summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt360
-rw-r--r--Documentation/scheduler/sched-energy.txt362
-rw-r--r--Documentation/scheduler/sched-tune.txt366
-rw-r--r--arch/arm/include/asm/topology.h7
-rw-r--r--arch/arm/kernel/topology.c149
-rw-r--r--arch/arm64/include/asm/topology.h9
-rw-r--r--arch/arm64/kernel/topology.c81
-rw-r--r--drivers/cpufreq/Kconfig21
-rw-r--r--drivers/cpufreq/cpufreq.c58
-rw-r--r--drivers/cpuidle/cpuidle.c4
-rw-r--r--include/linux/cgroup_subsys.h4
-rw-r--r--include/linux/cpufreq.h16
-rw-r--r--include/linux/cpuidle.h2
-rw-r--r--include/linux/sched.h86
-rw-r--r--include/linux/sched/sysctl.h26
-rw-r--r--include/linux/sched_energy.h44
-rw-r--r--include/linux/vmstat.h2
-rw-r--r--include/trace/events/cpufreq_sched.h87
-rw-r--r--include/trace/events/power.h7
-rw-r--r--include/trace/events/sched.h497
-rw-r--r--init/Kconfig53
-rw-r--r--kernel/exit.c5
-rw-r--r--kernel/sched/Makefile5
-rw-r--r--kernel/sched/core.c345
-rw-r--r--kernel/sched/cpufreq_sched.c499
-rw-r--r--kernel/sched/cputime.c16
-rw-r--r--kernel/sched/deadline.c33
-rw-r--r--kernel/sched/energy.c124
-rw-r--r--kernel/sched/fair.c1300
-rw-r--r--kernel/sched/features.h5
-rw-r--r--kernel/sched/idle.c4
-rw-r--r--kernel/sched/rt.c106
-rw-r--r--kernel/sched/sched.h264
-rw-r--r--kernel/sched/stop_task.c3
-rw-r--r--kernel/sched/tune.c949
-rw-r--r--kernel/sched/tune.h55
-rw-r--r--kernel/sched/walt.c1170
-rw-r--r--kernel/sched/walt.h62
-rw-r--r--kernel/sysctl.c73
-rw-r--r--lib/Kconfig.debug9
-rw-r--r--mm/vmstat.c69
41 files changed, 7187 insertions, 150 deletions
diff --git a/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt b/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt
new file mode 100644
index 000000000000..11216f09e596
--- /dev/null
+++ b/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt
@@ -0,0 +1,360 @@
+===========================================================
+Energy cost bindings for Energy Aware Scheduling
+===========================================================
+
+===========================================================
+1 - Introduction
+===========================================================
+
+This note specifies bindings required for energy-aware scheduling
+(EAS)[1]. Historically, the scheduler's primary objective has been
+performance. EAS aims to provide an alternative objective - energy
+efficiency. EAS relies on a simple platform energy cost model to
+guide scheduling decisions. The model only considers the CPU
+subsystem.
+
+This note is aligned with the definition of the layout of physical
+CPUs in the system as described in the ARM topology binding
+description [2]. The concept is applicable to any system so long as
+the cost model data is provided for those processing elements in
+that system's topology that EAS is required to service.
+
+Processing elements refer to hardware threads, CPUs and clusters of
+related CPUs in increasing order of hierarchy.
+
+EAS requires two key cost metrics - busy costs and idle costs. Busy
+costs comprise of a list of compute capacities for the processing
+element in question and the corresponding power consumption at that
+capacity. Idle costs comprise of a list of power consumption values
+for each idle state [C-state] that the processing element supports.
+For a detailed description of these metrics, their derivation and
+their use see [3].
+
+These cost metrics are required for processing elements in all
+scheduling domain levels that EAS is required to service.
+
+===========================================================
+2 - energy-costs node
+===========================================================
+
+Energy costs for the processing elements in scheduling domains that
+EAS is required to service are defined in the energy-costs node
+which acts as a container for the actual per processing element cost
+nodes. A single energy-costs node is required for a given system.
+
+- energy-costs node
+
+ Usage: Required
+
+ Description: The energy-costs node is a container node and
+ it's sub-nodes describe costs for each processing element at
+ all scheduling domain levels that EAS is required to
+ service.
+
+ Node name must be "energy-costs".
