aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/lib/tinyusb/src/portable/synopsys/dwc2/dcd_dwc2.c
blob: c71f38d2da80f5c467758a2ee244677d4300d58d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2019 William D. Jones
 * Copyright (c) 2019 Ha Thach (tinyusb.org)
 * Copyright (c) 2020 Jan Duempelmann
 * Copyright (c) 2020 Reinhard Panhuber
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 * This file is part of the TinyUSB stack.
 */

#include "tusb_option.h"

#if CFG_TUD_ENABLED && defined(TUP_USBIP_DWC2)

#include "device/dcd.h"
#include "dwc2_type.h"

#if defined(TUP_USBIP_DWC2_STM32)
  #include "dwc2_stm32.h"
#elif TU_CHECK_MCU(OPT_MCU_ESP32S2, OPT_MCU_ESP32S3)
  #include "dwc2_esp32.h"
#elif TU_CHECK_MCU(OPT_MCU_GD32VF103)
  #include "dwc2_gd32.h"
#elif TU_CHECK_MCU(OPT_MCU_BCM2711, OPT_MCU_BCM2835, OPT_MCU_BCM2837)
  #include "dwc2_bcm.h"
#elif TU_CHECK_MCU(OPT_MCU_EFM32GG)
  #include "dwc2_efm32.h"
#elif TU_CHECK_MCU(OPT_MCU_XMC4000)
  #include "dwc2_xmc.h"
#else
  #error "Unsupported MCUs"
#endif

//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+

// DWC2 registers
#define DWC2_REG(_port)       ((dwc2_regs_t*) DWC2_REG_BASE)

// Debug level for DWC2
#define DWC2_DEBUG    2

#ifndef dcache_clean
#define dcache_clean(_addr, _size)
#endif

#ifndef dcache_invalidate
#define dcache_invalidate(_addr, _size)
#endif

#ifndef dcache_clean_invalidate
#define dcache_clean_invalidate(_addr, _size)
#endif


static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[2];

typedef struct {
  uint8_t * buffer;
  tu_fifo_t * ff;
  uint16_t total_len;
  uint16_t max_size;
  uint8_t interval;
} xfer_ctl_t;

static xfer_ctl_t xfer_status[DWC2_EP_MAX][2];
#define XFER_CTL_BASE(_ep, _dir) (&xfer_status[_ep][_dir])

// EP0 transfers are limited to 1 packet - larger sizes has to be split
static uint16_t ep0_pending[2];                   // Index determines direction as tusb_dir_t type

// TX FIFO RAM allocation so far in words - RX FIFO size is readily available from dwc2->grxfsiz
static uint16_t _allocated_fifo_words_tx;         // TX FIFO size in words (IN EPs)
static bool     _out_ep_closed;                   // Flag to check if RX FIFO size needs an update (reduce its size)

// Calculate the RX FIFO size according to recommendations from reference manual
static inline uint16_t calc_rx_ff_size(uint16_t ep_size)
{
  return 15 + 2*(ep_size/4) + 2*DWC2_EP_MAX;
}

static void update_grxfsiz(uint8_t rhport)
{
  (void) rhport;

  dwc2_regs_t * dwc2 = DWC2_REG(rhport);

  // Determine largest EP size for RX FIFO
  uint16_t max_epsize = 0;
  for (uint8_t epnum = 0; epnum < DWC2_EP_MAX; epnum++)
  {
    max_epsize = tu_max16(max_epsize, xfer_status[epnum][TUSB_DIR_OUT].max_size);
  }

  // Update size of RX FIFO
  dwc2->grxfsiz = calc_rx_ff_size(max_epsize);
}

// Setup the control endpoint 0.
static void bus_reset(uint8_t rhport)
{
  (void) rhport;

  dwc2_regs_t * dwc2 = DWC2_REG(rhport);

  tu_memclr(xfer_status, sizeof(xfer_status));
  _out_ep_closed = false;

  // clear device address
  dwc2->dcfg &= ~DCFG_DAD_Msk;

  // 1. NAK for all OUT endpoints
  for ( uint8_t n = 0; n < DWC2_EP_MAX; n++ )
  {
    dwc2->epout[n].doepctl |= DOEPCTL_SNAK;
  }

  // 2. Set up interrupt mask
  dwc2->daintmsk = TU_BIT(DAINTMSK_OEPM_Pos) | TU_BIT(DAINTMSK_IEPM_Pos);
  dwc2->doepmsk  = DOEPMSK_STUPM | DOEPMSK_XFRCM;
  dwc2->diepmsk  = DIEPMSK_TOM   | DIEPMSK_XFRCM;

  // "USB Data FIFOs" section in reference manual
  // Peripheral FIFO architecture
  //
  // The FIFO is split up in a lower part where the RX FIFO is located and an upper part where the TX FIFOs start.
  // We do this to allow the RX FIFO to grow dynamically which is possible since the free space is located
  // between the RX and TX FIFOs. This is required by ISO OUT EPs which need a bigger FIFO than the standard
  // configuration done below.
  //
  // Dynamically FIFO sizes are of interest only for ISO EPs since all others are usually not opened and closed.
  // All EPs other than ISO are opened as soon as the driver starts up i.e. when the host sends a
  // configure interface command. Hence, all IN EPs other the ISO will be located at the top. IN ISO EPs are usually
  // opened when the host sends an additional command: setInterface. At this point in time
  // the ISO EP will be located next to the free space and can change its size. In case more IN EPs change its size
  // an additional memory
  //
  // --------------- 320 or 1024 ( 1280 or 4096 bytes )
  // | IN FIFO 0   |
  // --------------- (320 or 1024) - 16
  // | IN FIFO 1   |
  // --------------- (320 or 1024) - 16 - x
  // |   . . . .   |
  // --------------- (320 or 1024) - 16 - x - y - ... - z
  // | IN FIFO MAX |
  // ---------------
  // |    FREE     |
  // --------------- GRXFSIZ
  // | OUT FIFO    |
  // | ( Shared )  |
  // --------------- 0
  //
  // According to "FIFO RAM allocation" section in RM, FIFO RAM are allocated as follows (each word 32-bits):
  // - Each EP IN needs at least max packet size, 16 words is sufficient for EP0 IN
  //
  // - All EP OUT shared a unique OUT FIFO which uses
  //   - 13 for setup packets + control words (up to 3 setup packets).
  //   - 1 for global NAK (not required/used here).
  //   - Largest-EPsize / 4 + 1. ( FS: 64 bytes, HS: 512 bytes). Recommended is  "2 x (Largest-EPsize/4) + 1"
  //   - 2 for each used OUT endpoint
  //
  //   Therefore GRXFSIZ = 13 + 1 + 1 + 2 x (Largest-EPsize/4) + 2 x EPOUTnum
  //   - FullSpeed (64 Bytes ): GRXFSIZ = 15 + 2 x  16 + 2 x DWC2_EP_MAX = 47  + 2 x DWC2_EP_MAX
  //   - Highspeed (512 bytes): GRXFSIZ = 15 + 2 x 128 + 2 x DWC2_EP_MAX = 271 + 2 x DWC2_EP_MAX
  //
  //   NOTE: Largest-EPsize & EPOUTnum is actual used endpoints in configuration. Since DCD has no knowledge
  //   of the overall picture yet. We will use the worst scenario: largest possible + DWC2_EP_MAX
  //
  //   For Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO
  //   are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended.  Maybe provide a macro for application to
  //   overwrite this.

