diff options
| author | Jordan Crouse <jcrouse@codeaurora.org> | 2016-02-25 09:16:24 -0700 |
|---|---|---|
| committer | David Keitel <dkeitel@codeaurora.org> | 2016-03-22 11:15:49 -0700 |
| commit | 5103db813f92bdb6c064631674e4ae5726be03f3 (patch) | |
| tree | c12b0fec0575125e59639631c9cdc190cbe770d1 /drivers/gpu/msm/kgsl_sharedmem.c | |
| parent | e64e0d283a6be977af3bfba4f9a559630a7836ee (diff) | |
msm: kgsl: Add Qualcomm GPU driver
Snapshot of the Qualcom Adreno GPU driver (KGSL) as of msm-3.18 commit
commit e70ad0cd5efd ("Promotion of kernel.lnx.3.18-151201.").
Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org>
Diffstat (limited to 'drivers/gpu/msm/kgsl_sharedmem.c')
| -rw-r--r-- | drivers/gpu/msm/kgsl_sharedmem.c | 1258 |
1 files changed, 1258 insertions, 0 deletions
diff --git a/drivers/gpu/msm/kgsl_sharedmem.c b/drivers/gpu/msm/kgsl_sharedmem.c new file mode 100644 index 000000000000..53dd3270c75b --- /dev/null +++ b/drivers/gpu/msm/kgsl_sharedmem.c @@ -0,0 +1,1258 @@ +/* Copyright (c) 2002,2007-2015, The Linux Foundation. All rights reserved. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 and + * only version 2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + */ + +#include <linux/export.h> +#include <linux/vmalloc.h> +#include <asm/cacheflush.h> +#include <linux/slab.h> +#include <linux/kmemleak.h> +#include <linux/highmem.h> +#include <linux/scatterlist.h> +#include <soc/qcom/scm.h> +#include <soc/qcom/secure_buffer.h> + +#include "kgsl.h" +#include "kgsl_sharedmem.h" +#include "kgsl_cffdump.h" +#include "kgsl_device.h" +#include "kgsl_log.h" + +/* + * The user can set this from debugfs to force failed memory allocations to + * fail without trying OOM first. This is a debug setting useful for + * stress applications that want to test failure cases without pushing the + * system into unrecoverable OOM panics + */ + +static bool sharedmem_noretry_flag; + +static DEFINE_MUTEX(kernel_map_global_lock); + +struct cp2_mem_chunks { + unsigned int chunk_list; + unsigned int chunk_list_size; + unsigned int chunk_size; +} __attribute__ ((__packed__)); + +struct cp2_lock_req { + struct cp2_mem_chunks chunks; + unsigned int mem_usage; + unsigned int lock; +} __attribute__ ((__packed__)); + +#define MEM_PROTECT_LOCK_ID2 0x0A +#define MEM_PROTECT_LOCK_ID2_FLAT 0x11 + +/* An attribute for showing per-process memory statistics */ +struct kgsl_mem_entry_attribute { + struct attribute attr; + int memtype; + ssize_t (*show)(struct kgsl_process_private *priv, + int type, char *buf); +}; + +#define to_mem_entry_attr(a) \ +container_of(a, struct kgsl_mem_entry_attribute, attr) + +#define __MEM_ENTRY_ATTR(_type, _name, _show) \ +{ \ + .attr = { .name = __stringify(_name), .mode = 0444 }, \ + .memtype = _type, \ + .show = _show, \ +} + +/* + * A structure to hold the attributes for a particular memory type. + * For each memory type in each process we store the current and maximum + * memory usage and display the counts in sysfs. This structure and + * the following macro allow us to simplify the definition for those + * adding new memory types + */ + +struct mem_entry_stats { + int memtype; + struct kgsl_mem_entry_attribute attr; + struct kgsl_mem_entry_attribute max_attr; +}; + + +#define MEM_ENTRY_STAT(_type, _name) \ +{ \ + .memtype = _type, \ + .attr = __MEM_ENTRY_ATTR(_type, _name, mem_entry_show), \ + .max_attr = __MEM_ENTRY_ATTR(_type, _name##_max, \ + mem_entry_max_show), \ +} + +static void kgsl_cma_unlock_secure(struct kgsl_memdesc *memdesc); + +/** + * Show the current amount of memory allocated for the given memtype + */ + +static ssize_t +mem_entry_show(struct kgsl_process_private *priv, int type, char *buf) +{ + return snprintf(buf, PAGE_SIZE, "%llu\n", priv->stats[type].cur); +} + +/** + * Show the maximum memory allocated for the given memtype through the life of + * the process + */ + +static ssize_t +mem_entry_max_show(struct kgsl_process_private *priv, int type, char *buf) +{ + return snprintf(buf, PAGE_SIZE, "%llu\n", priv->stats[type].max); +} + +static ssize_t mem_entry_sysfs_show(struct kobject *kobj, + struct attribute *attr, char *buf) +{ + struct kgsl_mem_entry_attribute *pattr = to_mem_entry_attr(attr); + struct kgsl_process_private *priv; + ssize_t ret; + + /* + * 1. sysfs_remove_file waits for reads to complete before the node + * is deleted. + * 2. kgsl_process_init_sysfs takes a refcount