1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
|
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2020-05-01T09:27:13.438054Z",
"start_time": "2020-05-01T09:27:13.191491Z"
}
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"source": [
"%pylab inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Notebook magic"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2020-08-03T18:32:45.342280Z",
"start_time": "2020-08-03T18:32:45.338442Z"
}
},
"outputs": [],
"source": [
"from IPython.core.magic import Magics, magics_class, line_cell_magic\n",
"from IPython.core.magic import cell_magic, register_cell_magic, register_line_magic\n",
"from IPython.core.magic_arguments import argument, magic_arguments, parse_argstring\n",
"import subprocess\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2020-07-23T20:31:25.296014Z",
"start_time": "2020-07-23T20:31:25.265937Z"
}
},
"outputs": [],
"source": [
"@magics_class\n",
"class PyboardMagic(Magics):\n",
" @cell_magic\n",
" @magic_arguments()\n",
" @argument('-skip')\n",
" @argument('-unix')\n",
" @argument('-pyboard')\n",
" @argument('-file')\n",
" @argument('-data')\n",
" @argument('-time')\n",
" @argument('-memory')\n",
" def micropython(self, line='', cell=None):\n",
" args = parse_argstring(self.micropython, line)\n",
" if args.skip: # doesn't care about the cell's content\n",
" print('skipped execution')\n",
" return None # do not parse the rest\n",
" if args.unix: # tests the code on the unix port. Note that this works on unix only\n",
" with open('/dev/shm/micropython.py', 'w') as fout:\n",
" fout.write(cell)\n",
" proc = subprocess.Popen([\"../../micropython/ports/unix/micropython\", \"/dev/shm/micropython.py\"], \n",
" stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n",
" print(proc.stdout.read().decode(\"utf-8\"))\n",
" print(proc.stderr.read().decode(\"utf-8\"))\n",
" return None\n",
" if args.file: # can be used to copy the cell content onto the pyboard's flash\n",
" spaces = \" \"\n",
" try:\n",
" with open(args.file, 'w') as fout:\n",
" fout.write(cell.replace('\\t', spaces))\n",
" printf('written cell to {}'.format(args.file))\n",
" except:\n",
" print('Failed to write to disc!')\n",
" return None # do not parse the rest\n",
" if args.data: # can be used to load data from the pyboard directly into kernel space\n",
" message = pyb.exec(cell)\n",
" if len(message) == 0:\n",
" print('pyboard >>>')\n",
" else:\n",
" print(message.decode('utf-8'))\n",
" # register new variable in user namespace\n",
" self.shell.user_ns[args.data] = string_to_matrix(message.decode(\"utf-8\"))\n",
" \n",
" if args.time: # measures the time of executions\n",
" pyb.exec('import utime')\n",
" message = pyb.exec('t = utime.ticks_us()\\n' + cell + '\\ndelta = utime.ticks_diff(utime.ticks_us(), t)' + \n",
" \"\\nprint('execution time: {:d} us'.format(delta))\")\n",
" print(message.decode('utf-8'))\n",
" \n",
" if args.memory: # prints out memory information \n",
" message = pyb.exec('from micropython import mem_info\\nprint(mem_info())\\n')\n",
" print(\"memory before execution:\\n========================\\n\", message.decode('utf-8'))\n",
" message = pyb.exec(cell)\n",
" print(\">>> \", message.decode('utf-8'))\n",
" message = pyb.exec('print(mem_info())')\n",
" print(\"memory after execution:\\n========================\\n\", message.decode('utf-8'))\n",
"\n",
" if args.pyboard:\n",
" message = pyb.exec(cell)\n",
" print(message.decode('utf-8'))\n",
"\n",
"ip = get_ipython()\n",
"ip.register_magics(PyboardMagic)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## pyboard"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"ExecuteTime": {
"end_time": "2020-05-07T07:35:35.126401Z",
"start_time": "2020-05-07T07:35:35.105824Z"
}
},
"outputs": [],
"source": [
"import pyboard\n",
"pyb = pyboard.Pyboard('/dev/ttyACM0')\n",
"pyb.enter_raw_repl()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"ExecuteTime": {
"end_time": "2020-05-19T19:11:18.145548Z",
"start_time": "2020-05-19T19:11:18.137468Z"
}
},
"outputs": [],
"source": [
"pyb.exit_raw_repl()\n",
"pyb.close()"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"ExecuteTime": {
"end_time": "2020-05-07T07:35:38.725924Z",
"start_time": "2020-05-07T07:35:38.645488Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"%%micropython -pyboard 1\n",
"\n",
"import utime\n",
"import ulab as np\n",
"\n",
"def timeit(n=1000):\n",
" def wrapper(f, *args, **kwargs):\n",
" func_name = str(f).split(' ')[1]\n",
" def new_func(*args, **kwargs):\n",
" run_times = np.zeros(n, dtype=np.uint16)\n",
" for i in range(n):\n",
" t = utime.ticks_us()\n",
" result = f(*args, **kwargs)\n",
" run_times[i] = utime.ticks_diff(utime.ticks_us(), t)\n",
" print('{}() execution times based on {} cycles'.format(func_name, n, (delta2-delta1)/n))\n",
" print('\\tbest: %d us'%np.min(run_times))\n",
" print('\\tworst: %d us'%np.max(run_times))\n",
" print('\\taverage: %d us'%np.mean(run_times))\n",
" print('\\tdeviation: +/-%.3f us'%np.std(run_times)) \n",
" return result\n",
" return new_func\n",
" return wrapper\n",
"\n",
"def timeit(f, *args, **kwargs):\n",
" func_name = str(f).split(' ')[1]\n",
" def new_func(*args, **kwargs):\n",
" t = utime.ticks_us()\n",
" result = f(*args, **kwargs)\n",
" print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')\n",