  dwc2->grxfsiz = calc_rx_ff_size(TUD_OPT_HIGH_SPEED ? 512 : 64);

  _allocated_fifo_words_tx = 16;

  // Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word )
  dwc2->dieptxf0 = (16 << DIEPTXF0_TX0FD_Pos) | (DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);

  // Fixed control EP0 size to 64 bytes
  dwc2->epin[0].diepctl &= ~(0x03 << DIEPCTL_MPSIZ_Pos);
  xfer_status[0][TUSB_DIR_OUT].max_size = 64;
  xfer_status[0][TUSB_DIR_IN ].max_size = 64;

  dwc2->epout[0].doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos);

  dwc2->gintmsk |= GINTMSK_OEPINT | GINTMSK_IEPINT;
}

static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t const dir, uint16_t const num_packets, uint16_t total_bytes)
{
  (void) rhport;

  dwc2_regs_t * dwc2 = DWC2_REG(rhport);

  // EP0 is limited to one packet each xfer
  // We use multiple transaction of xfer->max_size length to get a whole transfer done
  if ( epnum == 0 )
  {
    xfer_ctl_t *const xfer = XFER_CTL_BASE(epnum, dir);
    total_bytes = tu_min16(ep0_pending[dir], xfer->max_size);
    ep0_pending[dir] -= total_bytes;
  }

  // IN and OUT endpoint xfers are interrupt-driven, we just schedule them here.
  if ( dir == TUSB_DIR_IN )
  {
    dwc2_epin_t* epin = dwc2->epin;

    // A full IN transfer (multiple packets, possibly) triggers XFRC.
    epin[epnum].dieptsiz = (num_packets << DIEPTSIZ_PKTCNT_Pos) |
                           ((total_bytes << DIEPTSIZ_XFRSIZ_Pos) & DIEPTSIZ_XFRSIZ_Msk);

    epin[epnum].diepctl |= DIEPCTL_EPENA | DIEPCTL_CNAK;

    // For ISO endpoint set correct odd/even bit for next frame.
    if ( (epin[epnum].diepctl & DIEPCTL_EPTYP) == DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1 )
    {
      // Take odd/even bit from frame counter.
      uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
      epin[epnum].diepctl |= (odd_frame_now ? DIEPCTL_SD0PID_SEVNFRM_Msk : DIEPCTL_SODDFRM_Msk);
    }
    // Enable fifo empty interrupt only if there are something to put in the fifo.
    if ( total_bytes != 0 )
    {
      dwc2->diepempmsk |= (1 << epnum);
    }
  }
  else
  {
    dwc2_epout_t* epout = dwc2->epout;

    // A full OUT transfer (multiple packets, possibly) triggers XFRC.
    epout[epnum].doeptsiz &= ~(DOEPTSIZ_PKTCNT_Msk | DOEPTSIZ_XFRSIZ);
    epout[epnum].doeptsiz |= (num_packets << DOEPTSIZ_PKTCNT_Pos) |
                             ((total_bytes << DOEPTSIZ_XFRSIZ_Pos) & DOEPTSIZ_XFRSIZ_Msk);

    epout[epnum].doepctl |= DOEPCTL_EPENA | DOEPCTL_CNAK;
    if ( (epout[epnum].doepctl & DOEPCTL_EPTYP) == DOEPCTL_EPTYP_0 &&
         XFER_CTL_BASE(epnum, dir)->interval == 1 )
    {
      // Take odd/even bit from frame counter.
      uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
      epout[epnum].doepctl |= (odd_frame_now ? DOEPCTL_SD0PID_SEVNFRM_Msk : DOEPCTL_SODDFRM_Msk);
    }
  }
}

/*------------------------------------------------------------------*/
/* Controller API
 *------------------------------------------------------------------*/
#if CFG_TUSB_DEBUG >= DWC2_DEBUG
void print_dwc2_info(dwc2_regs_t * dwc2)
{
  dwc2_ghwcfg2_t const * hw_cfg2 = &dwc2->ghwcfg2_bm;
  dwc2_ghwcfg3_t const * hw_cfg3 = &dwc2->ghwcfg3_bm;
  dwc2_ghwcfg4_t const * hw_cfg4 = &dwc2->ghwcfg4_bm;

//  TU_LOG_HEX(DWC2_DEBUG, dwc2->gotgctl);
//  TU_LOG_HEX(DWC2_DEBUG, dwc2->gusbcfg);
//  TU_LOG_HEX(DWC2_DEBUG, dwc2->dcfg);
  TU_LOG_HEX(DWC2_DEBUG, dwc2->guid);
  TU_LOG_HEX(DWC2_DEBUG, dwc2->gsnpsid);
  TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg1);