to the process_private, + * which is put at the end of kgsl_process_uninit_sysfs. + * These two conditions imply that priv will not be freed until this + * function completes, and no further locking is needed. + */ + priv = kobj ? container_of(kobj, struct kgsl_process_private, kobj) : + NULL; + + if (priv && pattr->show) + ret = pattr->show(priv, pattr->memtype, buf); + else + ret = -EIO; + + return ret; +} + +static const struct sysfs_ops mem_entry_sysfs_ops = { + .show = mem_entry_sysfs_show, +}; + +static struct kobj_type ktype_mem_entry = { + .sysfs_ops = &mem_entry_sysfs_ops, +}; + +static struct mem_entry_stats mem_stats[] = { + MEM_ENTRY_STAT(KGSL_MEM_ENTRY_KERNEL, kernel), + MEM_ENTRY_STAT(KGSL_MEM_ENTRY_USER, user), +#ifdef CONFIG_ION + MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ION, ion), +#endif +}; + +void +kgsl_process_uninit_sysfs(struct kgsl_process_private *private) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(mem_stats); i++) { + sysfs_remove_file(&private->kobj, &mem_stats[i].attr.attr); + sysfs_remove_file(&private->kobj, + &mem_stats[i].max_attr.attr); + } + + kobject_put(&private->kobj); + /* Put the refcount we got in kgsl_process_init_sysfs */ + kgsl_process_private_put(private); +} + +/** + * kgsl_process_init_sysfs() - Initialize and create sysfs files for a process + * + * @device: Pointer to kgsl device struct + * @private: Pointer to the structure for the process + * + * kgsl_process_init_sysfs() is called at the time of creating the + * process struct when a process opens the kgsl device for the first time. + * This function creates the sysfs files for the process. + */ +void kgsl_process_init_sysfs(struct kgsl_device *device, + struct kgsl_process_private *private) +{ + unsigned char name[16]; + int i; + + /* Keep private valid until the sysfs enries are removed. */ + kgsl_process_private_get(private); + + snprintf(name, sizeof(name), "%d", private->pid); + + if (kobject_init_and_add(&private->kobj, &ktype_mem_entry, + kgsl_driver.prockobj, name)) { + WARN(1, "Unable to add sysfs dir '%s'\n", name); + return; + } + + for (i = 0; i < ARRAY_SIZE(mem_stats); i++) { + if (sysfs_create_file(&private->kobj, + &mem_stats[i].attr.attr)) + WARN(1, "Couldn't create sysfs file '%s'\n", + mem_stats[i].attr.attr.name); + + if (sysfs_create_file(&private->kobj, + &mem_stats[i].max_attr.attr)) + WARN(1, "Couldn't create sysfs file '%s'\n", + mem_stats[i].max_attr.attr.name); + + } +} + +static ssize_t kgsl_drv_memstat_show(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + uint64_t val = 0; + + if (!strcmp(attr->attr.name, "vmalloc")) + val = atomic_long_read(&kgsl_driver.stats.vmalloc); + else if (!strcmp(attr->attr.name, "vmalloc_max")) + val = atomic_long_read(&kgsl_driver.stats.vmalloc_max); + else if (!strcmp(attr->attr.name, "page_alloc")) + val = atomic_long_read(&kgsl_driver.stats.page_alloc); + else if (!strcmp(attr->attr.name, "page_alloc_max")) + val = atomic_long_read(&kgsl_driver.stats.page_alloc_max); + else if (!strcmp(attr->attr.name, "coherent")) + val = atomic_long_read(&kgsl_driver.stats.coherent); + else if (!strcmp(attr->attr.name, "coherent_max")) + val = atomic_long_read(&kgsl_driver.stats.coherent_max); + else if (!strcmp(attr->attr.name, "secure")) + val = atomic_long_read(&kgsl_driver.stats.secure); + else if (!strcmp(attr->attr.name, "secure_max")) + val = atomic_long_read(&kgsl_driver.stats.secure_max); + else if (!strcmp(attr->attr.name, "mapped")) + val = atomic_long_read(&kgsl_driver.stats.mapped); + else if (!strcmp(attr->attr.name, "mapped_max")) + val = atomic_long_read(&kgsl_driver.stats.mapped_max); + + return snprintf(buf, PAGE_SIZE, "%llu\n", val); +} + +static ssize_t kgsl_drv_full_cache_threshold_store(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + int ret; + unsigned int thresh = 0; + + ret = kgsl_sysfs_store(buf, &thresh); + if (ret) + return ret; + + kgsl_driver.full_cache_threshold = thresh; + return count; +} + +static ssize_t kgsl_drv_full_cache_threshold_show(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + return snprintf(buf, PAGE_SIZE, "%d\n", + kgsl_driver.full_cache_threshold); +} + +static DEVICE_ATTR(vmalloc, 0444, kgsl_drv_memstat_show, NULL); +static DEVICE_ATTR(vmalloc_max, 0444, kgsl_drv_memstat_show, NULL); +static DEVICE_ATTR(page_alloc, 0444, kgsl_drv_memstat_show, NULL); +static DEVICE_ATTR(page_alloc_max, 