aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/extmod/ulab/docs/ulab-poly.ipynb
diff options
context:
space:
mode:
authorRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
committerRaghuram Subramani <raghus2247@gmail.com>2022-06-19 19:47:51 +0530
commit4fd287655a72b9aea14cdac715ad5b90ed082ed2 (patch)
tree65d393bc0e699dd12d05b29ba568e04cea666207 /circuitpython/extmod/ulab/docs/ulab-poly.ipynb
parent0150f70ce9c39e9e6dd878766c0620c85e47bed0 (diff)
add circuitpython code
Diffstat (limited to 'circuitpython/extmod/ulab/docs/ulab-poly.ipynb')
-rw-r--r--circuitpython/extmod/ulab/docs/ulab-poly.ipynb454
1 files changed, 454 insertions, 0 deletions
diff --git a/circuitpython/extmod/ulab/docs/ulab-poly.ipynb b/circuitpython/extmod/ulab/docs/ulab-poly.ipynb
new file mode 100644
index 0000000..9cd7223
--- /dev/null
+++ b/circuitpython/extmod/ulab/docs/ulab-poly.ipynb
@@ -0,0 +1,454 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2020-05-01T09:27:13.438054Z",
+ "start_time": "2020-05-01T09:27:13.191491Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Populating the interactive namespace from numpy and matplotlib\n"
+ ]
+ }
+ ],
+ "source": [
+ "%pylab inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Notebook magic"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2020-08-03T18:32:45.342280Z",
+ "start_time": "2020-08-03T18:32:45.338442Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "from IPython.core.magic import Magics, magics_class, line_cell_magic\n",
+ "from IPython.core.magic import cell_magic, register_cell_magic, register_line_magic\n",
+ "from IPython.core.magic_arguments import argument, magic_arguments, parse_argstring\n",
+ "import subprocess\n",
+ "import os"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2020-07-23T20:31:25.296014Z",
+ "start_time": "2020-07-23T20:31:25.265937Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "@magics_class\n",
+ "class PyboardMagic(Magics):\n",
+ " @cell_magic\n",
+ " @magic_arguments()\n",
+ " @argument('-skip')\n",
+ " @argument('-unix')\n",
+ " @argument('-pyboard')\n",
+ " @argument('-file')\n",
+ " @argument('-data')\n",
+ " @argument('-time')\n",
+ " @argument('-memory')\n",
+ " def micropython(self, line='', cell=None):\n",
+ " args = parse_argstring(self.micropython, line)\n",
+ " if args.skip: # doesn't care about the cell's content\n",
+ " print('skipped execution')\n",
+ " return None # do not parse the rest\n",
+ " if args.unix: # tests the code on the unix port. Note that this works on unix only\n",
+ " with open('/dev/shm/micropython.py', 'w') as fout:\n",
+ " fout.write(cell)\n",
+ " proc = subprocess.Popen([\"../../micropython/ports/unix/micropython\", \"/dev/shm/micropython.py\"], \n",
+ " stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n",
+ " print(proc.stdout.read().decode(\"utf-8\"))\n",
+ " print(proc.stderr.read().decode(\"utf-8\"))\n",
+ " return None\n",
+ " if args.file: # can be used to copy the cell content onto the pyboard's flash\n",
+ " spaces = \" \"\n",
+ " try:\n",
+ " with open(args.file, 'w') as fout:\n",
+ " fout.write(cell.replace('\\t', spaces))\n",
+ " printf('written cell to {}'.format(args.file))\n",
+ " except:\n",
+ " print('Failed to write to disc!')\n",
+ " return None # do not parse the rest\n",
+ " if args.data: # can be used to load data from the pyboard directly into kernel space\n",
+ " message = pyb.exec(cell)\n",
+ " if len(message) == 0:\n",
+ " print('pyboard >>>')\n",
+ " else:\n",
+ " print(message.decode('utf-8'))\n",
+ " # register new variable in user namespace\n",
+ " self.shell.user_ns[args.data] = string_to_matrix(message.decode(\"utf-8\"))\n",
+ " \n",
+ " if args.time: # measures the time of executions\n",
+ " pyb.exec('import utime')\n",
+ " message = pyb.exec('t = utime.ticks_us()\\n' + cell + '\\ndelta = utime.ticks_diff(utime.ticks_us(), t)' + \n",
+ " \"\\nprint('execution time: {:d} us'.format(delta))\")\n",
+ " print(message.decode('utf-8'))\n",
+ " \n",