  // HW configure 2
  TU_LOG(DWC2_DEBUG, "\r\n");
  TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg2);
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->op_mode                );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->arch                   );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->point2point            );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->hs_phy_type            );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->fs_phy_type            );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->num_dev_ep             );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->num_host_ch            );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->period_channel_support );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->enable_dynamic_fifo    );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->mul_cpu_int            );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->nperiod_tx_q_depth     );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->host_period_tx_q_depth );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->dev_token_q_depth      );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg2->otg_enable_ic_usb      );

  // HW configure 3
  TU_LOG(DWC2_DEBUG, "\r\n");
  TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg3);
  TU_LOG_INT(DWC2_DEBUG, hw_cfg3->xfer_size_width          );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg3->packet_size_width        );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg3->otg_enable               );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg3->i2c_enable               );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg3->vendor_ctrl_itf          );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg3->optional_feature_removed );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg3->synch_reset              );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg3->otg_adp_support          );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg3->otg_enable_hsic          );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg3->battery_charger_support  );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg3->lpm_mode                 );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg3->total_fifo_size          );

  // HW configure 4
  TU_LOG(DWC2_DEBUG, "\r\n");
  TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg4);
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->num_dev_period_in_ep      );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->power_optimized           );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->ahb_freq_min              );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->hibernation               );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->service_interval_mode     );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->ipg_isoc_en               );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->acg_enable                );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->utmi_phy_data_width       );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dev_ctrl_ep_num           );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->iddg_filter_enabled       );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->vbus_valid_filter_enabled );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->a_valid_filter_enabled    );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->b_valid_filter_enabled    );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dedicated_fifos           );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->num_dev_in_eps            );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dma_desc_enable           );
  TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dma_dynamic               );
}
#endif

static void reset_core(dwc2_regs_t * dwc2)
{
  // reset core
  dwc2->grstctl |= GRSTCTL_CSRST;

  // wait for reset bit is cleared
  // TODO version 4.20a should wait for RESET DONE mask
  while (dwc2->grstctl & GRSTCTL_CSRST) { }

  // wait for AHB master IDLE
  while ( !(dwc2->grstctl & GRSTCTL_AHBIDL) ) { }

  // wait for device mode ?
}

static bool phy_hs_supported(dwc2_regs_t * dwc2)
{
  // note: esp32 incorrect report its hs_phy_type as utmi
  return TUD_OPT_HIGH_SPEED && dwc2->ghwcfg2_bm.hs_phy_type != HS_PHY_TYPE_NONE;
}

static void phy_fs_init(dwc2_regs_t * dwc2)
{
  TU_LOG(DWC2_DEBUG, "Fullspeed PHY init\r\n");

  // Select FS PHY
  dwc2->gusbcfg |= GUSBCFG_PHYSEL;

  // MCU specific PHY init before reset
  dwc2_phy_init(dwc2, HS_PHY_TYPE_NONE);

  // Reset core after selecting PHY
  reset_core(dwc2);

  // USB turnaround time is critical for certification where long cables and 5-Hubs are used.
  // So if you need the AHB to run at less than 30 MHz, and if USB turnaround time is not critical,
  // these bits can be programmed to a larger value. Default is 5
  dwc2->gusbcfg = (dwc2->gusbcfg & ~GUSBCFG_TRDT_Msk) | (5u << GUSBCFG_TRDT_Pos);

  // MCU specific PHY update post reset
  dwc2_phy_update(dwc2, HS_PHY_TYPE_NONE);

  // set max speed
  dwc2->dcfg = (dwc2->dcfg & ~DCFG_DSPD_Msk) | (DCFG_DSPD_FS << DCFG_DSPD_Pos);
}

static void phy_hs_init(dwc2_regs_t * dwc2)
{
  uint32_t gusbcfg = dwc2->gusbcfg;

  // De-select FS PHY
  gusbcfg &= ~GUSBCFG_PHYSEL;

  if (dwc2->ghwcfg2_bm.hs_phy_type == HS_PHY_TYPE_ULPI)
  {
    TU_LOG(DWC2_DEBUG, "Highspeed ULPI PHY init\r\n");

    // Select ULPI
    gusbcfg |= GUSBCFG_ULPI_UTMI_SEL;

    // ULPI 8-bit interface, single data rate
    gusbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);

    // default internal VBUS Indicator and Drive
    gusbcfg &= ~(GUSBCFG_ULPIEVBUSD | GUSBCFG_ULPIEVBUSI);

    // Disable FS/LS ULPI
    gusbcfg &= ~(GUSBCFG_ULPIFSLS | GUSBCFG_ULPICSM);
  }else
  {
    TU_LOG(DWC2_DEBUG, "Highspeed UTMI+ PHY init\r\n");

    // Select UTMI+ with 8-bit interface
    gusbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);

    // Set 16-bit interface if supported
    if (dwc2->ghwcfg4_bm.utmi_phy_data_width) gusbcfg |= GUSBCFG_PHYIF16;
  }

  // Apply config
  dwc2->gusbcfg = gusbcfg;

  // mcu specific phy init
  dwc2_phy_init(dwc2, dwc2->ghwcfg2_bm.hs_phy_type);

  // Reset core after selecting PHY
  reset_core(dwc2);

  // Set turn-around, must after core reset otherwise it will be clear
  // - 9 if using 8-bit PHY interface
  // - 5 if using 16-bit PHY interface
  gusbcfg &= ~GUSBCFG_TRDT_Msk;
  gusbcfg |= (dwc2->ghwcfg4_bm.utmi_phy_data_width ? 5u : 9u) << GUSBCFG_TRDT_Pos;
  dwc2->gusbcfg = gusbcfg;

  // MCU specific PHY update post reset
  dwc2_phy_update(dwc2, dwc2->ghwcfg2_bm.hs_phy_type);

  // Set max speed
  uint32_t dcfg = dwc2->dcfg;
  dcfg &= ~DCFG_DSPD_Msk;
  dcfg |= DCFG_DSPD_HS << DCFG_DSPD_Pos;