0444, kgsl_drv_memstat_show, NULL); +static DEVICE_ATTR(coherent, 0444, kgsl_drv_memstat_show, NULL); +static DEVICE_ATTR(coherent_max, 0444, kgsl_drv_memstat_show, NULL); +static DEVICE_ATTR(secure, 0444, kgsl_drv_memstat_show, NULL); +static DEVICE_ATTR(secure_max, 0444, kgsl_drv_memstat_show, NULL); +static DEVICE_ATTR(mapped, 0444, kgsl_drv_memstat_show, NULL); +static DEVICE_ATTR(mapped_max, 0444, kgsl_drv_memstat_show, NULL); +static DEVICE_ATTR(full_cache_threshold, 0644, + kgsl_drv_full_cache_threshold_show, + kgsl_drv_full_cache_threshold_store); + +static const struct device_attribute *drv_attr_list[] = { + &dev_attr_vmalloc, + &dev_attr_vmalloc_max, + &dev_attr_page_alloc, + &dev_attr_page_alloc_max, + &dev_attr_coherent, + &dev_attr_coherent_max, + &dev_attr_secure, + &dev_attr_secure_max, + &dev_attr_mapped, + &dev_attr_mapped_max, + &dev_attr_full_cache_threshold, + NULL +}; + +void +kgsl_sharedmem_uninit_sysfs(void) +{ + kgsl_remove_device_sysfs_files(&kgsl_driver.virtdev, drv_attr_list); +} + +int +kgsl_sharedmem_init_sysfs(void) +{ + return kgsl_create_device_sysfs_files(&kgsl_driver.virtdev, + drv_attr_list); +} + +static int kgsl_allocate_secure(struct kgsl_device *device, + struct kgsl_memdesc *memdesc, + struct kgsl_pagetable *pagetable, + uint64_t size) { + int ret; + + if (MMU_FEATURE(&device->mmu, KGSL_MMU_HYP_SECURE_ALLOC)) + ret = kgsl_sharedmem_page_alloc_user(memdesc, pagetable, size); + else + ret = kgsl_cma_alloc_secure(device, memdesc, size); + + return ret; +} + +int kgsl_allocate_user(struct kgsl_device *device, + struct kgsl_memdesc *memdesc, + struct kgsl_pagetable *pagetable, + uint64_t size, uint64_t mmapsize, uint64_t flags) +{ + int ret; + + if (size == 0) + return -EINVAL; + + memdesc->flags = flags; + + if (kgsl_mmu_get_mmutype() == KGSL_MMU_TYPE_NONE) + ret = kgsl_cma_alloc_coherent(device, memdesc, pagetable, size); + else if (flags & KGSL_MEMFLAGS_SECURE) + ret = kgsl_allocate_secure(device, memdesc, pagetable, size); + else + ret = kgsl_sharedmem_page_alloc_user(memdesc, pagetable, size); + + return ret; +} + +static int kgsl_page_alloc_vmfault(struct kgsl_memdesc *memdesc, + struct vm_area_struct *vma, + struct vm_fault *vmf) +{ + int i, pgoff; + struct scatterlist *s = memdesc->sgt->sgl; + unsigned int offset; + + offset = ((unsigned long) vmf->virtual_address - vma->vm_start); + + if (offset >= memdesc->size) + return VM_FAULT_SIGBUS; + + pgoff = offset >> PAGE_SHIFT; + + /* + * The sglist might be comprised of mixed blocks of memory depending + * on how many 64K pages were allocated. This means we have to do math + * to find the actual 4K page to map in user space + */ + + for (i = 0; i < memdesc->sgt->nents; i++) { + int npages = s->length >> PAGE_SHIFT; + + if (pgoff < npages) { + struct page *page = sg_page(s); + + page = nth_page(page, pgoff); + + get_page(page); + vmf->page = page; + + return 0; + } + + pgoff -= npages; + s = sg_next(s); + } + + return VM_FAULT_SIGBUS; +} + +/* + * kgsl_page_alloc_unmap_kernel() - Unmap the memory in memdesc + * + * @memdesc: The memory descriptor which contains information about the memory + * + * Unmaps the memory mapped into kernel address space + */ +static void kgsl_page_alloc_unmap_kernel(struct kgsl_memdesc *memdesc) +{ + mutex_lock(&kernel_map_global_lock); + if (!memdesc->hostptr) { + BUG_ON(memdesc->hostptr_count); + goto done; + } + memdesc->hostptr_count--; + if (memdesc->hostptr_count) + goto done; + vunmap(memdesc->hostptr); + + atomic_long_sub(memdesc->size, &kgsl_driver.stats.vmalloc); + memdesc->hostptr = NULL; +done: + mutex_unlock(&kernel_map_global_lock); +} + +static void kgsl_page_alloc_free(struct kgsl_memdesc *memdesc) +{ + unsigned int i = 0; + struct scatterlist *sg; + + kgsl_page_alloc_unmap_kernel(memdesc); + /* we certainly do not expect the hostptr to still be mapped */ + BUG_ON(memdesc->hostptr); + + /* Secure buffers need to be unlocked before being freed */ + if (memdesc->priv & KGSL_MEMDESC_TZ_LOCKED) { + int ret; + int dest_perms = PERM_READ | PERM_WRITE | PERM_EXEC; + int source_vm = VMID_CP_PIXEL; + int dest_vm = VMID_HLOS; + + ret = hyp_assign_table(memdesc->sgt, &source_vm, 1, + &dest_vm, &dest_perms, 1); + if (ret) { + pr_err("Secure buf unlock failed: gpuaddr: %llx size: %llx ret: %d\n", + memdesc->gpuaddr, memdesc->size, ret); + BUG(); + } + + atomic_long_sub(memdesc->size, &kgsl_driver.stats.secure); + } else { + atomic_long_sub(memdesc->size, &kgsl_driver.stats.page_alloc); + } + + for_each_sg(memdesc->sgt->sgl, sg, memdesc->sgt->nents, i) { + /* + * sg_alloc_table_from_pages() will collapse any physically + * adjacent pages into a single scatterlist entry. We cannot + * just call __free_pages() on the entire set since we cannot + * ensure that the size is a whole order. Instead, free each + * page or compound page group individually. + */ + struct page *p = sg_page(sg), *next; + unsigned int j = 0, count; + while (j < (sg->length/PAGE_SIZE)) { + if (memdesc->priv & KGSL_MEMDESC_TZ_LOCKED) + ClearPagePrivate(p); + + count = 1 << compound_order(p); + next = nth_page(p, count); + __free_pages(p, compound_order(p)); + p = next; + j += count; + + } + } +} + +/* + * kgsl_page_alloc_map_kernel - Map the memory in memdesc to kernel address + * space + * + * @memdesc - The memory descriptor which contains information about the memory + * + * Return: 0 on success else error code + */ +static int kgsl_page_alloc_map_kernel(struct kgsl_memdesc *memdesc) +{ + int ret = 0; + + /* Sanity check - don't map more than we could possibly chew */ + if (memdesc->size > ULONG_MAX) + return -ENOMEM; + + mutex_lock(&kernel_map_global_lock); + if (!memdesc->hostptr) { + pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL); + struct page **pages = NULL; + struct scatterlist *sg; + int npages = PAGE_ALIGN(memdesc->size) >> PAGE_SHIFT; + int sglen = memdesc->sgt->nents; + int i, count = 0; + + /* create a list of pages to call vmap */ + pages = kgsl_malloc(npages * sizeof(struct page *)); + if (pages == NULL) { + ret = -ENOMEM; + goto done; + } + + for_each_sg(memdesc->sgt->sgl, sg, sglen, i) { + struct page *page = sg_page(sg); + int j; + + for (j = 0; j < sg->length >> PAGE_SHIFT; j++) + pages[count++] = page++; + } + + + memdesc->hostptr = vmap(pages, count, + VM_IOREMAP, page_prot); + if (memdesc->hostptr) + KGSL_STATS_ADD(memdesc->size, + &kgsl_driver.stats.vmalloc, + &kgsl_driver.stats.vmalloc_max); + else + ret = -ENOMEM; + kgsl_free(pages); + } + if (memdesc->hostptr) + memdesc->hostptr_count++; +done: + mutex_unlock(&kernel_map_global_lock); + + return ret; +} + +static int kgsl_contiguous_vmfault(struct kgsl_memdesc *memdesc, + struct vm_area_struct *vma, + struct vm_fault *vmf) +{ + unsigned long offset, pfn; + int ret; + + offset = ((unsigned long) vmf->virtual_address - vma->vm_start) >> + PAGE_SHIFT; + + pfn = (memdesc->physaddr >> PAGE_SHIFT) + offset; + ret = vm_insert_pfn(vma, (unsigned long) vmf->virtual_address, pfn); + + if (ret == -ENOMEM || ret == -EAGAIN) + return VM_FAULT_OOM; + else if (ret == -EFAULT) + return VM_FAULT_SIGBUS; + + return VM_FAULT_NOPAGE; +} + +static void kgsl_cma_coherent_free(struct kgsl_memdesc *memdesc) +{ + struct dma_attrs *attrs = NULL; + + if (memdesc->hostptr) { + if (memdesc->priv & KGSL_MEMDESC_SECURE) { + atomic_long_sub(memdesc->size, + &kgsl_driver.stats.secure); + + kgsl_cma_unlock_secure(memdesc); + attrs = &memdesc->attrs; + } else + atomic_long_sub(memdesc->size, + &kgsl_driver.stats.coherent); + + dma_free_attrs(memdesc->dev, (size_t) memdesc->size, + memdesc->hostptr, memdesc->physaddr, attrs); + } +} + +/* Global */ +static struct kgsl_memdesc_ops kgsl_page_alloc_ops = { + .free = kgsl_page_alloc_free, + .vmflags = VM_DONTDUMP | VM_DONTEXPAND | VM_DONTCOPY, + .vmfault = kgsl_page_alloc_vmfault, + .map_kernel = kgsl_page_alloc_map_kernel, + .unmap_kernel = kgsl_page_alloc_unmap_kernel, +}; + +/* CMA ops - used during NOMMU mode */ +static struct kgsl_memdesc_ops kgsl_cma_ops = { + .free = kgsl_cma_coherent_free, + .vmflags = VM_DONTDUMP | VM_PFNMAP | VM_DONTEXPAND | VM_DONTCOPY, + .vmfault = kgsl_contiguous_vmfault, +}; + +#ifdef CONFIG_ARM64 +/* + * For security reasons, ARMv8 doesn't allow invalidate only on read-only + * mapping. It would be performance prohibitive to read the permissions on + * the buffer before the operation. Every use case that we have found does not + * assume that an invalidate operation is invalidate only, so we feel + * comfortable turning invalidates into flushes for these targets + */ +static inline unsigned int _fixup_cache_range_op(unsigned int op) +{ + if (op == KGSL_CACHE_OP_INV) + return KGSL_CACHE_OP_FLUSH; + return op; +} +#else +static inline unsigned int _fixup_cache_range_op(unsigned int op) +{ + return op; +} +#endif + +int