+
+ The energy-costs node's parent node must be the cpus node.
+
+ The energy-costs node's child nodes can be:
+
+ - one or more cost nodes.
+
+ Any other configuration is considered invalid.
+
+The energy-costs node can only contain a single type of child node
+whose bindings are described in paragraph 4.
+
+===========================================================
+3 - energy-costs node child nodes naming convention
+===========================================================
+
+energy-costs child nodes must follow a naming convention where the
+node name must be "thread-costN", "core-costN", "cluster-costN"
+depending on whether the costs in the node are for a thread, core or
+cluster. N (where N = {0, 1, ...}) is the node number and has no
+bearing to the OS' logical thread, core or cluster index.
+
+===========================================================
+4 - cost node bindings
+===========================================================
+
+Bindings for cost nodes are defined as follows:
+
+- cluster-cost node
+
+ Description: must be declared within an energy-costs node. A
+ system can contain multiple clusters and each cluster
+ serviced by EAS must have a corresponding cluster-costs
+ node.
+
+ The cluster-cost node name must be "cluster-costN" as
+ described in 3 above.
+
+ A cluster-cost node must be a leaf node with no children.
+
+ Properties for cluster-cost nodes are described in paragraph
+ 5 below.
+
+ Any other configuration is considered invalid.
+
+- core-cost node
+
+ Description: must be declared within an energy-costs node. A
+ system can contain multiple cores and each core serviced by
+ EAS must have a corresponding core-cost node.
+
+ The core-cost node name must be "core-costN" as described in
+ 3 above.
+
+ A core-cost node must be a leaf node with no children.
+
+ Properties for core-cost nodes are described in paragraph
+ 5 below.
+
+ Any other configuration is considered invalid.
+
+- thread-cost node
+
+ Description: must be declared within an energy-costs node. A
+ system can contain cores with multiple hardware threads and
+ each thread serviced by EAS must have a corresponding
+ thread-cost node.
+
+ The core-cost node name must be "core-costN" as described in
+ 3 above.
+
+ A core-cost node must be a leaf node with no children.
+
+ Properties for thread-cost nodes are described in paragraph
+ 5 below.
+
+ Any other configuration is considered invalid.
+
+===========================================================
+5 - Cost node properties
+==========================================================
+
+All cost node types must have only the following properties:
+
+- busy-cost-data
+
+ Usage: required
+ Value type: An array of 2-item tuples. Each item is of type
+ u32.
+ Definition: The first item in the tuple is the capacity
+ value as described in [3]. The second item in the tuple is
+ the energy cost value as described in [3].
+
+- idle-cost-data
+
+ Usage: required
+ Value type: An array of 1-item tuples. The item is of type
+ u32.
+ Definition: The item in the tuple is the energy cost value
+ as described in [3].
+
+===========================================================
+4 - Extensions to the cpu node
+===========================================================
+
+The cpu node is extended with a property that establishes the
+connection between the processing element represented by the cpu
+node and the cost-nodes associated with this processing element.
+
+The connection is expressed in line with the topological hierarchy
+that this processing element belongs to starting with the level in
+the hierarchy that this processing element itself belongs to through
+to the highest level that EAS is required to service. The
+connection cannot be sparse and must be contiguous from the
+processing element's level through to the highest desired level. The
+highest desired level must be the same for all processing elements.
+
+Example: Given that a cpu node may represent a thread that is a part
+of a core, this property may contain multiple elements which
+associate the thread with cost nodes describing the costs for the
+thread itself, the core the thread belongs to, the cluster the core
+belongs to and so on. The elements must be ordered from the lowest
+level nodes to the highest desired level that EAS must service. The
+highest desired level must be the same for all cpu nodes. The
+elements must not be sparse: there must be elements for the current
+thread, the next level of hierarchy (core) and so on without any
+'holes'.
+
+Example: Given that a cpu node may represent a core that is a part
+of a cluster of related cpus this property may contain multiple
+elements which associate the core with cost nodes describing the
+costs for the core itself, the cluster the core belongs to and so
+on. The elements must be ordered from the lowest level nodes to the
+highest desired level that EAS must service. The highest desired
+level must be the same for all cpu nodes. The elements must not be
+sparse: there must be elements for the current thread, the next
+level of hierarchy (core) and so on without any 'holes'.
