
	write_l2merrsr_el1(0);
}


static void kryo2xx_gold_parse_l2merrsr(struct erp_local_data *ed)
{
	u64 l2merrsr;
	int ramid, way;

	l2merrsr = read_l2merrsr_el1;

	if (!KRYO2XX_GOLD_L2MERRSR_VALID(l2merrsr))
		return;

	if (KRYO2XX_GOLD_L2MERRSR_FATAL(l2merrsr))
		ed->err = DBE;

	edac_printk(KERN_CRIT, EDAC_CPU, "Kryo2xx Gold L2 %s Error detected\n",
							err_name[ed->err]);
	kryo2xx_gold_print_error_state_regs();
	if (ed->err == DBE)
		edac_printk(KERN_CRIT, EDAC_CPU, "Fatal error\n");

	way = KRYO2XX_GOLD_L2MERRSR_WAY(l2merrsr);
	ramid = KRYO2XX_GOLD_L2MERRSR_RAMID(l2merrsr);

	edac_printk(KERN_CRIT, EDAC_CPU,
				"L2 %s RAM error in way 0x%02x, index 0x%04x\n",
				ramid ? "data" : "tag",
				(int) KRYO2XX_GOLD_L2MERRSR_WAY(l2merrsr),
				(int) KRYO2XX_GOLD_L2MERRSR_INDEX(l2merrsr));

	edac_printk(KERN_CRIT, EDAC_CPU, "Repeated error count: %d\n",
		(int) KRYO2XX_GOLD_L2MERRSR_REPT(l2merrsr));
	edac_printk(KERN_CRIT, EDAC_CPU, "Other error count: %d\n",
		(int) KRYO2XX_GOLD_L2MERRSR_OTHER(l2merrsr));

	if (ed->err == SBE) {
		errors[KRYO2XX_GOLD_L2_CE].func(ed->drv->edev_ctl, smp_processor_id(),
					L2_CACHE, errors[KRYO2XX_GOLD_L2_CE].msg);
	} else if (ed->err == DBE) {
		errors[KRYO2XX_GOLD_L2_UE].func(ed->drv->edev_ctl, smp_processor_id(),
					L2_CACHE, errors[KRYO2XX_GOLD_L2_UE].msg);
	}
	write_l2merrsr_el1(0);
}

static DEFINE_SPINLOCK(local_handler_lock);
static DEFINE_SPINLOCK(l2ectlr_lock);

static void arm64_erp_local_handler(void *info)
{
	struct erp_local_data *errdata = info;
	unsigned int cpuid = read_cpuid_id();
	unsigned int partnum = read_cpuid_part_number();
	unsigned long flags, flags2;
	u32 l2ectlr;

	spin_lock_irqsave(&local_handler_lock, flags);
	edac_printk(KERN_CRIT, EDAC_CPU, "%s error information from CPU %d, MIDR=%#08x:\n",
		       err_name[errdata->err], raw_smp_processor_id(), cpuid);

	switch (partnum) {
	case ARM_CPU_PART_CORTEX_A53:
	case ARM_CPU_PART_KRYO2XX_SILVER:
		kryo2xx_silver_parse_cpumerrsr(errdata);
		kryo2xx_silver_parse_l2merrsr(errdata);
	break;

	case ARM_CPU_PART_CORTEX_A72:
	case ARM_CPU_PART_CORTEX_A57:
		ca57_parse_cpumerrsr(errdata);
		ca57_parse_l2merrsr(errdata);
	break;

	case ARM_CPU_PART_KRYO2XX_GOLD:
		kryo2xx_gold_parse_l2merrsr(errdata);
	break;

	default:
		edac_printk(KERN_CRIT, EDAC_CPU, "Unknown CPU Part Number in MIDR: %#04x (%#08x)\n",
						 partnum, cpuid);
	};