" return result\n",
" return new_func"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__END_OF_DEFS__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tricks\n",
"\n",
"This section of the book discusses a couple of tricks that can be exploited to either speed up computations, or save on RAM. However, there is probably no silver bullet, and you have to evaluate your code in terms of execution speed (if the execution is time critical), or RAM used. You should also keep in mind that, if a particular code snippet is optimised on some hardware, there is no guarantee that on another piece of hardware, you will get similar improvements. Hardware implementations are vastly different. Some microcontrollers do not even have an FPU, so you should not be surprised that you get significantly different benchmarks. Just to underline this statement, you can study the [collection of benchmarks](https://github.com/thiagofe/ulab_samples)."
]
},
{
"source": [
"## Use an `ndarray`, if you can\n",
"\n",
"Many functions in `ulab` are implemented in a universal fashion, meaning that both generic `micropython` iterables, and `ndarray`s can be passed as an argument. E.g., both \n",
"\n",
"```python\n",
"from ulab import numpy as np\n",
"\n",
"np.sum([1, 2, 3, 4, 5])\n",
"```\n",
"and\n",
"\n",
"```python\n",
"from ulab import numpy as np\n",
"\n",
"a = np.array([1, 2, 3, 4, 5])\n",
"np.sum(a)\n",
"```\n",
"\n",
"will return the `micropython` variable 15 as the result. Still, `np.sum(a)` is evaluated significantly faster, because in `np.sum([1, 2, 3, 4, 5])`, the interpreter has to fetch 5 `micropython` variables, convert them to `float`, and sum the values, while the C type of `a` is known, thus the interpreter can invoke a single `for` loop for the evaluation of the `sum`. In the `for` loop, there are no function calls, the iteration simply walks through the pointer holding the values of `a`, and adds the values to an accumulator. If the array `a` is already available, then you can gain a factor of 3 in speed by calling `sum` on the array, instead of using the list. Compared to the python implementation of the same functionality, the speed-up is around 40 (again, this might depend on the hardware).\n",
"\n",
"On the other hand, if the array is not available, then there is not much point in converting the list to an `ndarray` and passing that to the function. In fact, you should expect a slow-down: the constructor has to iterate over the list elements, and has to convert them to a numerical type. On top of that, it also has to reserve RAM for the `ndarray`."
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"## Use a reasonable `dtype`\n",
"\n",
"Just as in `numpy`, the default `dtype` is `float`. But this does not mean that that is the most suitable one in all scenarios. If data are streamed from an 8-bit ADC, and you only want to know the maximum, or the sum, then it is quite reasonable to use `uint8` for the `dtype`. Storing the same data in `float` array would cost 4 or 8 times as much RAM, with absolutely no gain. Do not rely on the default value of the constructor's keyword argument, and choose one that fits!"
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"## Beware the axis!\n",
"\n",
"Whenever `ulab` iterates over multi-dimensional arrays, the outermost loop is the first axis, then the second axis, and so on. E.g., when the `sum` of \n",
"\n",
"```python\n",
"a = array([[1, 2, 3, 4],\n",
" [5, 6, 7, 8], \n",
" [9, 10, 11, 12]], dtype=uint8)\n",
"```\n",
"\n",
"is being calculated, first the data pointer walks along `[1, 2, 3, 4]` (innermost loop, last axis), then is moved back to the position, where 5 is stored (this is the nesting loop), and traverses `[5, 6, 7, 8]`, and so on. Moving the pointer back to 5 is more expensive, than moving it along an axis, because the position of 5 has to be calculated, whereas moving from 5 to 6 is simply an addition to the address. Thus, while the matrix\n",
"\n",
"```python\n",
"b = array([[1, 5, 9],\n",
" [2, 6, 10], \n",
" [3, 7, 11],\n",
" [4, 8, 12]], dtype=uint8)\n",
"```\n",
"\n",
"holds the same data as `a`, the summation over the entries in `b` is slower, because the pointer has to be re-wound three times, as opposed to twice in `a`. For small matrices the savings are not significant, but you would definitely notice the difference, if you had \n",
"\n",
"```\n",
"a = array(range(2000)).reshape((2, 1000))\n",
"b = array(range(2000)).reshape((1000, 2))\n",
"```\n",
"\n",
"The moral is that, in order to improve on the execution speed, whenever possible, you should try to make the last axis the longest. As a side note, `numpy` can re-arrange its loops, and puts the longest axis in the innermost loop. This is why the longest axis is sometimes referred to as the fast axis. In `ulab`, the order of the axes is fixed. "
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"## Reduce the number of artifacts\n",
"\n",
"Before showing a real-life example, let us suppose that we want to interpolate uniformly sampled data, and the absolute magnitude is not really important, we only care about the ratios between neighbouring value. One way of achieving this is calling the `interp` functions. However, we could just as well work with slices."