+
+If the system comprises of hierarchical clusters of clusters, this
+property will contain multiple associations with the relevant number
+of cluster elements in hierarchical order.
+
+Property added to the cpu node:
+
+- sched-energy-costs
+
+ Usage: required
+ Value type: List of phandles
+ Definition: a list of phandles to specific cost nodes in the
+ energy-costs parent node that correspond to the processing
+ element represented by this cpu node in hierarchical order
+ of topology.
+
+ The order of phandles in the list is significant. The first
+ phandle is to the current processing element's own cost
+ node. Subsequent phandles are to higher hierarchical level
+ cost nodes up until the maximum level that EAS is to
+ service.
+
+ All cpu nodes must have the same highest level cost node.
+
+ The phandle list must not be sparsely populated with handles
+ to non-contiguous hierarchical levels. See commentary above
+ for clarity.
+
+ Any other configuration is invalid.
+
+===========================================================
+5 - Example dts
+===========================================================
+
+Example 1 (ARM 64-bit, 6-cpu system, two clusters of cpus, one
+cluster of 2 Cortex-A57 cpus, one cluster of 4 Cortex-A53 cpus):
+
+cpus {
+ #address-cells = <2>;
+ #size-cells = <0>;
+ .
+ .
+ .
+ A57_0: cpu@0 {
+ compatible = "arm,cortex-a57","arm,armv8";
+ reg = <0x0 0x0>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A57_L2>;
+ clocks = <&scpi_dvfs 0>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>;
+ };
+
+ A57_1: cpu@1 {
+ compatible = "arm,cortex-a57","arm,armv8";
+ reg = <0x0 0x1>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A57_L2>;
+ clocks = <&scpi_dvfs 0>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>;
+ };
+
+ A53_0: cpu@100 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x100>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ A53_1: cpu@101 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x101>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ A53_2: cpu@102 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x102>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ A53_3: cpu@103 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x103>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ energy-costs {
+ CPU_COST_0: core-cost0 {
+ busy-cost-data = <
+ 417 168
+ 579 251
+ 744 359
+ 883 479
+ 1024 616
+ >;
+ idle-cost-data = <
+ 15
+ 0
+ >;
+ };
+ CPU_COST_1: core-cost1 {
+ busy-cost-data = <
+ 235 33
+ 302 46
+ 368 61
+ 406 76
+ 447 93
+ >;
+ idle-cost-data = <
+ 6
+ 0
+ >;
+ };
+ CLUSTER_COST_0: cluster-cost0 {
+ busy-cost-data = <
+ 417 24
+ 579 32
+ 744 43
+ 883 49
+ 1024 64
+ >;
+ idle-cost-data = <
+ 65
+ 24
+ >;
+ };
+ CLUSTER_COST_1: cluster-cost1 {
+ busy-cost-data = <
+ 235 26
+ 303 30
+ 368 39
+ 406 47
+ 447 57
+ >;
+ idle-cost-data = <
+ 56
+ 17
+ >;
+ };
+ };
+};
+
+===============================================================================
+[1] https://lkml.org/lkml/2015/5/12/728
+[2] Documentation/devicetree/bindings/topology.txt
+[3] Documentation/scheduler/sched-energy.txt
diff --git a/Documentation/scheduler/sched-energy.txt b/Documentation/scheduler/sched-energy.txt
new file mode 100644
index 000000000000..dab2f9088b33
--- /dev/null
+++ b/Documentation/scheduler/sched-energy.txt
@@ -0,0 +1,362 @@
+Energy cost model for energy-aware scheduling (EXPERIMENTAL)
+
+Introduction
+=============
+
+The basic energy model uses platform energy data stored in sched_group_energy
+data structures attached to the sched_groups in the sched_domain hierarchy. The
+energy cost model offers two functions that can be used to guide scheduling
+decisions:
+
+1. static unsigned int sched_group_energy(struct energy_env *eenv)
+2. static int energy_diff(struct energy_env *eenv)
+
+sched_group_energy() estimates the energy consumed by all cpus in a specific
+sched_group including any shared resources owned exclusively by this group of
+cpus. Resources shared with other cpus are excluded (e.g. later level caches).
+
+energy_diff() estimates the total energy impact of a utilization change. That
+is, adding, removing, or migrating utilization (tasks).