kgsl_cache_range_op(struct kgsl_memdesc *memdesc, uint64_t offset, + uint64_t size, unsigned int op) +{ + /* + * If the buffer is mapped in the kernel operate on that address + * otherwise use the user address + */ + + void *addr = (memdesc->hostptr) ? + memdesc->hostptr : (void *) memdesc->useraddr; + + /* Make sure that size is non-zero */ + if (!size) + return -EINVAL; + + /* Make sure that the offset + size isn't bigger than we can handle */ + if ((offset + size) > ULONG_MAX) + return -ERANGE; + + /* Make sure the offset + size do not overflow the address */ + if (addr + ((size_t) offset + (size_t) size) < addr) + return -ERANGE; + + /* Check that offset+length does not exceed memdesc->size */ + if (offset + size > memdesc->size) + return -ERANGE; + + /* Return quietly if the buffer isn't mapped on the CPU */ + if (addr == NULL) + return 0; + + addr = addr + offset; + + /* + * The dmac_xxx_range functions handle addresses and sizes that + * are not aligned to the cacheline size correctly. + */ + + switch (_fixup_cache_range_op(op)) { + case KGSL_CACHE_OP_FLUSH: + dmac_flush_range(addr, addr + (size_t) size); + break; + case KGSL_CACHE_OP_CLEAN: + dmac_clean_range(addr, addr + (size_t) size); + break; + case KGSL_CACHE_OP_INV: + dmac_inv_range(addr, addr + (size_t) size); + break; + } + + return 0; +} +EXPORT_SYMBOL(kgsl_cache_range_op); + +#ifndef CONFIG_ALLOC_BUFFERS_IN_4K_CHUNKS +static inline int get_page_size(size_t size, unsigned int align) +{ + return (align >= ilog2(SZ_64K) && size >= SZ_64K) + ? SZ_64K : PAGE_SIZE; +} +#else +static inline int get_page_size(size_t size, unsigned int align) +{ + return PAGE_SIZE; +} +#endif + +static int +_kgsl_sharedmem_page_alloc(struct kgsl_memdesc *memdesc, + struct kgsl_pagetable *pagetable, + uint64_t size) +{ + int ret = 0; + unsigned int j, pcount = 0, page_size, len_alloc; + size_t len; + struct page **pages = NULL; + pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL); + void *ptr; + unsigned int align; + unsigned int step = ((VMALLOC_END - VMALLOC_START)/8) >> PAGE_SHIFT; + + align = (memdesc->flags & KGSL_MEMALIGN_MASK) >> KGSL_MEMALIGN_SHIFT; + + page_size = get_page_size(size, align); + + /* + * The alignment cannot be less than the intended page size - it can be + * larger however to accomodate hardware quirks + */ + + if (align < ilog2(page_size)) + kgsl_memdesc_set_align(memdesc, ilog2(page_size)); + + if (size > SIZE_MAX) + return -EINVAL; + + /* + * There needs to be enough room in the page array to be able to + * service the allocation entirely with PAGE_SIZE sized chunks + */ + + len_alloc = PAGE_ALIGN(size) >> PAGE_SHIFT; + + memdesc->pagetable = pagetable; + memdesc->ops = &kgsl_page_alloc_ops; + + memdesc->sgt = kmalloc(sizeof(struct sg_table), GFP_KERNEL); + if (memdesc->sgt == NULL) + return -ENOMEM; + + /* + * Allocate space to store the list of pages to send to vmap. This is an + * array of pointers so we can track 1024 pages per page of allocation + */ + + pages = kgsl_malloc(len_alloc * sizeof(struct page *)); + + if (pages == NULL) { + ret = -ENOMEM; + goto done; + } + + len = size; + + while (len > 0) { + struct page *page; + gfp_t gfp_mask = __GFP_HIGHMEM; + int j; + + /* don't waste space at the end of the allocation*/ + if (len < page_size) + page_size = PAGE_SIZE; + + /* + * Don't do some of the more aggressive memory recovery + * techniques for large order allocations + */ + if (page_size != PAGE_SIZE) + gfp_mask |= __GFP_COMP | __GFP_NORETRY | + __GFP_NO_KSWAPD | __GFP_NOWARN; + else + gfp_mask |= GFP_KERNEL; + + if (sharedmem_noretry_flag == true) + gfp_mask |= __GFP_NORETRY | __GFP_NOWARN; + + page = alloc_pages(gfp_mask, get_order(page_size)); + + if (page == NULL) { + if (page_size != PAGE_SIZE) { + page_size = PAGE_SIZE; + continue; + } + + /* + * Update sglen and memdesc size,as requested allocation + * not served fully. So that they can be correctly freed + * in kgsl_sharedmem_free(). + */ + memdesc->size = (size - len); + + if (sharedmem_noretry_flag != true) + KGSL_CORE_ERR( + "Out of memory: only allocated %lldKB of %lldKB requested\n", + (size - len) >> 10, size >> 10); + + ret = -ENOMEM; + goto done; + } + + for (j = 0; j < page_size >> PAGE_SHIFT; j++) + pages[pcount++] = nth_page(page, j); + + len -= page_size; + memdesc->size += page_size; + } + + ret = sg_alloc_table_from_pages(memdesc->sgt, pages, pcount, 