	/* Acklowledge internal error in L2ECTLR */
	spin_lock_irqsave(&l2ectlr_lock, flags2);

	l2ectlr = read_l2ectlr_el1;

	if (l2ectlr & L2ECTLR_INT_ERR) {
		l2ectlr &= ~L2ECTLR_INT_ERR;
		write_l2ectlr_el1(l2ectlr);
	}

	spin_unlock_irqrestore(&l2ectlr_lock, flags2);
	spin_unlock_irqrestore(&local_handler_lock, flags);
}

static irqreturn_t arm64_dbe_handler(int irq, void *drvdata)
{
	struct erp_local_data errdata;

	errdata.drv = drvdata;
	errdata.err = DBE;
	edac_printk(KERN_CRIT, EDAC_CPU, "ARM64 CPU ERP: Double-bit error interrupt received!\n");

	on_each_cpu(arm64_erp_local_handler, &errdata, 1);

	return IRQ_HANDLED;
}

static void arm64_ext_local_handler(void *info)
{
	struct erp_drvdata *drv = info;
	unsigned long flags, flags2;
	u32 l2ectlr;

	spin_lock_irqsave(&local_handler_lock, flags);

	/* TODO: Shared locking for L2ECTLR access */
	spin_lock_irqsave(&l2ectlr_lock, flags2);

	l2ectlr = read_l2ectlr_el1;

	if (l2ectlr & L2ECTLR_EXT_ERR) {
		edac_printk(KERN_CRIT, EDAC_CPU,
		    "L2 external error detected by CPU%d\n",
		    smp_processor_id());

		errors[L2_EXT_UE].func(drv->edev_ctl, smp_processor_id(),
				       L2_CACHE, errors[L2_EXT_UE].msg);

		l2ectlr &= ~L2ECTLR_EXT_ERR;
		write_l2ectlr_el1(l2ectlr);
	}

	spin_unlock_irqrestore(&l2ectlr_lock, flags2);
	spin_unlock_irqrestore(&local_handler_lock, flags);
}

static irqreturn_t arm64_ext_handler(int irq, void *drvdata)
{
	edac_printk(KERN_CRIT, EDAC_CPU, "External error interrupt received!\n");

	on_each_cpu(arm64_ext_local_handler, drvdata, 1);

	return IRQ_HANDLED;
}

static irqreturn_t arm64_cci_handler(int irq, void *drvdata)
{
	struct erp_drvdata *drv = drvdata;
	u32 cci_err_reg;

	edac_printk(KERN_CRIT, EDAC_CPU, "CCI error interrupt received!\n");

	if (drv->cci_base) {
		cci_err_reg = readl_relaxed(drv->cci_base +
							CCI_IMPRECISEERROR_REG);

		edac_printk(KERN_CRIT, EDAC_CPU, "CCI imprecise error register: %#08x.\n",
						 cci_err_reg);

		/* This register has write-clear semantics */
		writel_relaxed(cci_err_reg, drv->cci_base +
							CCI_IMPRECISEERROR_REG);

		/* Ensure error bits cleared before exiting ISR */
		mb();
	} else {
		edac_printk(KERN_CRIT, EDAC_CPU, "CCI registers not available.\n");
	}

	errors[CCI_UE].func(drv->edev_ctl, 0, CCI, errors[CCI_UE].msg);

	return IRQ_HANDLED;
}
#ifndef CONFIG_EDAC_CORTEX_ARM64_DBE_IRQ_ONLY
static void arm64_sbe_handler(struct perf_event *event,
			      struct perf_sample_data *data,
			      struct pt_regs *regs)
{
	struct erp_local_data errdata;
	int cpu = raw_smp_processor_id();

	errdata.drv = event->overflow_handler_context;
	errdata.err = SBE;
	edac_printk(KERN_CRIT, EDAC_CPU, "ARM64 CPU ERP: Single-bit error interrupt received on CPU %d!\n",
					cpu);
	arm64_erp_local_handler(&errdata);
}
#endif

static int request_erp_irq(struct platform_device *pdev, const char *propname,
			   const char *desc, irq_handler_t handler,
			   void *ed)
{
	int rc;
	struct resource *r;