+ " if args.memory: # prints out memory information \n",
+ " message = pyb.exec('from micropython import mem_info\\nprint(mem_info())\\n')\n",
+ " print(\"memory before execution:\\n========================\\n\", message.decode('utf-8'))\n",
+ " message = pyb.exec(cell)\n",
+ " print(\">>> \", message.decode('utf-8'))\n",
+ " message = pyb.exec('print(mem_info())')\n",
+ " print(\"memory after execution:\\n========================\\n\", message.decode('utf-8'))\n",
+ "\n",
+ " if args.pyboard:\n",
+ " message = pyb.exec(cell)\n",
+ " print(message.decode('utf-8'))\n",
+ "\n",
+ "ip = get_ipython()\n",
+ "ip.register_magics(PyboardMagic)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## pyboard"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2020-05-07T07:35:35.126401Z",
+ "start_time": "2020-05-07T07:35:35.105824Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import pyboard\n",
+ "pyb = pyboard.Pyboard('/dev/ttyACM0')\n",
+ "pyb.enter_raw_repl()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2020-05-19T19:11:18.145548Z",
+ "start_time": "2020-05-19T19:11:18.137468Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "pyb.exit_raw_repl()\n",
+ "pyb.close()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2020-05-07T07:35:38.725924Z",
+ "start_time": "2020-05-07T07:35:38.645488Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%micropython -pyboard 1\n",
+ "\n",
+ "import utime\n",
+ "import ulab as np\n",
+ "\n",
+ "def timeit(n=1000):\n",
+ " def wrapper(f, *args, **kwargs):\n",
+ " func_name = str(f).split(' ')[1]\n",
+ " def new_func(*args, **kwargs):\n",
+ " run_times = np.zeros(n, dtype=np.uint16)\n",
+ " for i in range(n):\n",
+ " t = utime.ticks_us()\n",
+ " result = f(*args, **kwargs)\n",
+ " run_times[i] = utime.ticks_diff(utime.ticks_us(), t)\n",
+ " print('{}() execution times based on {} cycles'.format(func_name, n, (delta2-delta1)/n))\n",
+ " print('\\tbest: %d us'%np.min(run_times))\n",
+ " print('\\tworst: %d us'%np.max(run_times))\n",
+ " print('\\taverage: %d us'%np.mean(run_times))\n",
+ " print('\\tdeviation: +/-%.3f us'%np.std(run_times)) \n",
+ " return result\n",
+ " return new_func\n",
+ " return wrapper\n",
+ "\n",
+ "def timeit(f, *args, **kwargs):\n",
+ " func_name = str(f).split(' ')[1]\n",
+ " def new_func(*args, **kwargs):\n",
+ " t = utime.ticks_us()\n",
+ " result = f(*args, **kwargs)\n",
+ " print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')\n",
+ " return result\n",
+ " return new_func"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "__END_OF_DEFS__"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Polynomials\n",
+ "\n",
+ "Functions in the polynomial sub-module can be invoked by importing the module first."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## polyval\n",
+ "\n",
+ "`numpy`: https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyval.html\n",
+ "\n",
+ "`polyval` takes two arguments, both arrays or other iterables."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 187,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-11-01T12:53:22.448303Z",
+ "start_time": "2019-11-01T12:53:22.435176Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "coefficients: [1, 1, 1, 0]\n",
+ "independent values: [0, 1, 2, 3, 4]\n",
+ "\n",
+ "values of p(x): array([0.0, 3.0, 14.0, 39.0, 84.0], dtype=float)\n",
+ "\n",
+ "ndarray (a): array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)\n",
+ "value of p(a): array([0.0, 3.0, 14.0, 39.0, 84.0], dtype=float)\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%micropython -unix 1\n",
+ "\n",
+ "import ulab as np\n",
+ "from ulab import poly\n",
+ "\n",
+ "p = [1, 1, 1, 0]\n",
+ "x = [0, 1, 2, 3, 4]\n",
+ "print('coefficients: ', p)\n",
+ "print('independent values: ', x)\n",
+ "print('\\nvalues of p(x): ', poly.polyval(p, x))\n",
+ "\n",
+ "# the same works with one-dimensional ndarrays\n",
+ "a = np.array(x)\n",
+ "print('\\nndarray (a): ', a)\n",
