1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
|
Introduction
============
Enter ulab
----------
``ulab`` is a ``numpy``-like module for ``micropython`` and its
derivatives, meant to simplify and speed up common mathematical
operations on arrays. ``ulab`` implements a small subset of ``numpy``
and ``scipy``. The functions were chosen such that they might be useful
in the context of a microcontroller. However, the project is a living
one, and suggestions for new features are always welcome.
This document discusses how you can use the library, starting from
building your own firmware, through questions like what affects the
firmware size, what are the trade-offs, and what are the most important
differences to ``numpy`` and ``scipy``, respectively. The document is
organised as follows:
The chapter after this one helps you with firmware customisation.
The third chapter gives a very concise summary of the ``ulab`` functions
and array methods. This chapter can be used as a quick reference.
The chapters after that are an in-depth review of most functions. Here
you can find usage examples, benchmarks, as well as a thorough
discussion of such concepts as broadcasting, and views versus copies.
The final chapter of this book can be regarded as the programming
manual. The inner working of ``ulab`` is dissected here, and you will
also find hints as to how to implement your own ``numpy``-compatible
functions.
Purpose
-------
Of course, the first question that one has to answer is, why on Earth
one would need a fast math library on a microcontroller. After all, it
is not expected that heavy number crunching is going to take place on
bare metal. It is not meant to. On a PC, the main reason for writing
fast code is the sheer amount of data that one wants to process. On a
microcontroller, the data volume is probably small, but it might lead to
catastrophic system failure, if these data are not processed in time,
because the microcontroller is supposed to interact with the outside
world in a timely fashion. In fact, this latter objective was the
initiator of this project: I needed the Fourier transform of a signal
coming from the ADC of the ``pyboard``, and all available options were
simply too slow.
In addition to speed, another issue that one has to keep in mind when
working with embedded systems is the amount of available RAM: I believe,
everything here could be implemented in pure ``python`` with relatively
little effort (in fact, there are a couple of ``python``-only
implementations of ``numpy`` functions out there), but the price we
would have to pay for that is not only speed, but RAM, too. ``python``
code, if is not frozen, and compiled into the firmware, has to be
compiled at runtime, which is not exactly a cheap process. On top of
that, if numbers are stored in a list or tuple, which would be the
high-level container, then they occupy 8 bytes, no matter, whether they
are all smaller than 100, or larger than one hundred million. This is
obviously a waste of resources in an environment, where resources are
scarce.
Finally, there is a reason for using ``micropython`` in the first place.
Namely, that a microcontroller can be programmed in a very elegant, and
*pythonic* way. But if it is so, why should we not extend this idea to
other tasks and concepts that might come up in this context? If there
was no other reason than this *elegance*, I would find that convincing
enough.
Based on the above-mentioned considerations, all functions in ``ulab``
are implemented in a way that
1. conforms to ``numpy`` as much as possible
2. is so frugal with RAM as possible,
3. and yet, fast. Much faster than pure python. Think of speed-ups of
30-50!
The main points of ``ulab`` are
- compact, iterable and slicable containers of numerical data in one to
four dimensions. These containers support all the relevant unary and
binary operators (e.g., ``len``, ==, +, \*, etc.)
- vectorised computations on ``micropython`` iterables and numerical
arrays (in ``numpy``-speak, universal functions)
- computing statistical properties (mean, standard deviation etc.) on
arrays
- basic linear algebra routines (matrix inversion, multiplication,
reshaping, transposition, determinant, and eigenvalues, Cholesky
decomposition and so on)
- polynomial fits to numerical data, and evaluation of polynomials
- fast Fourier transforms
- filtering of data (convolution and second-order filters)
- function minimisation, fitting, and numerical approximation routines
- interfacing between numerical data and peripheral hardware devices
``ulab`` implements close to a hundred functions and array methods. At
the time of writing this manual (for version 4.0.0), the library adds
approximately 120 kB of extra compiled code to the ``micropython``
(pyboard.v.1.17) firmware. However, if you are tight with flash space,
you can easily shave tens of kB off the firmware. In fact, if only a
small sub-set of functions are needed, you can get away with less than
10 kB of flash space. See the section on `customising
ulab <#Customising-the-firmware>`__.