	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, propname);

	if (!r) {
		pr_err("ARM64 CPU ERP: Could not find <%s> IRQ property. Proceeding anyway.\n",
			propname);
		return -EINVAL;
	}

	rc = devm_request_threaded_irq(&pdev->dev, r->start, NULL,
				       handler,
				       IRQF_ONESHOT | IRQF_TRIGGER_RISING,
				       desc,
				       ed);

	if (rc) {
		pr_err("ARM64 CPU ERP: Failed to request IRQ %d: %d (%s / %s). Proceeding anyway.\n",
		       (int) r->start, rc, propname, desc);
		return -EINVAL;
	}

	return 0;
}

static void check_sbe_event(struct erp_drvdata *drv)
{
	unsigned int partnum = read_cpuid_part_number();
	struct erp_local_data errdata;
	unsigned long flags;

	errdata.drv = drv;
	errdata.err = SBE;

	spin_lock_irqsave(&local_handler_lock, flags);
	switch (partnum) {
	case ARM_CPU_PART_CORTEX_A53:
	case ARM_CPU_PART_KRYO2XX_SILVER:
		kryo2xx_silver_parse_cpumerrsr(&errdata);
		kryo2xx_silver_parse_l2merrsr(&errdata);
	break;

	case ARM_CPU_PART_CORTEX_A72:
	case ARM_CPU_PART_CORTEX_A57:
		ca57_parse_cpumerrsr(&errdata);
		ca57_parse_l2merrsr(&errdata);
	break;

	case ARM_CPU_PART_KRYO2XX_GOLD:
		kryo2xx_gold_parse_l2merrsr(&errdata);
	break;
	};
	spin_unlock_irqrestore(&local_handler_lock, flags);
}

#ifdef CONFIG_EDAC_CORTEX_ARM64_DBE_IRQ_ONLY
static void create_sbe_counter(int cpu, void *info)
{ }
#else
static void create_sbe_counter(int cpu, void *info)
{
	struct erp_drvdata *drv = info;
	struct perf_event *event = drv->memerr_counters[cpu];
	struct perf_event_attr attr = {
		.pinned = 1,
		.disabled = 0, /* 0 will enable the counter upon creation */
		.sample_period = 1, /* 1 will set the counter to max int */
		.type = PERF_TYPE_RAW,
		.config = MEM_ERROR_EVENT,
		.size = sizeof(struct perf_event_attr),
	};

	if (event)
		return;

	/* Fails if cpu is not online */
	event = perf_event_create_kernel_counter(&attr, cpu, NULL,
							arm64_sbe_handler,
							drv);
	if (IS_ERR(event)) {
		pr_err("PERF Event creation failed on cpu %d ptr_err %ld\n",
							cpu, PTR_ERR(event));
		return;
	}
	drv->memerr_counters[cpu] = event;
}
#endif

static int arm64_pmu_cpu_pm_notify(struct notifier_block *self,
					   unsigned long action, void *v)
{
	struct erp_drvdata *drv = container_of(self, struct erp_drvdata, nb_pm);

	switch (action) {
	case CPU_PM_EXIT:
		check_sbe_event(drv);
		break;
	}

	return NOTIFY_OK;
}

static int arm64_edac_pmu_cpu_notify(struct notifier_block *self,
					unsigned long action, void *hcpu)
{
	struct erp_drvdata *drv = container_of(self, struct erp_drvdata,
								nb_cpu);
	unsigned long cpu = (unsigned long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		create_sbe_counter(cpu, drv);
		break;
	};

	return NOTIFY_OK;
}

#ifndef CONFIG_EDAC_CORTEX_ARM64_DBE_IRQ_ONLY
void arm64_check_cache_ecc(void *info)
{
	if (panic_handler_drvdata)
		check_sbe_event(panic_handler_drvdata);
}
#else
static inline void arm64_check_cache_ecc(void *info) {}
#endif

static int arm64_erp_panic_notify(struct notifier_block *this,
			      unsigned long event, void *ptr)
{
	arm64_check_cache_ecc(NULL);

	return NOTIFY_OK;
}

static void arm64_monitor_cache_errors(struct edac_device_ctl_info *edev)
{
	struct cpumask cluster_mask, old_mask;
	int cpu;

	cpumask_clear(&cluster_mask);
	cpumask_clear(&old_mask);

	for_each_possible_cpu(cpu) {
		cpumask_copy(&cluster_mask, topology_core_cpumask(cpu));
		if (cpumask_equal(&cluster_mask, &old_mask))
			continue;
		cpumask_copy(&old_mask, &cluster_mask);
		smp_call_function_any(&cluster_mask,
				arm64_check_cache_ecc, NULL, 0);
	}
}

static int arm64_cpu_erp_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct erp_drvdata *drv;
	struct resource *r;
	int cpu;
	u32 poll_msec;

