1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
Universal functions
===================
Standard mathematical functions can be calculated on any scalar,
scalar-valued iterable (ranges, lists, tuples containing numbers), and
on ``ndarray``\ s without having to change the call signature. In all
cases the functions return a new ``ndarray`` of typecode ``float``
(since these functions usually generate float values, anyway). The only
exceptions to this rule are the ``exp``, and ``sqrt`` functions, which,
if ``ULAB_SUPPORTS_COMPLEX`` is set to 1 in
`ulab.h <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h>`__,
can return complex arrays, depending on the argument. All functions
execute faster with ``ndarray`` arguments than with iterables, because
the values of the input vector can be extracted faster.
At present, the following functions are supported (starred functions can
operate on, or can return complex arrays):
``acos``, ``acosh``, ``arctan2``, ``around``, ``asin``, ``asinh``,
``atan``, ``arctan2``, ``atanh``, ``ceil``, ``cos``, ``degrees``,
``exp*``, ``expm1``, ``floor``, ``log``, ``log10``, ``log2``,
``radians``, ``sin``, ``sinh``, ``sqrt*``, ``tan``, ``tanh``.
These functions are applied element-wise to the arguments, thus, e.g.,
the exponential of a matrix cannot be calculated in this way, only the
exponential of the matrix entries.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = range(9)
b = np.array(a)
# works with ranges, lists, tuples etc.
print('a:\t', a)
print('exp(a):\t', np.exp(a))
# with 1D arrays
print('\n=============\nb:\n', b)
print('exp(b):\n', np.exp(b))
# as well as with matrices
c = np.array(range(9)).reshape((3, 3))
print('\n=============\nc:\n', c)
print('exp(c):\n', np.exp(c))
.. parsed-literal::
a: range(0, 9)
exp(a): array([1.0, 2.718281828459045, 7.38905609893065, 20.08553692318767, 54.59815003314424, 148.4131591025766, 403.4287934927351, 1096.633158428459, 2980.957987041728], dtype=float64)
=============
b:
array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64)
exp(b):
array([1.0, 2.718281828459045, 7.38905609893065, 20.08553692318767, 54.59815003314424, 148.4131591025766, 403.4287934927351, 1096.633158428459, 2980.957987041728], dtype=float64)
=============
c:
array([[0.0, 1.0, 2.0],
[3.0, 4.0, 5.0],
[6.0, 7.0, 8.0]], dtype=float64)
exp(c):
array([[1.0, 2.718281828459045, 7.38905609893065],
[20.08553692318767, 54.59815003314424, 148.4131591025766],
[403.4287934927351, 1096.633158428459, 2980.957987041728]], dtype=float64)
Computation expenses
--------------------
The overhead for calculating with micropython iterables is quite
significant: for the 1000 samples below, the difference is more than 800
microseconds, because internally the function has to create the
``ndarray`` for the output, has to fetch the iterable’s items of unknown
type, and then convert them to floats. All these steps are skipped for
``ndarray``\ s, because these pieces of information are already known.
Doing the same with ``list`` comprehension requires 30 times more time
than with the ``ndarray``, which would become even more, if we converted
the resulting list to an ``ndarray``.
.. code::
# code to be run in micropython
from ulab import numpy as np
import math
a = [0]*1000
b = np.array(a)
@timeit
def timed_vector(iterable):
return np.exp(iterable)
@timeit
def timed_list(iterable):
return [math.exp(i) for i in iterable]
print('iterating over ndarray in ulab')
timed_vector(b)
print('\niterating over list in ulab')
timed_vector(a)
print('\niterating over list in python')
timed_list(a)
.. parsed-literal::
iterating over ndarray in ulab
execution time: 441 us
iterating over list in ulab
execution time: 1266 us
iterating over list in python
execution time: 11379 us
arctan2
-------
``numpy``:
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.arctan2.html
The two-argument inverse tangent function is also part of the ``vector``
sub-module. The function implements broadcasting as discussed in the
section on ``ndarray``\ s. Scalars (``micropython`` integers or floats)
are also allowed.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([1, 2.2, 33.33, 444.444])
print('a:\n', a)
print('\narctan2(a, 1.0)\n', np.arctan2(a, 1.0))
print('\narctan2(1.0, a)\n', np.arctan2(1.0, a))
print('\narctan2(a, a): \n', np.arctan2(a, a))
.. parsed-literal::
a:
array([1.0, 2.2, 33.33, 444.444], dtype=float64)
arctan2(a, 1.0)
array([0.7853981633974483, 1.14416883366802, 1.5408023243361, 1.568546328341769], dtype=float64)
arctan2(1.0, a)
array([0.7853981633974483, 0.426627493126876, 0.02999400245879636, 0.002249998453127392], dtype=float64)
arctan2(a, a):
array([0.7853981633974483, 0.7853981633974483, 0.7853981633974483, 0.7853981633974483], dtype=float64)
around
------
``numpy``:
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.around.html
``numpy``\ ’s ``around`` function can also be found in the ``vector``
sub-module. The function implements the ``decimals`` keyword argument
with default value ``0``. The first argument must be an ``ndarray``. If
this is not the case, the function raises a ``TypeError`` exception.