Resources and legal matters
---------------------------
The source code of the module can be found under
https://github.com/v923z/micropython-ulab/tree/master/code. while the
source of this user manual is under
https://github.com/v923z/micropython-ulab/tree/master/docs.
The MIT licence applies to all material.
Friendly request
----------------
If you use ``ulab``, and bump into a bug, or think that a particular
function is missing, or its behaviour does not conform to ``numpy``,
please, raise a `ulab
issue <#https://github.com/v923z/micropython-ulab/issues>`__ on github,
so that the community can profit from your experiences.
Even better, if you find the project to be useful, and think that it
could be made better, faster, tighter, and shinier, please, consider
contributing, and issue a pull request with the implementation of your
improvements and new features. ``ulab`` can only become successful, if
it offers what the community needs.
These last comments apply to the documentation, too. If, in your
opinion, the documentation is obscure, misleading, or not detailed
enough, please, let us know, so that *we* can fix it.
Differences between micropython-ulab and circuitpython-ulab
-----------------------------------------------------------
``ulab`` has originally been developed for ``micropython``, but has
since been integrated into a number of its flavours. Most of these are
simply forks of ``micropython`` itself, with some additional
functionality. One of the notable exceptions is ``circuitpython``, which
has slightly diverged at the core level, and this has some minor
consequences. Some of these concern the C implementation details only,
which all have been sorted out with the generous and enthusiastic
support of Jeff Epler from `Adafruit
Industries <http://www.adafruit.com>`__.
There are, however, a couple of instances, where the two environments
differ at the python level in how the class properties can be accessed.
We will point out the differences and possible workarounds at the
relevant places in this document.
Customising the firmware
========================
As mentioned above, ``ulab`` has considerably grown since its
conception, which also means that it might no longer fit on the
microcontroller of your choice. There are, however, a couple of ways of
customising the firmware, and thereby reducing its size.
All ``ulab`` options are listed in a single header file,
`ulab.h <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h>`__,
which contains pre-processor flags for each feature that can be
fine-tuned. The first couple of lines of the file look like this
.. code:: c
// The pre-processor constants in this file determine how ulab behaves:
//
// - how many dimensions ulab can handle
// - which functions are included in the compiled firmware
// - whether the python syntax is numpy-like, or modular
// - whether arrays can be sliced and iterated over
// - which binary/unary operators are supported
//
// A considerable amount of flash space can be saved by removing (setting
// the corresponding constants to 0) the unnecessary functions and features.
// Values defined here can be overridden by your own config file as
// make -DULAB_CONFIG_FILE="my_ulab_config.h"
#if defined(ULAB_CONFIG_FILE)
#include ULAB_CONFIG_FILE
#endif
// Adds support for complex ndarrays
#ifndef ULAB_SUPPORTS_COMPLEX
#define ULAB_SUPPORTS_COMPLEX (1)
#endif
// Determines, whether scipy is defined in ulab. The sub-modules and functions
// of scipy have to be defined separately
#define ULAB_HAS_SCIPY (1)
// The maximum number of dimensions the firmware should be able to support
// Possible values lie between 1, and 4, inclusive
#define ULAB_MAX_DIMS 2
// By setting this constant to 1, iteration over array dimensions will be implemented
// as a function (ndarray_rewind_array), instead of writing out the loops in macros
// This reduces firmware size at the expense of speed
#define ULAB_HAS_FUNCTION_ITERATOR (0)
// If NDARRAY_IS_ITERABLE is 1, the ndarray object defines its own iterator function
// This option saves approx. 250 bytes of flash space
#define NDARRAY_IS_ITERABLE (1)
// Slicing can be switched off by setting this variable to 0
#define NDARRAY_IS_SLICEABLE (1)
// The default threshold for pretty printing. These variables can be overwritten
// at run-time via the set_printoptions() function
#define ULAB_HAS_PRINTOPTIONS (1)
#define NDARRAY_PRINT_THRESHOLD 10
#define NDARRAY_PRINT_EDGEITEMS 3
// determines, whether the dtype is an object, or simply a character
// the object implementation is numpythonic, but requires more space
#define ULAB_HAS_DTYPE_OBJECT (0)
// the ndarray binary operators
#define NDARRAY_HAS_BINARY_OPS (1)
// Firmware size can be reduced at the expense of speed by using function
// pointers in iterations. For each operator, he function pointer saves around
// 2 kB in the two-dimensional case, and around 4 kB in the four-dimensional case.