  // XCVRDLY: transceiver delay between xcvr_sel and txvalid during device chirp is required
  // when using with some PHYs such as USB334x (USB3341, USB3343, USB3346, USB3347)
  if (dwc2->ghwcfg2_bm.hs_phy_type == HS_PHY_TYPE_ULPI) dcfg |= DCFG_XCVRDLY;

  dwc2->dcfg = dcfg;
}

static bool check_dwc2(dwc2_regs_t * dwc2)
{
#if CFG_TUSB_DEBUG >= DWC2_DEBUG
  print_dwc2_info(dwc2);
#endif

  // For some reasons: GD32VF103 snpsid and all hwcfg register are always zero (skip it)
#if !TU_CHECK_MCU(OPT_MCU_GD32VF103)
  uint32_t const gsnpsid = dwc2->gsnpsid & GSNPSID_ID_MASK;
  TU_ASSERT(gsnpsid == DWC2_OTG_ID || gsnpsid == DWC2_FS_IOT_ID || gsnpsid == DWC2_HS_IOT_ID);
#endif

  return true;
}

void dcd_init (uint8_t rhport)
{
  // Programming model begins in the last section of the chapter on the USB
  // peripheral in each Reference Manual.
  dwc2_regs_t * dwc2 = DWC2_REG(rhport);

  // Check Synopsys ID register, failed if controller clock/power is not enabled
  TU_VERIFY(check_dwc2(dwc2), );

  dcd_disconnect(rhport);

  // max number of endpoints & total_fifo_size are:
  // hw_cfg2->num_dev_ep, hw_cfg2->total_fifo_size

  if( phy_hs_supported(dwc2) )
  {
    // Highspeed
    phy_hs_init(dwc2);
  }else
  {
    // core does not support highspeed or hs-phy is not present
    phy_fs_init(dwc2);
  }

  // Restart PHY clock
  dwc2->pcgctl &= ~(PCGCTL_STOPPCLK | PCGCTL_GATEHCLK | PCGCTL_PWRCLMP | PCGCTL_RSTPDWNMODULE);

	/* Set HS/FS Timeout Calibration to 7 (max available value).
	 * The number of PHY clocks that the application programs in
	 * this field is added to the high/full speed interpacket timeout
	 * duration in the core to account for any additional delays
	 * introduced by the PHY. This can be required, because the delay
	 * introduced by the PHY in generating the linestate condition
	 * can vary from one PHY to another.
	 */
  dwc2->gusbcfg |= (7ul << GUSBCFG_TOCAL_Pos);

  // Force device mode
  dwc2->gusbcfg = (dwc2->gusbcfg & ~GUSBCFG_FHMOD) | GUSBCFG_FDMOD;

  // Clear A override, force B Valid
  dwc2->gotgctl = (dwc2->gotgctl & ~GOTGCTL_AVALOEN) | GOTGCTL_BVALOEN | GOTGCTL_BVALOVAL;

  // If USB host misbehaves during status portion of control xfer
  // (non zero-length packet), send STALL back and discard.
  dwc2->dcfg |= DCFG_NZLSOHSK;

  // Clear all interrupts
  dwc2->gintsts |= dwc2->gintsts;
  dwc2->gotgint |= dwc2->gotgint;

  // Required as part of core initialization.
  // TODO: How should mode mismatch be handled? It will cause
  // the core to stop working/require reset.
  dwc2->gintmsk = GINTMSK_OTGINT   | GINTMSK_MMISM  | GINTMSK_RXFLVLM  |
                  GINTMSK_USBSUSPM | GINTMSK_USBRST | GINTMSK_ENUMDNEM | GINTMSK_WUIM;

  // Enable global interrupt
  dwc2->gahbcfg |= GAHBCFG_GINT;

  // make sure we are in device mode
//  TU_ASSERT(!(dwc2->gintsts & GINTSTS_CMOD), );

//  TU_LOG_HEX(DWC2_DEBUG, dwc2->gotgctl);
//  TU_LOG_HEX(DWC2_DEBUG, dwc2->gusbcfg);
//  TU_LOG_HEX(DWC2_DEBUG, dwc2->dcfg);
//  TU_LOG_HEX(DWC2_DEBUG, dwc2->gahbcfg);

  dcd_connect(rhport);
}

void dcd_int_enable (uint8_t rhport)
{
  dwc2_dcd_int_enable(rhport);
}

void dcd_int_disable (uint8_t rhport)
{
  dwc2_dcd_int_disable(rhport);
}

void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
  dwc2_regs_t * dwc2 = DWC2_REG(rhport);
  dwc2->dcfg = (dwc2->dcfg & ~DCFG_DAD_Msk) | (dev_addr << DCFG_DAD_Pos);

  // Response with status after changing device address
  dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
}

void dcd_remote_wakeup(uint8_t rhport)
{
  (void) rhport;

  dwc2_regs_t * dwc2 = DWC2_REG(rhport);

  // set remote wakeup
  dwc2->dctl |= DCTL_RWUSIG;

  // enable SOF to detect bus resume
  dwc2->gintsts = GINTSTS_SOF;
  dwc2->gintmsk |= GINTMSK_SOFM;

  // Per specs: remote wakeup signal bit must be clear within 1-15ms
  dwc2_remote_wakeup_delay();

  dwc2->dctl &= ~DCTL_RWUSIG;
}

void dcd_connect(uint8_t rhport)
{
  (void) rhport;
  dwc2_regs_t * dwc2 = DWC2_REG(rhport);
  dwc2->dctl &= ~DCTL_SDIS;
}

void dcd_disconnect(uint8_t rhport)
{
  (void) rhport;
  dwc2_regs_t * dwc2 = DWC2_REG(rhport);
  dwc2->dctl |= DCTL_SDIS;
}


/*------------------------------------------------------------------*/
/* DCD Endpoint port
 *------------------------------------------------------------------*/

bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
  (void) rhport;

  dwc2_regs_t * dwc2 = DWC2_REG(rhport);

  uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
  uint8_t const dir   = tu_edpt_dir(desc_edpt->bEndpointAddress);