	int rc, fail = 0;

	drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);

	if (!drv)
		return -ENOMEM;

	drv->edev_ctl = edac_device_alloc_ctl_info(0, "cpu",
					num_possible_cpus(), "L", 3, 1, NULL, 0,
					edac_device_alloc_index());

	if (!drv->edev_ctl)
		return -ENOMEM;

	rc = of_property_read_u32(pdev->dev.of_node, "poll-delay-ms",
							&poll_msec);
	if (!rc && !IS_ENABLED(CONFIG_EDAC_CORTEX_ARM64_DBE_IRQ_ONLY)) {
		drv->edev_ctl->edac_check = arm64_monitor_cache_errors;
		drv->edev_ctl->poll_msec = poll_msec;
		drv->edev_ctl->defer_work = 1;
	}
	drv->edev_ctl->dev = dev;
	drv->edev_ctl->mod_name = dev_name(dev);
	drv->edev_ctl->dev_name = dev_name(dev);
	drv->edev_ctl->ctl_name = "cache";
	drv->edev_ctl->panic_on_ce = panic_on_ce;
	drv->edev_ctl->panic_on_ue = ARM64_ERP_PANIC_ON_UE;

	rc = edac_device_add_device(drv->edev_ctl);
	if (rc)
		goto out_mem;

	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cci");
	if (r)
		drv->cci_base = devm_ioremap_resource(dev, r);

	if (request_erp_irq(pdev, "pri-dbe-irq", "ARM64 primary DBE IRQ",
			    arm64_dbe_handler, drv))
		fail++;

	if (request_erp_irq(pdev, "sec-dbe-irq", "ARM64 secondary DBE IRQ",
			    arm64_dbe_handler, drv))
		fail++;

	if (request_erp_irq(pdev, "pri-ext-irq", "ARM64 primary ext IRQ",
			    arm64_ext_handler, drv))
		fail++;

	if (request_erp_irq(pdev, "sec-ext-irq", "ARM64 secondary ext IRQ",
			    arm64_ext_handler, drv))
		fail++;

	/*
	 * We still try to register a handler for CCI errors even if we don't
	 * have access to cci_base, but error reporting becomes best-effort in
	 * that case.
	 */
	if (request_erp_irq(pdev, "cci-irq", "CCI error IRQ",
			    arm64_cci_handler, drv))
		fail++;

	if (IS_ENABLED(CONFIG_EDAC_CORTEX_ARM64_DBE_IRQ_ONLY)) {
		pr_err("ARM64 CPU ERP: SBE detection is disabled.\n");
		goto out_irq;
	}

	drv->nb_pm.notifier_call = arm64_pmu_cpu_pm_notify;
	cpu_pm_register_notifier(&(drv->nb_pm));
	drv->nb_panic.notifier_call = arm64_erp_panic_notify;
	atomic_notifier_chain_register(&panic_notifier_list,
				       &drv->nb_panic);
	drv->nb_cpu.notifier_call = arm64_edac_pmu_cpu_notify;
	register_cpu_notifier(&drv->nb_cpu);
	get_online_cpus();
	for_each_online_cpu(cpu)
		create_sbe_counter(cpu, drv);
	put_online_cpus();

out_irq:
	if (fail == of_irq_count(dev->of_node)) {
		pr_err("ARM64 CPU ERP: Could not request any IRQs. Giving up.\n");
		rc = -ENODEV;
		goto out_dev;
	}

	panic_handler_drvdata = drv;

	return 0;

out_dev:
	edac_device_del_device(dev);
out_mem:
	edac_device_free_ctl_info(drv->edev_ctl);
	return rc;
}

static const struct of_device_id arm64_cpu_erp_match_table[] = {
	{ .compatible = "arm,arm64-cpu-erp" },
	{ }
};

static struct platform_driver arm64_cpu_erp_driver = {
	.probe = arm64_cpu_erp_probe,
	.driver = {
		.name = "arm64_cpu_cache_erp",
		.owner = THIS_MODULE,
		.of_match_table = of_match_ptr(arm64_cpu_erp_match_table),
	},
};

static int __init arm64_cpu_erp_init(void)
{
	return platform_driver_register(&arm64_cpu_erp_driver);
}
device_initcall_sync(arm64_cpu_erp_init);