#define NDARRAY_BINARY_USES_FUN_POINTER (0)
#define NDARRAY_HAS_BINARY_OP_ADD (1)
#define NDARRAY_HAS_BINARY_OP_EQUAL (1)
#define NDARRAY_HAS_BINARY_OP_LESS (1)
#define NDARRAY_HAS_BINARY_OP_LESS_EQUAL (1)
#define NDARRAY_HAS_BINARY_OP_MORE (1)
#define NDARRAY_HAS_BINARY_OP_MORE_EQUAL (1)
#define NDARRAY_HAS_BINARY_OP_MULTIPLY (1)
#define NDARRAY_HAS_BINARY_OP_NOT_EQUAL (1)
#define NDARRAY_HAS_BINARY_OP_POWER (1)
#define NDARRAY_HAS_BINARY_OP_SUBTRACT (1)
#define NDARRAY_HAS_BINARY_OP_TRUE_DIVIDE (1)
...
The meaning of flags with names ``_HAS_`` should be obvious, so we will
just explain the other options.
To see how much you can gain by un-setting the functions that you do not
need, here are some pointers. In four dimensions, including all
functions adds around 120 kB to the ``micropython`` firmware. On the
other hand, if you are interested in Fourier transforms only, and strip
everything else, you get away with less than 5 kB extra.
Compatibility with numpy
------------------------
The functions implemented in ``ulab`` are organised in four sub-modules
at the C level, namely, ``numpy``, ``scipy``, ``utils``, and ``user``.
This modularity is elevated to ``python``, meaning that in order to use
functions that are part of ``numpy``, you have to import ``numpy`` as
.. code:: python
from ulab import numpy as np
x = np.array([4, 5, 6])
p = np.array([1, 2, 3])
np.polyval(p, x)
There are a couple of exceptions to this rule, namely ``fft``, and
``linalg``, which are sub-modules even in ``numpy``, thus you have to
write them out as
.. code:: python
from ulab import numpy as np
A = np.array([1, 2, 3, 4]).reshape()
np.linalg.trace(A)
Some of the functions in ``ulab`` are re-implementations of ``scipy``
functions, and they are to be imported as
.. code:: python
from ulab import numpy as np
from ulab import scipy as spy
x = np.array([1, 2, 3])
spy.special.erf(x)
``numpy``-compatibility has an enormous benefit : namely, by
``try``\ ing to ``import``, we can guarantee that the same, unmodified
code runs in ``CPython``, as in ``micropython``. The following snippet
is platform-independent, thus, the ``python`` code can be tested and
debugged on a computer before loading it onto the microcontroller.
.. code:: python
try:
from ulab import numpy as np
from ulab import scipy as spy
except ImportError:
import numpy as np
import scipy as spy
x = np.array([1, 2, 3])
spy.special.erf(x)
The impact of dimensionality
----------------------------
Reducing the number of dimensions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``ulab`` supports tensors of rank four, but this is expensive in terms
of flash: with all available functions and options, the library adds
around 100 kB to the firmware. However, if such high dimensions are not
required, significant reductions in size can be gotten by changing the
value of
.. code:: c
#define ULAB_MAX_DIMS 2
Two dimensions cost a bit more than half of four, while you can get away
with around 20 kB of flash in one dimension, because all those functions
that don’t make sense (e.g., matrix inversion, eigenvalues etc.) are
automatically stripped from the firmware.