+ "print('value of p(a): ', poly.polyval(p, a))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## polyfit\n",
+ "\n",
+ "`numpy`: https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html\n",
+ "\n",
+ "polyfit takes two, or three arguments. The last one is the degree of the polynomial that will be fitted, the last but one is an array or iterable with the `y` (dependent) values, and the first one, an array or iterable with the `x` (independent) values, can be dropped. If that is the case, `x` will be generated in the function, assuming uniform sampling. \n",
+ "\n",
+ "If the length of `x`, and `y` are not the same, the function raises a `ValueError`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 189,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-11-01T12:54:08.326802Z",
+ "start_time": "2019-11-01T12:54:08.311182Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "independent values:\t array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0], dtype=float)\n",
+ "dependent values:\t array([9.0, 4.0, 1.0, 0.0, 1.0, 4.0, 9.0], dtype=float)\n",
+ "fitted values:\t\t array([1.0, -6.0, 9.000000000000004], dtype=float)\n",
+ "\n",
+ "dependent values:\t array([9.0, 4.0, 1.0, 0.0, 1.0, 4.0, 9.0], dtype=float)\n",
+ "fitted values:\t\t array([1.0, -6.0, 9.000000000000004], dtype=float)\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%micropython -unix 1\n",
+ "\n",
+ "import ulab as np\n",
+ "from ulab import poly\n",
+ "\n",
+ "x = np.array([0, 1, 2, 3, 4, 5, 6])\n",
+ "y = np.array([9, 4, 1, 0, 1, 4, 9])\n",
+ "print('independent values:\\t', x)\n",
+ "print('dependent values:\\t', y)\n",
+ "print('fitted values:\\t\\t', poly.polyfit(x, y, 2))\n",
+ "\n",
+ "# the same with missing x\n",
+ "print('\\ndependent values:\\t', y)\n",
+ "print('fitted values:\\t\\t', poly.polyfit(y, 2))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Execution time\n",
+ "\n",
+ "`polyfit` is based on the inversion of a matrix (there is more on the background in https://en.wikipedia.org/wiki/Polynomial_regression), and it requires the intermediate storage of `2*N*(deg+1)` floats, where `N` is the number of entries in the input array, and `deg` is the fit's degree. The additional computation costs of the matrix inversion discussed in [inv](#inv) also apply. The example from above needs around 150 microseconds to return:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 560,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-10-20T07:24:39.002243Z",
+ "start_time": "2019-10-20T07:24:38.978687Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "execution time: 153 us\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%micropython -pyboard 1\n",
+ "\n",
+ "import ulab as np\n",
+ "from ulab import poly\n",
+ "\n",
+ "@timeit\n",
+ "def time_polyfit(x, y, n):\n",
+ " return poly.polyfit(x, y, n)\n",
+ "\n",
+ "x = np.array([0, 1, 2, 3, 4, 5, 6])\n",
+ "y = np.array([9, 4, 1, 0, 1, 4, 9])\n",
+ "\n",
+ "time_polyfit(x, y, 2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.5"
+ },
+ "toc": {
+ "base_numbering": 1,
+ "nav_menu": {},
+ "number_sections": true,
+ "sideBar": true,
+ "skip_h1_title": false,
+ "title_cell": "Table of Contents",
+ "title_sidebar": "Contents",
+ "toc_cell": false,
+ "toc_position": {
+ "height": "calc(100% - 180px)",
+ "left": "10px",
+ "top": "150px",
+ "width": "382.797px"
+ },
+ "toc_section_display": true,
+ "toc_window_display": true
+ },
+ "varInspector": {
+ "cols": {
+ "lenName": 16,
+ "lenType": 16,
+ "lenVar": 40
+ },
+ "kernels_config": {
+ "python": {
+ "delete_cmd_postfix": "",
+ "delete_cmd_prefix": "del ",
+ "library": "var_list.py",
+ "varRefreshCmd": "print(var_dic_list())"
+ },
+ "r": {
+ "delete_cmd_postfix": ") ",
+ "delete_cmd_prefix": "rm(",
+ "library": "var_list.r",
+ "varRefreshCmd": "cat(var_dic_list()) "
+ }
+ },
+ "types_to_exclude": [
+ "module",
+ "function",
+ "builtin_function_or_method",
+ "instance",
+ "_Feature"
+ ],
+ "window_display": false
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}