Note that ``numpy`` accepts general iterables. The ``out`` keyword
argument known from ``numpy`` is not accepted. The function always
returns an ndarray of type ``mp_float_t``.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([1, 2.2, 33.33, 444.444])
print('a:\t\t', a)
print('\ndecimals = 0\t', np.around(a, decimals=0))
print('\ndecimals = 1\t', np.around(a, decimals=1))
print('\ndecimals = -1\t', np.around(a, decimals=-1))
.. parsed-literal::
a: array([1.0, 2.2, 33.33, 444.444], dtype=float64)
decimals = 0 array([1.0, 2.0, 33.0, 444.0], dtype=float64)
decimals = 1 array([1.0, 2.2, 33.3, 444.4], dtype=float64)
decimals = -1 array([0.0, 0.0, 30.0, 440.0], dtype=float64)
exp
---
If ``ULAB_SUPPORTS_COMPLEX`` is set to 1 in
`ulab.h <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h>`__,
the exponential function can also take complex arrays as its argument,
in which case the return value is also complex.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([1, 2, 3])
print('a:\t\t', a)
print('exp(a):\t\t', np.exp(a))
print()
b = np.array([1+1j, 2+2j, 3+3j], dtype=np.complex)
print('b:\t\t', b)
print('exp(b):\t\t', np.exp(b))
.. parsed-literal::
a: array([1.0, 2.0, 3.0], dtype=float64)
exp(a): array([2.718281828459045, 7.38905609893065, 20.08553692318767], dtype=float64)
b: array([1.0+1.0j, 2.0+2.0j, 3.0+3.0j], dtype=complex)
exp(b): array([1.468693939915885+2.287355287178842j, -3.074932320639359+6.71884969742825j, -19.88453084414699+2.834471132487004j], dtype=complex)
sqrt
----
If ``ULAB_SUPPORTS_COMPLEX`` is set to 1 in
`ulab.h <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h>`__,
the exponential function can also take complex arrays as its argument,
in which case the return value is also complex. If the input is real,
but the results might be complex, the user is supposed to specify the
output ``dtype`` in the function call. Otherwise, the square roots of
negative numbers will result in ``NaN``.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([1, -1])
print('a:\t\t', a)
print('sqrt(a):\t\t', np.sqrt(a))
print('sqrt(a):\t\t', np.sqrt(a, dtype=np.complex))
.. parsed-literal::
a: array([1.0, -1.0], dtype=float64)
sqrt(a): array([1.0, nan], dtype=float64)
sqrt(a): array([1.0+0.0j, 0.0+1.0j], dtype=complex)
Vectorising generic python functions
------------------------------------
``numpy``:
https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html
The examples above use factory functions. In fact, they are nothing but
the vectorised versions of the standard mathematical functions.
User-defined ``python`` functions can also be vectorised by help of
``vectorize``. This function takes a positional argument, namely, the
``python`` function that you want to vectorise, and a non-mandatory
keyword argument, ``otypes``, which determines the ``dtype`` of the
output array. The ``otypes`` must be ``None`` (default), or any of the
``dtypes`` defined in ``ulab``. With ``None``, the output is
automatically turned into a float array.
The return value of ``vectorize`` is a ``micropython`` object that can
be called as a standard function, but which now accepts either a scalar,
an ``ndarray``, or a generic ``micropython`` iterable as its sole
argument. Note that the function that is to be vectorised must have a
single argument.
.. code::
# code to be run in micropython
from ulab import numpy as np
def f(x):
return x*x
vf = np.vectorize(f)
# calling with a scalar
print('{:20}'.format('f on a scalar: '), vf(44.0))
# calling with an ndarray
a = np.array([1, 2, 3, 4])
print('{:20}'.format('f on an ndarray: '), vf(a))
# calling with a list
print('{:20}'.format('f on a list: '), vf([2, 3, 4]))
.. parsed-literal::
f on a scalar: array([1936.0], dtype=float64)
f on an ndarray: array([1.0, 4.0, 9.0, 16.0], dtype=float64)
f on a list: array([4.0, 9.0, 16.0], dtype=float64)
As mentioned, the ``dtype`` of the resulting ``ndarray`` can be
specified via the ``otypes`` keyword. The value is bound to the function
object that ``vectorize`` returns, therefore, if the same function is to
be vectorised with different output types, then for each type a new
function object must be created.