Using the function iterator
~~~~~~~~~~~~~~~~~~~~~~~~~~~
In higher dimensions, the firmware size increases, because each
dimension (axis) adds another level of nested loops. An example of this
is the macro of the binary operator in three dimensions
.. code:: c
#define BINARY_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)
type_out *array = (type_out *)results->array;
size_t j = 0;
do {
size_t k = 0;
do {
size_t l = 0;
do {
*array++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray));
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];
l++;
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];
k++;
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];
j++;
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);
In order to reduce firmware size, it *might* make sense in higher
dimensions to make use of the function iterator by setting the
.. code:: c
#define ULAB_HAS_FUNCTION_ITERATOR (1)
constant to 1. This allows the compiler to call the
``ndarray_rewind_array`` function, so that it doesn’t have to unwrap the
loops for ``k``, and ``j``. Instead of the macro above, we now have
.. code:: c
#define BINARY_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)
type_out *array = (type_out *)(results)->array;
size_t *lcoords = ndarray_new_coords((results)->ndim);
size_t *rcoords = ndarray_new_coords((results)->ndim);
for(size_t i=0; i < (results)->len/(results)->shape[ULAB_MAX_DIMS -1]; i++) {
size_t l = 0;
do {
*array++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray));
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];
l++;
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);
ndarray_rewind_array((results)->ndim, larray, (results)->shape, lstrides, lcoords);
ndarray_rewind_array((results)->ndim, rarray, (results)->shape, rstrides, rcoords);
} while(0)
Since the ``ndarray_rewind_array`` function is implemented only once, a
lot of space can be saved. Obviously, function calls cost time, thus
such trade-offs must be evaluated for each application. The gain also
depends on which functions and features you include. Operators and
functions that involve two arrays are expensive, because at the C level,
the number of cases that must be handled scales with the squares of the
number of data types. As an example, the innocent-looking expression
.. code:: python
from ulab import numpy as np
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
c = a + b
requires 25 loops in C, because the ``dtypes`` of both ``a``, and ``b``
can assume 5 different values, and the addition has to be resolved for
all possible cases. Hint: each binary operator costs between 3 and 4 kB
in two dimensions.
The ulab version string
-----------------------
As is customary with ``python`` packages, information on the package
version can be found be querying the ``__version__`` string.
.. code::
# code to be run in micropython
import ulab
print('you are running ulab version', ulab.__version__)
.. parsed-literal::
you are running ulab version 2.1.0-2D
The first three numbers indicate the major, minor, and sub-minor
versions of ``ulab`` (defined by the ``ULAB_VERSION`` constant in
`ulab.c <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.c>`__).
We usually change the minor version, whenever a new function is added to
the code, and the sub-minor version will be incremented, if a bug fix is
implemented.
``2D`` tells us that the particular firmware supports tensors of rank 2
(defined by ``ULAB_MAX_DIMS`` in
`ulab.h <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h>`__).
If you find a bug, please, include the version string in your report!
Should you need the numerical value of ``ULAB_MAX_DIMS``, you can get it
from the version string in the following way:
.. code::
# code to be run in micropython
import ulab
version = ulab.__version__
version_dims = version.split('-')[1]
version_num = int(version_dims.replace('D', ''))
print('version string: ', version)
print('version dimensions: ', version_dims)
print('numerical value of dimensions: ', version_num)
.. parsed-literal::
version string: 2.1.0-2D
version dimensions: 2D
numerical value of dimensions: 2
ulab with complex arrays
~~~~~~~~~~~~~~~~~~~~~~~~
If the firmware supports complex arrays, ``-c`` is appended to the
version string as can be seen below.
.. code::
# code to be run in micropython
import ulab
version = ulab.__version__
print('version string: ', version)
.. parsed-literal::
version string: 4.0.0-2D-c
Finding out what your firmware supports
---------------------------------------
``ulab`` implements a number of array operators and functions, but this
does not mean that all of these functions and methods are actually
compiled into the firmware. You can fine-tune your firmware by
setting/unsetting any of the ``_HAS_`` constants in
`ulab.h <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h>`__.