+
+Both functions use a struct energy_env to specify the scenario to be evaluated:
+
+ struct energy_env {
+ struct sched_group *sg_top;
+ struct sched_group *sg_cap;
+ int cap_idx;
+ int util_delta;
+ int src_cpu;
+ int dst_cpu;
+ int energy;
+ };
+
+sg_top: sched_group to be evaluated. Not used by energy_diff().
+
+sg_cap: sched_group covering the cpus in the same frequency domain. Set by
+sched_group_energy().
+
+cap_idx: Capacity state to be used for energy calculations. Set by
+find_new_capacity().
+
+util_delta: Amount of utilization to be added, removed, or migrated.
+
+src_cpu: Source cpu from where 'util_delta' utilization is removed. Should be
+-1 if no source (e.g. task wake-up).
+
+dst_cpu: Destination cpu where 'util_delta' utilization is added. Should be -1
+if utilization is removed (e.g. terminating tasks).
+
+energy: Result of sched_group_energy().
+
+The metric used to represent utilization is the actual per-entity running time
+averaged over time using a geometric series. Very similar to the existing
+per-entity load-tracking, but _not_ scaled by task priority and capped by the
+capacity of the cpu. The latter property does mean that utilization may
+underestimate the compute requirements for task on fully/over utilized cpus.
+The greatest potential for energy savings without affecting performance too much
+is scenarios where the system isn't fully utilized. If the system is deemed
+fully utilized load-balancing should be done with task load (includes task
+priority) instead in the interest of fairness and performance.
+
+
+Background and Terminology
+===========================
+
+To make it clear from the start:
+
+energy = [joule] (resource like a battery on powered devices)
+power = energy/time = [joule/second] = [watt]
+
+The goal of energy-aware scheduling is to minimize energy, while still getting
+the job done. That is, we want to maximize:
+
+ performance [inst/s]
+ --------------------
+ power [W]
+
+which is equivalent to minimizing:
+
+ energy [J]
+ -----------
+ instruction
+
+while still getting 'good' performance. It is essentially an alternative
+optimization objective to the current performance-only objective for the
+scheduler. This alternative considers two objectives: energy-efficiency and
+performance. Hence, there needs to be a user controllable knob to switch the
+objective. Since it is early days, this is currently a sched_feature
+(ENERGY_AWARE).
+
+The idea behind introducing an energy cost model is to allow the scheduler to
+evaluate the implications of its decisions rather than applying energy-saving
+techniques blindly that may only have positive effects on some platforms. At
+the same time, the energy cost model must be as simple as possible to minimize
+the scheduler latency impact.
+
+Platform topology
+------------------
+
+The system topology (cpus, caches, and NUMA information, not peripherals) is
+represented in the scheduler by the sched_domain hierarchy which has
+sched_groups attached at each level that covers one or more cpus (see
+sched-domains.txt for more details). To add energy awareness to the scheduler
+we need to consider power and frequency domains.
+
+Power domain:
+
+A power domain is a part of the system that can be powered on/off
+independently. Power domains are typically organized in a hierarchy where you
+may be able to power down just a cpu or a group of cpus along with any
+associated resources (e.g. shared caches). Powering up a cpu means that all
+power domains it is a part of in the hierarchy must be powered up. Hence, it is
+more expensive to power up the first cpu that belongs to a higher level power
+domain than powering up additional cpus in the same high level domain. Two
+level power domain hierarchy example:
+
+ Power source
+ +-------------------------------+----...
+per group PD G G
+ | +----------+ |
+ +--------+-------| Shared | (other groups)
+per-cpu PD G G | resource |
+ | | +----------+
+ +-------+ +-------+
+ | CPU 0 | | CPU 1 |
+ +-------+ +-------+
+
+Frequency domain:
+
+Frequency domains (P-states) typically cover the same group of cpus as one of
+the power domain levels. That is, there might be several smaller power domains
+sharing the same frequency (P-state) or there might be a power domain spanning
+multiple frequency domains.
+
+From a scheduling point of view there is no need to know the actual frequencies
+[Hz]. All the scheduler cares about is the compute capacity available at the
+current state (P-state) the cpu is in and any other available states. For that
+reason, and to also factor in any cpu micro-architecture differences, compute
+capacity scaling states are called 'capacity states' in this document. For SMP
+systems this is equivalent to P-states. For mixed micro-architecture systems
+(like ARM big.LITTLE) it is P-states scaled according to the micro-architecture
+performance relative to the other cpus in the system.