  TU_ASSERT(epnum < DWC2_EP_MAX);

  xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
  xfer->max_size = tu_edpt_packet_size(desc_edpt);
  xfer->interval = desc_edpt->bInterval;

  uint16_t const fifo_size = tu_div_ceil(xfer->max_size, 4);

  if(dir == TUSB_DIR_OUT)
  {
    // Calculate required size of RX FIFO
    uint16_t const sz = calc_rx_ff_size(4*fifo_size);

    // If size_rx needs to be extended check if possible and if so enlarge it
    if (dwc2->grxfsiz < sz)
    {
      TU_ASSERT(sz + _allocated_fifo_words_tx <= DWC2_EP_FIFO_SIZE/4);

      // Enlarge RX FIFO
      dwc2->grxfsiz = sz;
    }

    dwc2->epout[epnum].doepctl |= (1 << DOEPCTL_USBAEP_Pos) |
                                  (desc_edpt->bmAttributes.xfer << DOEPCTL_EPTYP_Pos) |
                                  (desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? DOEPCTL_SD0PID_SEVNFRM : 0) |
                                  (xfer->max_size << DOEPCTL_MPSIZ_Pos);

    dwc2->daintmsk |= TU_BIT(DAINTMSK_OEPM_Pos + epnum);
  }
  else
  {
    // "USB Data FIFOs" section in reference manual
    // Peripheral FIFO architecture
    //
    // --------------- 320 or 1024 ( 1280 or 4096 bytes )
    // | IN FIFO 0   |
    // --------------- (320 or 1024) - 16
    // | IN FIFO 1   |
    // --------------- (320 or 1024) - 16 - x
    // |   . . . .   |
    // --------------- (320 or 1024) - 16 - x - y - ... - z
    // | IN FIFO MAX |
    // ---------------
    // |    FREE     |
    // --------------- GRXFSIZ
    // | OUT FIFO    |
    // | ( Shared )  |
    // --------------- 0
    //
    // In FIFO is allocated by following rules:
    // - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".

    // Check if free space is available
    TU_ASSERT(_allocated_fifo_words_tx + fifo_size + dwc2->grxfsiz <= DWC2_EP_FIFO_SIZE/4);

    _allocated_fifo_words_tx += fifo_size;

    TU_LOG(DWC2_DEBUG, "    Allocated %u bytes at offset %u", fifo_size*4, DWC2_EP_FIFO_SIZE-_allocated_fifo_words_tx*4);

    // DIEPTXF starts at FIFO #1.
    // Both TXFD and TXSA are in unit of 32-bit words.
    dwc2->dieptxf[epnum - 1] = (fifo_size << DIEPTXF_INEPTXFD_Pos) | (DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);

    dwc2->epin[epnum].diepctl |= (1 << DIEPCTL_USBAEP_Pos) |
                                 (epnum << DIEPCTL_TXFNUM_Pos) |
                                 (desc_edpt->bmAttributes.xfer << DIEPCTL_EPTYP_Pos) |
                                 (desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? DIEPCTL_SD0PID_SEVNFRM : 0) |
                                 (xfer->max_size << DIEPCTL_MPSIZ_Pos);

    dwc2->daintmsk |= (1 << (DAINTMSK_IEPM_Pos + epnum));
  }

  return true;
}

// Close all non-control endpoints, cancel all pending transfers if any.
void dcd_edpt_close_all (uint8_t rhport)
{
  (void) rhport;

  dwc2_regs_t * dwc2 = DWC2_REG(rhport);

  // Disable non-control interrupt
  dwc2->daintmsk = (1 << DAINTMSK_OEPM_Pos) | (1 << DAINTMSK_IEPM_Pos);

  for(uint8_t n = 1; n < DWC2_EP_MAX; n++)
  {
    // disable OUT endpoint
    dwc2->epout[n].doepctl = 0;
    xfer_status[n][TUSB_DIR_OUT].max_size = 0;

    // disable IN endpoint
    dwc2->epin[n].diepctl = 0;
    xfer_status[n][TUSB_DIR_IN].max_size = 0;
  }

  // reset allocated fifo IN
  _allocated_fifo_words_tx = 16;
}

bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);

  xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
  xfer->buffer      = buffer;
  xfer->ff          = NULL;
  xfer->total_len   = total_bytes;

  // EP0 can only handle one packet
  if(epnum == 0)
  {
    ep0_pending[dir] = total_bytes;

    // Schedule the first transaction for EP0 transfer
    edpt_schedule_packets(rhport, epnum, dir, 1, ep0_pending[dir]);
  }
  else
  {
    uint16_t num_packets = (total_bytes / xfer->max_size);
    uint16_t const short_packet_size = total_bytes % xfer->max_size;

    // Zero-size packet is special case.
    if ( (short_packet_size > 0) || (total_bytes == 0) ) num_packets++;

    // Schedule packets to be sent within interrupt
    edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);
  }

  return true;
}

// The number of bytes has to be given explicitly to allow more flexible control of how many
// bytes should be written and second to keep the return value free to give back a boolean
// success message. If total_bytes is too big, the FIFO will copy only what is available
// into the USB buffer!
bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
  // USB buffers always work in bytes so to avoid unnecessary divisions we demand item_size = 1
  TU_ASSERT(ff->item_size == 1);

  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);

  xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
  xfer->buffer      = NULL;
  xfer->ff          = ff;
  xfer->total_len   = total_bytes;

  uint16_t num_packets = (total_bytes / xfer->max_size);
  uint16_t const short_packet_size = total_bytes % xfer->max_size;

  // Zero-size packet is special case.
  if ( short_packet_size > 0 || (total_bytes == 0) ) num_packets++;

  // Schedule packets to be sent within interrupt
  edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);

  return true;
}

static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall)
{
  (void) rhport;

  dwc2_regs_t *dwc2 = DWC2_REG(rhport);

  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);

  if ( dir == TUSB_DIR_IN )
  {
    dwc2_epin_t* epin = dwc2->epin;

