diff options
| author | Raghuram Subramani <raghus2247@gmail.com> | 2022-06-19 19:47:51 +0530 |
|---|---|---|
| committer | Raghuram Subramani <raghus2247@gmail.com> | 2022-06-19 19:47:51 +0530 |
| commit | 4fd287655a72b9aea14cdac715ad5b90ed082ed2 (patch) | |
| tree | 65d393bc0e699dd12d05b29ba568e04cea666207 /circuitpython/extmod/ulab/docs/scipy-signal.ipynb | |
| parent | 0150f70ce9c39e9e6dd878766c0620c85e47bed0 (diff) | |
add circuitpython code
Diffstat (limited to 'circuitpython/extmod/ulab/docs/scipy-signal.ipynb')
| -rw-r--r-- | circuitpython/extmod/ulab/docs/scipy-signal.ipynb | 482 |
1 files changed, 482 insertions, 0 deletions
diff --git a/circuitpython/extmod/ulab/docs/scipy-signal.ipynb b/circuitpython/extmod/ulab/docs/scipy-signal.ipynb new file mode 100644 index 0000000..c4d5f85 --- /dev/null +++ b/circuitpython/extmod/ulab/docs/scipy-signal.ipynb @@ -0,0 +1,482 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-12T16:11:12.111639Z", + "start_time": "2021-01-12T16:11:11.914041Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + } + ], + "source": [ + "%pylab inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Notebook magic" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "ExecuteTime": { + "end_time": "2022-01-07T19:20:19.755153Z", + "start_time": "2022-01-07T19:20:19.745524Z" + } + }, + "outputs": [], + "source": [ + "from IPython.core.magic import Magics, magics_class, line_cell_magic\n", + "from IPython.core.magic import cell_magic, register_cell_magic, register_line_magic\n", + "from IPython.core.magic_arguments import argument, magic_arguments, parse_argstring\n", + "import subprocess\n", + "import os" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2022-01-07T19:20:27.595871Z", + "start_time": "2022-01-07T19:20:27.565514Z" + } + }, + "outputs": [], + "source": [ + "@magics_class\n", + "class PyboardMagic(Magics):\n", + " @cell_magic\n", + " @magic_arguments()\n", + " @argument('-skip')\n", + " @argument('-unix')\n", + " @argument('-pyboard')\n", + " @argument('-file')\n", + " @argument('-data')\n", + " @argument('-time')\n", + " @argument('-memory')\n", + " def micropython(self, line='', cell=None):\n", + " args = parse_argstring(self.micropython, line)\n", + " if args.skip: # doesn't care about the cell's content\n", + " print('skipped execution')\n", + " return None # do not parse the rest\n", + " if args.unix: # tests the code on the unix port. Note that this works on unix only\n", + " with open('/dev/shm/micropython.py', 'w') as fout:\n", + " fout.write(cell)\n", + " proc = subprocess.Popen([\"../micropython/ports/unix/micropython-2\", \"/dev/shm/micropython.py\"], \n", + " stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n", + " print(proc.stdout.read().decode(\"utf-8\"))\n", + " print(proc.stderr.read().decode(\"utf-8\"))\n", + " return None\n", + " if args.file: # can be used to copy the cell content onto the pyboard's flash\n", + " spaces = \" \"\n", + " try:\n", + " with open(args.file, 'w') as fout:\n", + " fout.write(cell.replace('\\t', spaces))\n", + " printf('written cell to {}'.format(args.file))\n", + " except:\n", + " print('Failed to write to disc!')\n", + " return None # do not parse the rest\n", + " if args.data: # can be used to load data from the pyboard directly into kernel space\n", + " message = pyb.exec(cell)\n", + " if len(message) == 0:\n", + " print('pyboard >>>')\n", + " else:\n", + " print(message.decode('utf-8'))\n", + " # register new variable in user namespace\n", + " self.shell.user_ns[args.data] = string_to_matrix(message.decode(\"utf-8\"))\n", + " \n", + " if args.time: # measures the time of executions\n", + " pyb.exec('import utime')\n", + " message = pyb.exec('t = utime.ticks_us()\\n' + cell + '\\ndelta = utime.ticks_diff(utime.ticks_us(), t)' + \n", + " \"\\nprint('execution time: {:d} us'.format(delta))\")\n", + " print(message.decode('utf-8'))\n", + " \n", + " if args.memory: # prints out memory information \n", + " message = pyb.exec('from micropython import mem_info\\nprint(mem_info())\\n')\n", + " print(\"memory before execution:\\n========================\\n\", message.decode('utf-8'))\n", + " message = pyb.exec(cell)\n", + " print(\">>> \", message.decode('utf-8'))\n", + " message = pyb.exec('print(mem_info())')\n", + " print(\"memory after execution:\\n========================\\n\", message.decode('utf-8'))\n", + "\n", + " if args.pyboard:\n", + " message = pyb.exec(cell)\n", + " print(message.decode('utf-8'))\n", + "\n", + "ip = get_ipython()\n", + "ip.register_magics(PyboardMagic)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## pyboard" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "ExecuteTime": { + "end_time": "2020-05-07T07:35:35.126401Z", + "start_time": "2020-05-07T07:35:35.105824Z" + } + }, + "outputs": [], + "source": [ + "import pyboard\n", + "pyb = pyboard.Pyboard('/dev/ttyACM0')\n", + "pyb.enter_raw_repl()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "ExecuteTime": { + "end_time": "2020-05-19T19:11:18.145548Z", + "start_time": "2020-05-19T19:11:18.137468Z" + } + }, + "outputs": [], + "source": [ + "pyb.exit_raw_repl()\n", + "pyb.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "ExecuteTime": { + "end_time": "2020-05-07T07:35:38.725924Z", + "start_time": "2020-05-07T07:35:38.645488Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "%%micropython -pyboard 1\n", + "\n", + "import utime\n", + "import ulab as np\n", + "\n", + "def timeit(n=1000):\n", + " def wrapper(f, *args, **kwargs):\n", + " func_name = str(f).split(' ')[1]\n", + " def new_func(*args, **kwargs):\n", + " run_times = np.zeros(n, dtype=np.uint16)\n", + " for i in range(n):\n", + " t = utime.ticks_us()\n", + " result = f(*args, **kwargs)\n", + " run_times[i] = utime.ticks_diff(utime.ticks_us(), t)\n", + " print('{}() execution times based on {} cycles'.format(func_name, n, (delta2-delta1)/n))\n", + " print('\\tbest: %d us'%np.min(run_times))\n", + " print('\\tworst: %d us'%np.max(run_times))\n", + " print('\\taverage: %d us'%np.mean(run_times))\n", + " print('\\tdeviation: +/-%.3f us'%np.std(run_times)) \n", + " return result\n", + " return new_func\n", + " return wrapper\n", + "\n", + "def timeit(f, *args, **kwargs):\n", + " func_name = str(f).split(' ')[1]\n", + " def new_func(*args, **kwargs):\n", + " t = utime.ticks_us()\n", + " result = f(*args, **kwargs)\n", + " print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')\n", + " return result\n", + " return new_func" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__END_OF_DEFS__" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# scipy.signal\n", + "\n", + "Functions in the `signal` module can be called by prepending them by `scipy.signal.`. The module defines the following two functions:\n", + "\n", + "1. [scipy.signal.sosfilt](#sosfilt)\n", + "1. [scipy.signal.spectrogram](#spectrogram)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## sosfilt\n", + "\n", + "`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt.html \n", + "\n", + "Filter data along one dimension using cascaded second-order sections.\n", + "\n", + "The function takes two positional arguments, `sos`, the filter segments of length 6, and the one-dimensional, uniformly sampled data set to be filtered. Returns the filtered data, or the filtered data and the final filter delays, if the `zi` keyword arguments is supplied. The keyword argument must be a float `ndarray` of shape `(n_sections, 2)`. If `zi` is not passed to the function, the initial values are assumed to be 0." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2020-06-19T20:24:10.529668Z", + "start_time": "2020-06-19T20:24:10.520389Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "y: array([0.0, 1.0, -4.0, 24.0, -104.0, 440.0, -1728.0, 6532.000000000001, -23848.0, 84864.0], dtype=float)\n", + "\n", + "\n" + ] + } + ], + "source": [ + "%%micropython -unix 1\n", + "\n", + "from ulab import numpy as np\n", + "from ulab import scipy as spy\n", + "\n", + "x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n", + "sos = [[1, 2, 3, 1, 5, 6], [1, 2, 3, 1, 5, 6]]\n", + "y = spy.signal.sosfilt(sos, x)\n", + "print('y: ', y)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "ExecuteTime": { + "end_time": "2020-06-19T20:27:39.508508Z", + "start_time": "2020-06-19T20:27:39.498256Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "y: array([4.0, -16.0, 63.00000000000001, -227.0, 802.9999999999999, -2751.0, 9271.000000000001, -30775.0, 101067.0, -328991.0000000001], dtype=float)\n", + "\n", + "========================================\n", + "zf: array([[37242.0, 74835.0],\n", + "\t [1026187.0, 1936542.0]], dtype=float)\n", + "\n", + "\n" + ] + } + ], + "source": [ + "%%micropython -unix 1\n", + "\n", + "from ulab import numpy as np\n", + "from ulab import scipy as spy\n", + "\n", + "x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n", + "sos = [[1, 2, 3, 1, 5, 6], [1, 2, 3, 1, 5, 6]]\n", + "# initial conditions of the filter\n", + "zi = np.array([[1, 2], [3, 4]])\n", + "\n", + "y, zf = spy.signal.sosfilt(sos, x, zi=zi)\n", + "print('y: ', y)\n", + "print('\\n' + '='*40 + '\\nzf: ', zf)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## spectrogram\n", + "\n", + "In addition to the Fourier transform and its inverse, `ulab` also sports a function called `spectrogram`, which returns the absolute value of the Fourier transform. This could be used to find the dominant spectral component in a time series. The arguments are treated in the same way as in `fft`, and `ifft`. This means that, if the firmware was compiled with complex support, the input can also be a complex array." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-12T16:12:06.573408Z", + "start_time": "2021-01-12T16:12:06.560558Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "original vector:\t array([0.0, 0.009775015390171337, 0.01954909674625918, ..., -0.5275140569487312, -0.5357931822978732, -0.5440211108893639], dtype=float64)\n", + "\n", + "spectrum:\t array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)\n", + "\n", + "\n" + ] + } + ], + "source": [ + "%%micropython -unix 1\n", + "\n", + "from ulab import numpy as np\n", + "from ulab import scipy as spy\n", + "\n", + "x = np.linspace(0, 10, num=1024)\n", + "y = np.sin(x)\n", + "\n", + "a = spy.signal.spectrogram(y)\n", + "\n", + "print('original vector:\\t', y)\n", + "print('\\nspectrum:\\t', a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As such, `spectrogram` is really just a shorthand for `np.sqrt(a*a + b*b)`:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-12T16:13:36.726662Z", + "start_time": "2021-01-12T16:13:36.705036Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "spectrum calculated the hard way:\t array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)\n", + "\n", + "spectrum calculated the lazy way:\t array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)\n", + "\n", + "\n" + ] + } + ], + "source": [ + "%%micropython -unix 1\n", + "\n", + "from ulab import numpy as np\n", + "from ulab import scipy as spy\n", + "\n", + "x = np.linspace(0, 10, num=1024)\n", + "y = np.sin(x)\n", + "\n", + "a, b = np.fft.fft(y)\n", + "\n", + "print('\\nspectrum calculated the hard way:\\t', np.sqrt(a*a + b*b))\n", + "\n", + "a = spy.signal.spectrogram(y)\n", + "\n", + "print('\\nspectrum calculated the lazy way:\\t', a)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "382.797px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} |