0, + memdesc->size, GFP_KERNEL); + if (ret) + goto done; + + /* Call to the hypervisor to lock any secure buffer allocations */ + if (memdesc->flags & KGSL_MEMFLAGS_SECURE) { + unsigned int i; + struct scatterlist *sg; + int dest_perms = PERM_READ | PERM_WRITE; + int source_vm = VMID_HLOS; + int dest_vm = VMID_CP_PIXEL; + + ret = hyp_assign_table(memdesc->sgt, &source_vm, 1, + &dest_vm, &dest_perms, 1); + if (ret) + goto done; + + /* Set private bit for each sg to indicate that its secured */ + for_each_sg(memdesc->sgt->sgl, sg, memdesc->sgt->nents, i) + SetPagePrivate(sg_page(sg)); + + memdesc->priv |= KGSL_MEMDESC_TZ_LOCKED; + + /* Record statistics */ + KGSL_STATS_ADD(memdesc->size, &kgsl_driver.stats.secure, + &kgsl_driver.stats.secure_max); + + /* Don't map and zero the locked secure buffer */ + goto done; + } + + /* + * All memory that goes to the user has to be zeroed out before it gets + * exposed to userspace. This means that the memory has to be mapped in + * the kernel, zeroed (memset) and then unmapped. This also means that + * the dcache has to be flushed to ensure coherency between the kernel + * and user pages. We used to pass __GFP_ZERO to alloc_page which mapped + * zeroed and unmaped each individual page, and then we had to turn + * around and call flush_dcache_page() on that page to clear the caches. + * This was killing us for performance. Instead, we found it is much + * faster to allocate the pages without GFP_ZERO, map a chunk of the + * range ('step' pages), memset it, flush it and then unmap + * - this results in a factor of 4 improvement for speed for large + * buffers. There is a small decrease in speed for small buffers, + * but only on the order of a few microseconds at best. The 'step' + * size is based on a guess at the amount of free vmalloc space, but + * will scale down if there's not enough free space. + */ + for (j = 0; j < pcount; j += step) { + step = min(step, pcount - j); + + ptr = vmap(&pages[j], step, VM_IOREMAP, page_prot); + + if (ptr != NULL) { + memset(ptr, 0, step * PAGE_SIZE); + dmac_flush_range(ptr, ptr + step * PAGE_SIZE); + vunmap(ptr); + } else { + int k; + /* Very, very, very slow path */ + + for (k = j; k < j + step; k++) { + ptr = kmap_atomic(pages[k]); + memset(ptr, 0, PAGE_SIZE); + dmac_flush_range(ptr, ptr + PAGE_SIZE); + kunmap_atomic(ptr); + } + /* scale down the step size to avoid this path */ + if (step > 1) + step >>= 1; + } + } + + KGSL_STATS_ADD(memdesc->size, &kgsl_driver.stats.page_alloc, + &kgsl_driver.stats.page_alloc_max); + +done: + if (ret) { + unsigned int count = 1; + for (j = 0; j < pcount; j += count) { + count = 1 << compound_order(pages[j]); + __free_pages(pages[j], compound_order(pages[j])); + } + + kfree(memdesc->sgt); + memset(memdesc, 0, sizeof(*memdesc)); + } + kgsl_free(pages); + + return ret; +} + +int +kgsl_sharedmem_page_alloc_user(struct kgsl_memdesc *memdesc, + struct kgsl_pagetable *pagetable, + uint64_t size) +{ + size = PAGE_ALIGN(size); + if (size == 0) + return -EINVAL; + + return _kgsl_sharedmem_page_alloc(memdesc, pagetable, size); +} +EXPORT_SYMBOL(kgsl_sharedmem_page_alloc_user); + +void kgsl_sharedmem_free(struct kgsl_memdesc *memdesc) +{ + if (memdesc == NULL || memdesc->size == 0) + return; + + if (memdesc->gpuaddr) { + kgsl_mmu_unmap(memdesc->pagetable, memdesc); + kgsl_mmu_put_gpuaddr(memdesc->pagetable, memdesc); + } + + if (memdesc->ops && memdesc->ops->free) + memdesc->ops->free(memdesc); + + if (memdesc->sgt) { + sg_free_table(memdesc->sgt); + kfree(memdesc->sgt); + } + + memset(memdesc, 0, sizeof(*memdesc)); +} +EXPORT_SYMBOL(kgsl_sharedmem_free); + +int +kgsl_sharedmem_readl(const struct kgsl_memdesc *memdesc, + uint32_t *dst, + uint64_t offsetbytes) +{ + uint32_t *src; + BUG_ON(memdesc == NULL || memdesc->hostptr == NULL || dst == NULL); + WARN_ON(offsetbytes % sizeof(uint32_t) != 0); + if (offsetbytes % sizeof(uint32_t) != 0) + return -EINVAL; + + WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size); + if (offsetbytes + sizeof(uint32_t) > memdesc->size) + return -ERANGE; + + rmb(); + src = (uint32_t *)(memdesc->hostptr + offsetbytes); + *dst = *src; + return 0; +} +EXPORT_SYMBOL(kgsl_sharedmem_readl); + +int +kgsl_sharedmem_writel(struct kgsl_device *device, + const struct kgsl_memdesc *memdesc, + uint64_t offsetbytes, + uint32_t src) +{ + uint32_t *dst; + BUG_ON(memdesc == NULL || memdesc->hostptr == NULL); + WARN_ON(offsetbytes % sizeof(uint32_t) != 0); + if (offsetbytes % sizeof(uint32_t) != 0) + return -EINVAL; + + WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size); + if (offsetbytes + sizeof(uint32_t) > memdesc->size) + return -ERANGE; + kgsl_cffdump_write(device, + memdesc->gpuaddr + offsetbytes, + src); + dst = (uint32_t *)(memdesc->hostptr + offsetbytes); + *dst = src; + + wmb(); + + return 0; +} +EXPORT_SYMBOL(kgsl_sharedmem_writel); + +int +kgsl_sharedmem_readq(const struct kgsl_memdesc *memdesc, + uint64_t *dst, + uint64_t offsetbytes) +{ + uint64_t *src; + BUG_ON(memdesc == NULL || memdesc->hostptr == NULL || dst == NULL); + WARN_ON(offsetbytes % sizeof(uint32_t) != 0); + if (offsetbytes % sizeof(uint32_t) != 0) + return -EINVAL; + + WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size); + if (offsetbytes + sizeof(uint32_t) > memdesc->size) + return -ERANGE; + + /* + * We are reading shared memory between CPU and GPU. + * Make sure reads before this are complete + */ + rmb(); + src = (uint64_t *)(memdesc->hostptr + offsetbytes); + *dst = *src; + return 0; +} +EXPORT_SYMBOL(kgsl_sharedmem_readq); + +int +kgsl_sharedmem_writeq(struct kgsl_device *device, + const struct kgsl_memdesc *memdesc, + uint64_t offsetbytes, + uint64_t src) +{ + uint64_t *dst; + BUG_ON(memdesc == NULL || memdesc->hostptr == NULL); + WARN_ON(offsetbytes % sizeof(uint32_t) != 0); + if (offsetbytes % sizeof(uint32_t) != 0) + return -EINVAL; + + WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size); + if (offsetbytes + sizeof(uint32_t) > memdesc->size) + return -ERANGE; + kgsl_cffdump_write(device, + lower_32_bits(memdesc->gpuaddr + offsetbytes), src); + kgsl_cffdump_write(device, + upper_32_bits(memdesc->gpuaddr + offsetbytes), src); + dst = (uint64_t *)(memdesc->hostptr + offsetbytes); + *dst = src; + + /* + * We are writing to shared memory between CPU and GPU. + * Make sure write above is posted immediately + */ + wmb(); + + return 0; +} +EXPORT_SYMBOL(kgsl_sharedmem_writeq); + +int +kgsl_sharedmem_set(struct kgsl_device *device, + const struct kgsl_memdesc *memdesc, uint64_t offsetbytes, + unsigned int value, uint64_t sizebytes) +{ + BUG_ON(memdesc == NULL || memdesc->hostptr == NULL); + BUG_ON(offsetbytes + sizebytes > memdesc->size); + + kgsl_cffdump_memset(device, + memdesc->gpuaddr + offsetbytes, value, + sizebytes); + memset(memdesc->hostptr + offsetbytes, value, sizebytes); + return 0; +} +EXPORT_SYMBOL(kgsl_sharedmem_set); + +static const char * const memtype_str[] = { + [KGSL_MEMTYPE_OBJECTANY] = "any(0)", + [KGSL_MEMTYPE_FRAMEBUFFER] = "framebuffer", + [KGSL_MEMTYPE_RENDERBUFFER] = "renderbuffer", + [KGSL_MEMTYPE_ARRAYBUFFER] = "arraybuffer", + [KGSL_MEMTYPE_ELEMENTARRAYBUFFER] = "elementarraybuffer", + [KGSL_MEMTYPE_VERTEXARRAYBUFFER] = "vertexarraybuffer", + [KGSL_MEMTYPE_TEXTURE] = "texture", + [KGSL_MEMTYPE_SURFACE] = "surface", + [KGSL_MEMTYPE_EGL_SURFACE] = "egl_surface", + [KGSL_MEMTYPE_GL] = "gl", + [KGSL_MEMTYPE_CL] = "cl", + [KGSL_MEMTYPE_CL_BUFFER_MAP] = "cl_buffer_map", + [KGSL_MEMTYPE_CL_BUFFER_NOMAP] = "cl_buffer_nomap", + [KGSL_MEMTYPE_CL_IMAGE_MAP] = "cl_image_map", + [KGSL_MEMTYPE_CL_IMAGE_NOMAP] = "cl_image_nomap", + [KGSL_MEMTYPE_CL_KERNEL_STACK] = "cl_kernel_stack", + [KGSL_MEMTYPE_COMMAND] = "command", + [KGSL_MEMTYPE_2D] = "2d", + [KGSL_MEMTYPE_EGL_IMAGE] = "egl_image", + [KGSL_MEMTYPE_EGL_SHADOW] = "egl_shadow", + [KGSL_MEMTYPE_MULTISAMPLE] = "egl_multisample", + /* KGSL_MEMTYPE_KERNEL handled below, to avoid huge array */ +}; + +void kgsl_get_memory_usage(char *name, size_t name_size, uint64_t memflags) +{ + unsigned int type = MEMFLAGS(memflags, KGSL_MEMTYPE_MASK, + KGSL_MEMTYPE_SHIFT); + + if (type == KGSL_MEMTYPE_KERNEL) + strlcpy(name, "kernel", name_size); + else if (type < ARRAY_SIZE(memtype_str) && memtype_str[type] != NULL) + strlcpy(name, memtype_str[type], name_size); + else + snprintf(name, name_size, "unknown(%3d)", type); +} +EXPORT_SYMBOL(kgsl_get_memory_usage); + +int kgsl_cma_alloc_coherent(struct kgsl_device *device, + struct kgsl_memdesc *memdesc, + struct kgsl_pagetable *pagetable, uint64_t size) +{ + int result = 0; + + size = ALIGN(size, PAGE_SIZE); + + if (size == 0 || size > SIZE_MAX) + return -EINVAL; + + memdesc->size = size; + memdesc->pagetable = pagetable; + memdesc->ops = &kgsl_cma_ops; + memdesc->dev = device->dev->parent; + + memdesc->hostptr = dma_alloc_attrs(memdesc->dev, (size_t) size, + &memdesc->physaddr, GFP_KERNEL, NULL); + + if (memdesc->hostptr == NULL) { + result = -ENOMEM; + goto err; + } + + result = memdesc_sg_dma(memdesc, memdesc->physaddr, size); + if (result) + goto err; + + /* Record statistics */ + + KGSL_STATS_ADD(size, &kgsl_driver.stats.coherent, + &kgsl_driver.stats.coherent_max); + +err: + if (result) + kgsl_sharedmem_free(memdesc); + + return result; +} +EXPORT_SYMBOL(kgsl_cma_alloc_coherent); + +static int scm_lock_chunk(struct kgsl_memdesc *memdesc, int lock) +{ + struct cp2_lock_req request; + unsigned int resp; + unsigned int *chunk_list; + struct scm_desc desc = {0}; + int result; + + /* + * Flush the virt addr range before sending the memory to the + * secure environment to ensure the data is actually present + * in RAM + * + * Chunk_list holds the physical address of secure memory. + * Pass in the virtual address of chunk_list to flush. + * Chunk_list size is 1 because secure memory is physically + * contiguous. + */ + chunk_list = kzalloc(sizeof(unsigned int), GFP_KERNEL); + if (!chunk_list) + return -ENOMEM; + + chunk_list[0] = memdesc->physaddr; + dmac_flush_range((void *)chunk_list, (void *)chunk_list + 1); + + request.chunks.chunk_list = virt_to_phys(chunk_list); + /* + * virt_to_phys(chunk_list) may be an address > 4GB. It is guaranteed + * that when using scm_call (the older interface), the phys addresses + * will be restricted to below 4GB. + */ + desc.args[0] = virt_to_phys(chunk_list); + desc.args[1] = request.chunks.chunk_list_size = 1; + desc.args[2] = request.chunks.chunk_size = (unsigned int) memdesc->size; + desc.args[3] = request.mem_usage = 0; + desc.args[4] = request.lock = lock; + desc.args[5] = 0; + desc.arginfo = SCM_ARGS(6, SCM_RW, SCM_VAL, SCM_VAL, SCM_VAL, SCM_VAL, + SCM_VAL); + kmap_flush_unused(); + kmap_atomic_flush_unused(); + if (!is_scm_armv8()) { + result = scm_call(SCM_SVC_MP, MEM_PROTECT_LOCK_ID2, + &request, sizeof(request), &resp, sizeof(resp)); + } else { + result = scm_call2(SCM_SIP_FNID(SCM_SVC_MP, + MEM_PROTECT_LOCK_ID2_FLAT), &desc); + resp = desc.ret[0]; + } + + kfree(chunk_list); + return result; +} + +int kgsl_cma_alloc_secure(struct kgsl_device *device, + struct kgsl_memdesc *memdesc, uint64_t size) +{ + struct kgsl_iommu *iommu = device->mmu.priv; + int result = 0; + struct kgsl_pagetable *pagetable = device->mmu.securepagetable; + size_t aligned; + + if (size == 0) + return -EINVAL; + + /* Align size to 1M boundaries */ + aligned = ALIGN(size, SZ_1M); + + /* The SCM call uses an unsigned int for the size */ + if (aligned > UINT_MAX) + return -EINVAL; + + /* + * If there is more than a page gap between the requested size and the + * aligned size we don't need to add more memory for a guard page. Yay! + */ + + if (memdesc->priv & KGSL_MEMDESC_GUARD_PAGE) + if (aligned - size >= SZ_4K) + memdesc->priv &= ~KGSL_MEMDESC_GUARD_PAGE; + + memdesc->size = aligned; + memdesc->pagetable = pagetable; + memdesc->ops = &kgsl_cma_ops; + memdesc->dev = iommu->ctx[KGSL_IOMMU_CONTEXT_SECURE].dev; + + init_dma_attrs(&memdesc->attrs); + dma_set_attr(DMA_ATTR_STRONGLY_ORDERED, &memdesc->attrs); + + memdesc->hostptr = dma_alloc_attrs(memdesc->dev, aligned, + &memdesc->physaddr, GFP_KERNEL, &memdesc->attrs); + + if (memdesc->hostptr == NULL) { + result = -ENOMEM; + goto err; + } + + result = memdesc_sg_dma(memdesc, memdesc->physaddr, aligned); + if (result) + goto err; + + result = scm_lock_chunk(memdesc, 1); + + if (result != 0) + goto err; + + /* Set the private bit to indicate that we've secured this */ + SetPagePrivate(sg_page(memdesc->sgt->sgl)); + + memdesc->priv |= KGSL_MEMDESC_TZ_LOCKED; + + /* Record statistics */ + KGSL_STATS_ADD(aligned, &kgsl_driver.stats.secure, + &kgsl_driver.stats.secure_max); +err: + if (result) + kgsl_sharedmem_free(memdesc); + + return result; +} +EXPORT_SYMBOL(kgsl_cma_alloc_secure); + +/** + * kgsl_cma_unlock_secure() - Unlock secure memory by calling TZ + * @memdesc: memory descriptor + */ +static void kgsl_cma_unlock_secure(struct kgsl_memdesc *memdesc) +{ + if (memdesc->size == 0 || !(memdesc->priv & KGSL_MEMDESC_TZ_LOCKED)) + return; + + if (!scm_lock_chunk(memdesc, 0)) + ClearPagePrivate(sg_page(memdesc->sgt->sgl)); +} + +void kgsl_sharedmem_set_noretry(bool val) +{ + sharedmem_noretry_flag = val; +} + +bool kgsl_sharedmem_get_noretry(void) +{ + return sharedmem_noretry_flag; +} |