    // Only disable currently enabled non-control endpoint
    if ( (epnum == 0) || !(epin[epnum].diepctl & DIEPCTL_EPENA) )
    {
      epin[epnum].diepctl |= DIEPCTL_SNAK | (stall ? DIEPCTL_STALL : 0);
    }
    else
    {
      // Stop transmitting packets and NAK IN xfers.
      epin[epnum].diepctl |= DIEPCTL_SNAK;
      while ( (epin[epnum].diepint & DIEPINT_INEPNE) == 0 ) {}

      // Disable the endpoint.
      epin[epnum].diepctl |= DIEPCTL_EPDIS | (stall ? DIEPCTL_STALL : 0);
      while ( (epin[epnum].diepint & DIEPINT_EPDISD_Msk) == 0 ) {}

      epin[epnum].diepint = DIEPINT_EPDISD;
    }

    // Flush the FIFO, and wait until we have confirmed it cleared.
    dwc2->grstctl |= (epnum << GRSTCTL_TXFNUM_Pos);
    dwc2->grstctl |= GRSTCTL_TXFFLSH;
    while ( (dwc2->grstctl & GRSTCTL_TXFFLSH_Msk) != 0 ) {}
  }
  else
  {
    dwc2_epout_t* epout = dwc2->epout;

    // Only disable currently enabled non-control endpoint
    if ( (epnum == 0) || !(epout[epnum].doepctl & DOEPCTL_EPENA) )
    {
      epout[epnum].doepctl |= stall ? DOEPCTL_STALL : 0;
    }
    else
    {
      // Asserting GONAK is required to STALL an OUT endpoint.
      // Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt
      // anyway, and it can't be cleared by user code. If this while loop never
      // finishes, we have bigger problems than just the stack.
      dwc2->dctl |= DCTL_SGONAK;
      while ( (dwc2->gintsts & GINTSTS_BOUTNAKEFF_Msk) == 0 ) {}

      // Ditto here- disable the endpoint.
      epout[epnum].doepctl |= DOEPCTL_EPDIS | (stall ? DOEPCTL_STALL : 0);
      while ( (epout[epnum].doepint & DOEPINT_EPDISD_Msk) == 0 ) {}

      epout[epnum].doepint = DOEPINT_EPDISD;

      // Allow other OUT endpoints to keep receiving.
      dwc2->dctl |= DCTL_CGONAK;
    }
  }
}

/**
 * Close an endpoint.
 */
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
{
  dwc2_regs_t * dwc2 = DWC2_REG(rhport);

  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);

  dcd_edpt_disable(rhport, ep_addr, false);

  // Update max_size
  xfer_status[epnum][dir].max_size = 0;  // max_size = 0 marks a disabled EP - required for changing FIFO allocation

  if (dir == TUSB_DIR_IN)
  {
    uint16_t const fifo_size = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXFD_Msk) >> DIEPTXF_INEPTXFD_Pos;
    uint16_t const fifo_start = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXSA_Msk) >> DIEPTXF_INEPTXSA_Pos;
    // For now only the last opened endpoint can be closed without fuss.
    TU_ASSERT(fifo_start == DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx,);
    _allocated_fifo_words_tx -= fifo_size;
  }
  else
  {
    _out_ep_closed = true;     // Set flag such that RX FIFO gets reduced in size once RX FIFO is empty
  }
}

void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
  dcd_edpt_disable(rhport, ep_addr, true);
}

void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
  (void) rhport;

  dwc2_regs_t * dwc2 = DWC2_REG(rhport);

  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);

  // Clear stall and reset data toggle
  if ( dir == TUSB_DIR_IN )
  {
    dwc2->epin[epnum].diepctl &= ~DIEPCTL_STALL;
    dwc2->epin[epnum].diepctl |= DIEPCTL_SD0PID_SEVNFRM;
  }
  else
  {
    dwc2->epout[epnum].doepctl &= ~DOEPCTL_STALL;
    dwc2->epout[epnum].doepctl |= DOEPCTL_SD0PID_SEVNFRM;
  }
}

/*------------------------------------------------------------------*/

// Read a single data packet from receive FIFO
static void read_fifo_packet(uint8_t rhport, uint8_t * dst, uint16_t len)
{
  (void) rhport;

  dwc2_regs_t * dwc2 = DWC2_REG(rhport);
  volatile const uint32_t * rx_fifo = dwc2->fifo[0];

  // Reading full available 32 bit words from fifo
  uint16_t full_words = len >> 2;
  while(full_words--)
  {
    tu_unaligned_write32(dst, *rx_fifo);
    dst += 4;
  }

  // Read the remaining 1-3 bytes from fifo
  uint8_t const bytes_rem = len & 0x03;
  if ( bytes_rem != 0 )
  {
    uint32_t const tmp = *rx_fifo;
    dst[0] = tu_u32_byte0(tmp);
    if ( bytes_rem > 1 ) dst[1] = tu_u32_byte1(tmp);
    if ( bytes_rem > 2 ) dst[2] = tu_u32_byte2(tmp);
  }
}

// Write a single data packet to EPIN FIFO
static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t const * src, uint16_t len)
{
  (void) rhport;

  dwc2_regs_t * dwc2 = DWC2_REG(rhport);
  volatile uint32_t * tx_fifo = dwc2->fifo[fifo_num];

  // Pushing full available 32 bit words to fifo
  uint16_t full_words = len >> 2;
  while(full_words--)
  {
    *tx_fifo = tu_unaligned_read32(src);
    src += 4;
  }

  // Write the remaining 1-3 bytes into fifo
  uint8_t const bytes_rem = len & 0x03;
  if ( bytes_rem )
  {
    uint32_t tmp_word = src[0];
    if ( bytes_rem > 1 ) tmp_word |= (src[1] << 8);
    if ( bytes_rem > 2 ) tmp_word |= (src[2] << 16);

    *tx_fifo = tmp_word;
  }
}

static void handle_rxflvl_irq(uint8_t rhport)
{
  dwc2_regs_t * dwc2 = DWC2_REG(rhport);
  volatile uint32_t const * rx_fifo = dwc2->fifo[0];