.. code::
# code to be run in micropython
from ulab import numpy as np
l = [1, 2, 3, 4]
def f(x):
return x*x
vf1 = np.vectorize(f, otypes=np.uint8)
vf2 = np.vectorize(f, otypes=np.float)
print('{:20}'.format('output is uint8: '), vf1(l))
print('{:20}'.format('output is float: '), vf2(l))
.. parsed-literal::
output is uint8: array([1, 4, 9, 16], dtype=uint8)
output is float: array([1.0, 4.0, 9.0, 16.0], dtype=float64)
The ``otypes`` keyword argument cannot be used for type coercion: if the
function evaluates to a float, but ``otypes`` would dictate an integer
type, an exception will be raised:
.. code::
# code to be run in micropython
from ulab import numpy as np
int_list = [1, 2, 3, 4]
float_list = [1.0, 2.0, 3.0, 4.0]
def f(x):
return x*x
vf = np.vectorize(f, otypes=np.uint8)
print('{:20}'.format('integer list: '), vf(int_list))
# this will raise a TypeError exception
print(vf(float_list))
.. parsed-literal::
integer list: array([1, 4, 9, 16], dtype=uint8)
Traceback (most recent call last):
File "/dev/shm/micropython.py", line 14, in <module>
TypeError: can't convert float to int
Benchmarks
~~~~~~~~~~
It should be pointed out that the ``vectorize`` function produces the
pseudo-vectorised version of the ``python`` function that is fed into
it, i.e., on the C level, the same ``python`` function is called, with
the all-encompassing ``mp_obj_t`` type arguments, and all that happens
is that the ``for`` loop in ``[f(i) for i in iterable]`` runs purely in
C. Since type checking and type conversion in ``f()`` is expensive, the
speed-up is not so spectacular as when iterating over an ``ndarray``
with a factory function: a gain of approximately 30% can be expected,
when a native ``python`` type (e.g., ``list``) is returned by the
function, and this becomes around 50% (a factor of 2), if conversion to
an ``ndarray`` is also counted.
The following code snippet calculates the square of a 1000 numbers with
the vectorised function (which returns an ``ndarray``), with ``list``
comprehension, and with ``list`` comprehension followed by conversion to
an ``ndarray``. For comparison, the execution time is measured also for
the case, when the square is calculated entirely in ``ulab``.
.. code::
# code to be run in micropython
from ulab import numpy as np
def f(x):
return x*x
vf = np.vectorize(f)
@timeit
def timed_vectorised_square(iterable):
return vf(iterable)
@timeit
def timed_python_square(iterable):
return [f(i) for i in iterable]
@timeit
def timed_ndarray_square(iterable):
return np.array([f(i) for i in iterable])
@timeit
def timed_ulab_square(ndarray):
return ndarray**2
print('vectorised function')
squares = timed_vectorised_square(range(1000))
print('\nlist comprehension')
squares = timed_python_square(range(1000))
print('\nlist comprehension + ndarray conversion')
squares = timed_ndarray_square(range(1000))
print('\nsquaring an ndarray entirely in ulab')
a = np.array(range(1000))
squares = timed_ulab_square(a)
.. parsed-literal::
vectorised function
execution time: 7237 us
list comprehension
execution time: 10248 us
list comprehension + ndarray conversion
execution time: 12562 us
squaring an ndarray entirely in ulab
execution time: 560 us
From the comparisons above, it is obvious that ``python`` functions
should only be vectorised, when the same effect cannot be gotten in
``ulab`` only. However, although the time savings are not significant,
there is still a good reason for caring about vectorised functions.
Namely, user-defined ``python`` functions become universal, i.e., they
can accept generic iterables as well as ``ndarray``\ s as their
arguments. A vectorised function is still a one-liner, resulting in
transparent and elegant code.
A final comment on this subject: the ``f(x)`` that we defined is a
*generic* ``python`` function. This means that it is not required that
it just crunches some numbers. It has to return a number object, but it
can still access the hardware in the meantime. So, e.g.,
.. code:: python
led = pyb.LED(2)
def f(x):
if x < 100:
led.toggle()
return x*x
is perfectly valid code.
|