Functions included in the firmware
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The version string will not tell you everything about your firmware,
because the supported functions and sub-modules can still arbitrarily be
included or excluded. One way of finding out what is compiled into the
firmware is calling ``dir`` with ``ulab`` as its argument.
.. code::
# code to be run in micropython
from ulab import numpy as np
from ulab import scipy as spy
print('===== constants, functions, and modules of numpy =====\n\n', dir(np))
# since fft and linalg are sub-modules, print them separately
print('\nfunctions included in the fft module:\n', dir(np.fft))
print('\nfunctions included in the linalg module:\n', dir(np.linalg))
print('\n\n===== modules of scipy =====\n\n', dir(spy))
print('\nfunctions included in the optimize module:\n', dir(spy.optimize))
print('\nfunctions included in the signal module:\n', dir(spy.signal))
print('\nfunctions included in the special module:\n', dir(spy.special))
.. parsed-literal::
===== constants, functions, and modules of numpy =====
['__class__', '__name__', 'bool', 'sort', 'sum', 'acos', 'acosh', 'arange', 'arctan2', 'argmax', 'argmin', 'argsort', 'around', 'array', 'asin', 'asinh', 'atan', 'atanh', 'ceil', 'clip', 'concatenate', 'convolve', 'cos', 'cosh', 'cross', 'degrees', 'diag', 'diff', 'e', 'equal', 'exp', 'expm1', 'eye', 'fft', 'flip', 'float', 'floor', 'frombuffer', 'full', 'get_printoptions', 'inf', 'int16', 'int8', 'interp', 'linalg', 'linspace', 'log', 'log10', 'log2', 'logspace', 'max', 'maximum', 'mean', 'median', 'min', 'minimum', 'nan', 'ndinfo', 'not_equal', 'ones', 'pi', 'polyfit', 'polyval', 'radians', 'roll', 'set_printoptions', 'sin', 'sinh', 'sqrt', 'std', 'tan', 'tanh', 'trapz', 'uint16', 'uint8', 'vectorize', 'zeros']
functions included in the fft module:
['__class__', '__name__', 'fft', 'ifft']
functions included in the linalg module:
['__class__', '__name__', 'cholesky', 'det', 'dot', 'eig', 'inv', 'norm', 'trace']
===== modules of scipy =====
['__class__', '__name__', 'optimize', 'signal', 'special']
functions included in the optimize module:
['__class__', '__name__', 'bisect', 'fmin', 'newton']
functions included in the signal module:
['__class__', '__name__', 'sosfilt', 'spectrogram']
functions included in the special module:
['__class__', '__name__', 'erf', 'erfc', 'gamma', 'gammaln']
Methods included in the firmware
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``dir`` function applied to the module or its sub-modules gives
information on what the module and sub-modules include, but is not
enough to find out which methods the ``ndarray`` class supports. We can
list the methods by calling ``dir`` with the ``array`` object itself:
.. code::
# code to be run in micropython
from ulab import numpy as np
print(dir(np.array))
.. parsed-literal::
['__class__', '__name__', 'copy', 'sort', '__bases__', '__dict__', 'dtype', 'flatten', 'itemsize', 'reshape', 'shape', 'size', 'strides', 'tobytes', 'transpose']
Operators included in the firmware
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A list of operators cannot be generated as shown above. If you really
need to find out, whether, e.g., the ``**`` operator is supported by the
firmware, you have to ``try`` it:
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
try:
print(a ** b)
except Exception as e:
print('operator is not supported: ', e)
.. parsed-literal::
operator is not supported: unsupported types for __pow__: 'ndarray', 'ndarray'
The exception above would be raised, if the firmware was compiled with
the
.. code:: c
#define NDARRAY_HAS_BINARY_OP_POWER (0)
definition.
|