  // Pop control word off FIFO
  uint32_t const ctl_word = dwc2->grxstsp;
  uint8_t  const pktsts   = (ctl_word & GRXSTSP_PKTSTS_Msk ) >> GRXSTSP_PKTSTS_Pos;
  uint8_t  const epnum    = (ctl_word & GRXSTSP_EPNUM_Msk  ) >> GRXSTSP_EPNUM_Pos;
  uint16_t const bcnt     = (ctl_word & GRXSTSP_BCNT_Msk   ) >> GRXSTSP_BCNT_Pos;

  dwc2_epout_t* epout = &dwc2->epout[epnum];

//#if CFG_TUSB_DEBUG >= DWC2_DEBUG
//  const char * pktsts_str[] =
//  {
//    "ASSERT", "Global NAK (ISR)", "Out Data Received", "Out Transfer Complete (ISR)",
//    "Setup Complete (ISR)", "ASSERT", "Setup Data Received"
//  };
//  TU_LOG_LOCATION();
//  TU_LOG(DWC2_DEBUG, "  EP %02X, Byte Count %u, %s\r\n", epnum, bcnt, pktsts_str[pktsts]);
//  TU_LOG(DWC2_DEBUG, "  daint = %08lX, doepint = %04X\r\n", (unsigned long) dwc2->daint, (unsigned int) epout->doepint);
//#endif

  switch ( pktsts )
  {
    // Global OUT NAK: do nothign
    case GRXSTS_PKTSTS_GLOBALOUTNAK: break;

    case GRXSTS_PKTSTS_SETUPRX:
      // Setup packet received

      // We can receive up to three setup packets in succession, but
      // only the last one is valid.
      _setup_packet[0] = (*rx_fifo);
      _setup_packet[1] = (*rx_fifo);
    break;

    case GRXSTS_PKTSTS_SETUPDONE:
      // Setup packet done (Interrupt)
      epout->doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos);
    break;

    case GRXSTS_PKTSTS_OUTRX:
    {
      // Out packet received
      xfer_ctl_t *xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);

      // Read packet off RxFIFO
      if ( xfer->ff )
      {
        // Ring buffer
        tu_fifo_write_n_const_addr_full_words(xfer->ff, (const void*) (uintptr_t) rx_fifo, bcnt);
      }
      else
      {
        // Linear buffer
        read_fifo_packet(rhport, xfer->buffer, bcnt);

        // Increment pointer to xfer data
        xfer->buffer += bcnt;
      }

      // Truncate transfer length in case of short packet
      if ( bcnt < xfer->max_size )
      {
        xfer->total_len -= (epout->doeptsiz & DOEPTSIZ_XFRSIZ_Msk) >> DOEPTSIZ_XFRSIZ_Pos;
        if ( epnum == 0 )
        {
          xfer->total_len -= ep0_pending[TUSB_DIR_OUT];
          ep0_pending[TUSB_DIR_OUT] = 0;
        }
      }
    }
    break;

    // Out packet done (Interrupt)
    case GRXSTS_PKTSTS_OUTDONE:
        // Occurred on STM32L47 with dwc2 version 3.10a but not found on other version like 2.80a or 3.30a
        // May (or not) be 3.10a specific feature/bug or depending on MCU configuration
        // XFRC complete is additionally generated when
        // - setup packet is received
        // - complete the data stage of control write is complete
        if ((epnum == 0) && (bcnt == 0) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a))
        {
          uint32_t doepint = epout->doepint;

          if (doepint & (DOEPINT_STPKTRX | DOEPINT_OTEPSPR))
          {
            // skip this "no-data" transfer complete event
            // Note: STPKTRX will be clear later by setup received handler
            uint32_t clear_flags = DOEPINT_XFRC;

            if (doepint & DOEPINT_OTEPSPR) clear_flags |= DOEPINT_OTEPSPR;

            epout->doepint = clear_flags;

            // TU_LOG(DWC2_DEBUG, "  FIX extra transfer complete on setup/data compete\r\n");
          }
        }
    break;

    default:    // Invalid
      TU_BREAKPOINT();
    break;
  }
}

static void handle_epout_irq (uint8_t rhport)
{
  dwc2_regs_t *dwc2 = DWC2_REG(rhport);

  // DAINT for a given EP clears when DOEPINTx is cleared.
  // OEPINT will be cleared when DAINT's out bits are cleared.
  for ( uint8_t n = 0; n < DWC2_EP_MAX; n++ )
  {
    if ( dwc2->daint & TU_BIT(DAINT_OEPINT_Pos + n) )
    {
      dwc2_epout_t* epout = &dwc2->epout[n];

      uint32_t const doepint = epout->doepint;

      // SETUP packet Setup Phase done.
      if ( doepint & DOEPINT_STUP )
      {
        uint32_t clear_flag = DOEPINT_STUP;

        // STPKTRX is only available for version from 3_00a
        if ((doepint & DOEPINT_STPKTRX) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a))
        {
          clear_flag |= DOEPINT_STPKTRX;
        }

        epout->doepint = clear_flag;
        dcd_event_setup_received(rhport, (uint8_t*) _setup_packet, true);
      }

      // OUT XFER complete
      if ( epout->doepint & DOEPINT_XFRC )
      {
        epout->doepint = DOEPINT_XFRC;

        xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT);

        // EP0 can only handle one packet
        if ( (n == 0) && ep0_pending[TUSB_DIR_OUT] )
        {
          // Schedule another packet to be received.
          edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
        }
        else
        {
          dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
        }
      }
    }
  }
}

static void handle_epin_irq (uint8_t rhport)
{
  dwc2_regs_t *dwc2 = DWC2_REG(rhport);
  dwc2_epin_t* epin = dwc2->epin;

  // DAINT for a given EP clears when DIEPINTx is cleared.
  // IEPINT will be cleared when DAINT's out bits are cleared.
  for ( uint8_t n = 0; n < DWC2_EP_MAX; n++ )
  {
    if ( dwc2->daint & TU_BIT(DAINT_IEPINT_Pos + n) )
    {
      // IN XFER complete (entire xfer).
      xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_IN);

      if ( epin[n].diepint & DIEPINT_XFRC )
      {
        epin[n].diepint = DIEPINT_XFRC;