+
+Energy modelling:
+------------------
+
+Due to the hierarchical nature of the power domains, the most obvious way to
+model energy costs is therefore to associate power and energy costs with
+domains (groups of cpus). Energy costs of shared resources are associated with
+the group of cpus that share the resources, only the cost of powering the
+cpu itself and any private resources (e.g. private L1 caches) is associated
+with the per-cpu groups (lowest level).
+
+For example, for an SMP system with per-cpu power domains and a cluster level
+(group of cpus) power domain we get the overall energy costs to be:
+
+ energy = energy_cluster + n * energy_cpu
+
+where 'n' is the number of cpus powered up and energy_cluster is the cost paid
+as soon as any cpu in the cluster is powered up.
+
+The power and frequency domains can naturally be mapped onto the existing
+sched_domain hierarchy and sched_groups by adding the necessary data to the
+existing data structures.
+
+The energy model considers energy consumption from two contributors (shown in
+the illustration below):
+
+1. Busy energy: Energy consumed while a cpu and the higher level groups that it
+belongs to are busy running tasks. Busy energy is associated with the state of
+the cpu, not an event. The time the cpu spends in this state varies. Thus, the
+most obvious platform parameter for this contribution is busy power
+(energy/time).
+
+2. Idle energy: Energy consumed while a cpu and higher level groups that it
+belongs to are idle (in a C-state). Like busy energy, idle energy is associated
+with the state of the cpu. Thus, the platform parameter for this contribution
+is idle power (energy/time).
+
+Energy consumed during transitions from an idle-state (C-state) to a busy state
+(P-state) or going the other way is ignored by the model to simplify the energy
+model calculations.
+
+
+ Power
+ ^
+ | busy->idle idle->busy
+ | transition transition
+ |
+ | _ __
+ | / \ / \__________________
+ |______________/ \ /
+ | \ /
+ | Busy \ Idle / Busy
+ | low P-state \____________/ high P-state
+ |
+ +------------------------------------------------------------> time
+
+Busy |--------------| |-----------------|
+
+Wakeup |------| |------|
+
+Idle |------------|
+
+
+The basic algorithm
+====================
+
+The basic idea is to determine the total energy impact when utilization is
+added or removed by estimating the impact at each level in the sched_domain
+hierarchy starting from the bottom (sched_group contains just a single cpu).
+The energy cost comes from busy time (sched_group is awake because one or more
+cpus are busy) and idle time (in an idle-state). Energy model numbers account
+for energy costs associated with all cpus in the sched_group as a group.
+
+ for_each_domain(cpu, sd) {
+ sg = sched_group_of(cpu)
+ energy_before = curr_util(sg) * busy_power(sg)
+ + (1-curr_util(sg)) * idle_power(sg)
+ energy_after = new_util(sg) * busy_power(sg)
+ + (1-new_util(sg)) * idle_power(sg)
+ energy_diff += energy_before - energy_after
+
+ }
+
+ return energy_diff
+
+{curr, new}_util: The cpu utilization at the lowest level and the overall
+non-idle time for the entire group for higher levels. Utilization is in the
+range 0.0 to 1.0 in the pseudo-code.
+
+busy_power: The power consumption of the sched_group.
+
+idle_power: The power consumption of the sched_group when idle.
+
+Note: It is a fundamental assumption that the utilization is (roughly) scale
+invariant. Task utilization tracking factors in any frequency scaling and
+performance scaling differences due to difference cpu microarchitectures such
+that task utilization can be used across the entire system.
+
+
+Platform energy data
+=====================
+
+struct sched_group_energy can be attached to sched_groups in the sched_domain
+hierarchy and has the following members:
+
+cap_states:
+ List of struct capacity_state representing the supported capacity states
+ (P-states). struct capacity_state has two members: cap and power, which
+ represents the compute capacity and the busy_power of the state. The
+ list must be ordered by capacity low->high.
+
+nr_cap_states:
+ Number of capacity states in cap_states list.
+
+idle_states:
+ List of struct idle_state containing idle_state power cost for each
+ idle-state supported by the system orderd by shallowest state first.