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([ 0, 5, 10, 6, 2, 11, 20, 12, 4], dtype=uint8)"
]
},
"metadata": {},
"execution_count": 18
}
],
"source": [
"a = array([0, 10, 2, 20, 4], dtype=np.uint8)\n",
"b = np.zeros(9, dtype=np.uint8)\n",
"\n",
"b[::2] = 2 * a\n",
"b[1::2] = a[:-1] + a[1:]\n",
"\n",
"b //= 2\n",
"b"
]
},
{
"source": [
"`b` now has values from `a` at every even position, and interpolates the values on every odd position. If only the relative magnitudes are important, then we can even save the division by 2, and we end up with "
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"a = array([0, 10, 2, 20, 4], dtype=np.uint8)\n",
"b = np.zeros(9, dtype=np.uint8)\n",
"\n",
"b[::2] = 2 * a\n",
"b[1::2] = a[:-1] + a[1:]\n",
"\n",
"b"
],
"cell_type": "code",
"metadata": {},
"execution_count": 16,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([ 0, 10, 20, 12, 4, 22, 40, 24, 8], dtype=uint8)"
]
},
"metadata": {},
"execution_count": 16
}
]
},
{
"source": [
"Importantly, we managed to keep the results in the smaller `dtype`, `uint8`. Now, while the two assignments above are terse and pythonic, the code is not the most efficient: the right hand sides are compound statements, generating intermediate results. To store them, RAM has to be allocated. This takes time, and leads to memory fragmentation. Better is to write out the assignments in 4 instructions:"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([ 0, 10, 20, 12, 4, 22, 40, 24, 8], dtype=uint8)"
]
},
"metadata": {},
"execution_count": 15
}
],
"source": [
"b = np.zeros(9, dtype=np.uint8)\n",
"\n",
"b[::2] = a\n",
"b[::2] += a\n",
"b[1::2] = a[:-1]\n",
"b[1::2] += a[1:]\n",
"\n",
"b"
]
},
{
"source": [
"The results are the same, but no extra RAM is allocated, except for the views `a[:-1]`, and `a[1:]`, but those had to be created even in the origin implementation."
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"### Upscaling images\n",
"\n",
"And now the example: there are low-resolution thermal cameras out there. Low resolution might mean 8 by 8 pixels. Such a small number of pixels is just not reasonable to plot, no matter how small the display is. If you want to make the camera image a bit more pleasing, you can upscale (stretch) it in both dimensions. This can be done exactly as we up-scaled the linear array:"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"b = np.zeros((15, 15), dtype=np.uint8)\n",
"\n",
"b[1::2,::2] = a[:-1,:]\n",
"b[1::2,::2] += a[1:, :]\n",
"b[1::2,::2] //= 2\n",
"b[::,1::2] = a[::,:-1:2]\n",
"b[::,1::2] += a[::,2::2]\n",
"b[::,1::2] //= 2"
]
},
{
"source": [
"Up-scaling by larger numbers can be done in a similar fashion, you simply have more assignments."
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"There are cases, when one cannot do away with the intermediate results. Two prominent cases are the `where` function, and indexing by means of a Boolean array. E.g., in"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([1, 2, 3])"
]
},
"metadata": {},
"execution_count": 20
}
],
"source": [
"a = array([1, 2, 3, 4, 5])\n",
"b = a[a < 4]\n",
"b"
]
},
{
"source": [
"the expression `a < 4` produces the Boolean array, "
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"a < 4"
],
"cell_type": "code",
"metadata": {},
"execution_count": 22,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([ True, True, True, False, False])"
]
},
"metadata": {},
"execution_count": 22
}
]
},
{
"source": [
"If you repeatedly have such conditions in a loop, you might have to peridically call the garbage collector to remove the Boolean arrays that are used only once."
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "382.797px"
},
"toc_section_display": true,
"toc_window_display": true
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|