        // EP0 can only handle one packet
        if ( (n == 0) && ep0_pending[TUSB_DIR_IN] )
        {
          // Schedule another packet to be transmitted.
          edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]);
        }
        else
        {
          dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
        }
      }

      // XFER FIFO empty
      if ( (epin[n].diepint & DIEPINT_TXFE) && (dwc2->diepempmsk & (1 << n)) )
      {
        // diepint's TXFE bit is read-only, software cannot clear it.
        // It will only be cleared by hardware when written bytes is more than
        // - 64 bytes or
        // - Half of TX FIFO size (configured by DIEPTXF)

        uint16_t remaining_packets = (epin[n].dieptsiz & DIEPTSIZ_PKTCNT_Msk) >> DIEPTSIZ_PKTCNT_Pos;

        // Process every single packet (only whole packets can be written to fifo)
        for ( uint16_t i = 0; i < remaining_packets; i++ )
        {
          uint16_t const remaining_bytes = (epin[n].dieptsiz & DIEPTSIZ_XFRSIZ_Msk) >> DIEPTSIZ_XFRSIZ_Pos;

          // Packet can not be larger than ep max size
          uint16_t const packet_size = tu_min16(remaining_bytes, xfer->max_size);

          // It's only possible to write full packets into FIFO. Therefore DTXFSTS register of current
          // EP has to be checked if the buffer can take another WHOLE packet
          if ( packet_size > ((epin[n].dtxfsts & DTXFSTS_INEPTFSAV_Msk) << 2) ) break;

          // Push packet to Tx-FIFO
          if ( xfer->ff )
          {
            volatile uint32_t *tx_fifo = dwc2->fifo[n];
            tu_fifo_read_n_const_addr_full_words(xfer->ff, (void*) (uintptr_t) tx_fifo, packet_size);
          }
          else
          {
            write_fifo_packet(rhport, n, xfer->buffer, packet_size);

            // Increment pointer to xfer data
            xfer->buffer += packet_size;
          }
        }

        // Turn off TXFE if all bytes are written.
        if ( ((epin[n].dieptsiz & DIEPTSIZ_XFRSIZ_Msk) >> DIEPTSIZ_XFRSIZ_Pos) == 0 )
        {
          dwc2->diepempmsk &= ~(1 << n);
        }
      }
    }
  }
}

void dcd_int_handler(uint8_t rhport)
{
  dwc2_regs_t *dwc2 = DWC2_REG(rhport);

  uint32_t const int_status = dwc2->gintsts & dwc2->gintmsk;

  if(int_status & GINTSTS_USBRST)
  {
    // USBRST is start of reset.
    dwc2->gintsts = GINTSTS_USBRST;
    bus_reset(rhport);
  }

  if(int_status & GINTSTS_ENUMDNE)
  {
    // ENUMDNE is the end of reset where speed of the link is detected

    dwc2->gintsts = GINTSTS_ENUMDNE;

    tusb_speed_t speed;
    switch ((dwc2->dsts & DSTS_ENUMSPD_Msk) >> DSTS_ENUMSPD_Pos)
    {
      case DSTS_ENUMSPD_HS:
        speed = TUSB_SPEED_HIGH;
      break;

      case DSTS_ENUMSPD_LS:
        speed = TUSB_SPEED_LOW;
      break;

      case DSTS_ENUMSPD_FS_HSPHY:
      case DSTS_ENUMSPD_FS:
      default:
        speed = TUSB_SPEED_FULL;
      break;
    }

    dcd_event_bus_reset(rhport, speed, true);
  }

  if(int_status & GINTSTS_USBSUSP)
  {
    dwc2->gintsts = GINTSTS_USBSUSP;
    dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
  }

  if(int_status & GINTSTS_WKUINT)
  {
    dwc2->gintsts = GINTSTS_WKUINT;
    dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
  }

  // TODO check GINTSTS_DISCINT for disconnect detection
  // if(int_status & GINTSTS_DISCINT)

  if(int_status & GINTSTS_OTGINT)
  {
    // OTG INT bit is read-only
    uint32_t const otg_int = dwc2->gotgint;

    if (otg_int & GOTGINT_SEDET)
    {
      dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
    }

    dwc2->gotgint = otg_int;
  }

  if(int_status & GINTSTS_SOF)
  {
    dwc2->gotgint = GINTSTS_SOF;

    // Disable SOF interrupt since currently only used for remote wakeup detection
    dwc2->gintmsk &= ~GINTMSK_SOFM;

    dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
  }

  // RxFIFO non-empty interrupt handling.
  if(int_status & GINTSTS_RXFLVL)
  {
    // RXFLVL bit is read-only

    // Mask out RXFLVL while reading data from FIFO
    dwc2->gintmsk &= ~GINTMSK_RXFLVLM;

    // Loop until all available packets were handled
    do
    {
      handle_rxflvl_irq(rhport);
    } while(dwc2->gotgint & GINTSTS_RXFLVL);

    // Manage RX FIFO size
    if (_out_ep_closed)
    {
      update_grxfsiz(rhport);

      // Disable flag
      _out_ep_closed = false;
    }

    dwc2->gintmsk |= GINTMSK_RXFLVLM;
  }

  // OUT endpoint interrupt handling.
  if(int_status & GINTSTS_OEPINT)
  {
    // OEPINT is read-only, clear using DOEPINTn
    handle_epout_irq(rhport);
  }

  // IN endpoint interrupt handling.
  if(int_status & GINTSTS_IEPINT)
  {
    // IEPINT bit read-only, clear using DIEPINTn
    handle_epin_irq(rhport);
  }

  //  // Check for Incomplete isochronous IN transfer
  //  if(int_status & GINTSTS_IISOIXFR) {
  //    printf("      IISOIXFR!\r\n");
  ////    TU_LOG(DWC2_DEBUG, "      IISOIXFR!\r\n");
  //  }
}

#endif