+ All states must be included at all level in the hierarchy, i.e. a
+ sched_group spanning just a single cpu must also include coupled
+ idle-states (cluster states). In addition to the cpuidle idle-states,
+ the list must also contain an entry for the idling using the arch
+ default idle (arch_idle_cpu()). Despite this state may not be a true
+ hardware idle-state it is considered the shallowest idle-state in the
+ energy model and must be the first entry. cpus may enter this state
+ (possibly 'active idling') if cpuidle decides not enter a cpuidle
+ idle-state. Default idle may not be used when cpuidle is enabled.
+ In this case, it should just be a copy of the first cpuidle idle-state.
+
+nr_idle_states:
+ Number of idle states in idle_states list.
+
+There are no unit requirements for the energy cost data. Data can be normalized
+with any reference, however, the normalization must be consistent across all
+energy cost data. That is, one bogo-joule/watt must be the same quantity for
+data, but we don't care what it is.
+
+A recipe for platform characterization
+=======================================
+
+Obtaining the actual model data for a particular platform requires some way of
+measuring power/energy. There isn't a tool to help with this (yet). This
+section provides a recipe for use as reference. It covers the steps used to
+characterize the ARM TC2 development platform. This sort of measurements is
+expected to be done anyway when tuning cpuidle and cpufreq for a given
+platform.
+
+The energy model needs two types of data (struct sched_group_energy holds
+these) for each sched_group where energy costs should be taken into account:
+
+1. Capacity state information
+
+A list containing the compute capacity and power consumption when fully
+utilized attributed to the group as a whole for each available capacity state.
+At the lowest level (group contains just a single cpu) this is the power of the
+cpu alone without including power consumed by resources shared with other cpus.
+It basically needs to fit the basic modelling approach described in "Background
+and Terminology" section:
+
+ energy_system = energy_shared + n * energy_cpu
+
+for a system containing 'n' busy cpus. Only 'energy_cpu' should be included at
+the lowest level. 'energy_shared' is included at the next level which
+represents the group of cpus among which the resources are shared.
+
+This model is, of course, a simplification of reality. Thus, power/energy
+attributions might not always exactly represent how the hardware is designed.
+Also, busy power is likely to depend on the workload. It is therefore
+recommended to use a representative mix of workloads when characterizing the
+capacity states.
+
+If the group has no capacity scaling support, the list will contain a single
+state where power is the busy power attributed to the group. The capacity
+should be set to a default value (1024).
+
+When frequency domains include multiple power domains, the group representing
+the frequency domain and all child groups share capacity states. This must be
+indicated by setting the SD_SHARE_CAP_STATES sched_domain flag. All groups at
+all levels that share the capacity state must have the list of capacity states
+with the power set to the contribution of the individual group.
+
+2. Idle power information
+
+Stored in the idle_states list. The power number is the group idle power
+consumption in each idle state as well when the group is idle but has not
+entered an idle-state ('active idle' as mentioned earlier). Due to the way the
+energy model is defined, the idle power of the deepest group idle state can
+alternatively be accounted for in the parent group busy power. In that case the
+group idle state power values are offset such that the idle power of the
+deepest state is zero. It is less intuitive, but it is easier to measure as
+idle power consumed by the group and the busy/idle power of the parent group
+cannot be distinguished without per group measurement points.
+
+Measuring capacity states and idle power:
+
+The capacity states' capacity and power can be estimated by running a benchmark
+workload at each available capacity state. By restricting the benchmark to run
+on subsets of cpus it is possible to extrapolate the power consumption of
+shared resources.
+
+ARM TC2 has two clusters of two and three cpus respectively. Each cluster has a
+shared L2 cache. TC2 has on-chip energy counters per cluster. Running a
+benchmark workload on just one cpu in a cluster means that power is consumed in
+the cluster (higher level group) and a single cpu (lowest level group). Adding
+another benchmark task to another cpu increases the power consumption by the
+amount consumed by the additional cpu. Hence, it is possible to extrapolate the
+cluster busy power.
+
+For platforms that don't have energy counters or equivalent instrumentation
+built-in, it may be possible to use an external DAQ to acquire similar data.
+
+If the benchmark includes some performance score (for example sysbench cpu
+benchmark), this can be used to record the compute capacity.
+
+Measuring idle power requires insight into the idle state implementation on the
+particular platform. Specifically, if the platform has coupled idle-states (or
+package states). To measure non-coupled per-cpu idle-states it is necessary to
+keep one cpu busy to keep any shared resources alive to isolate the idle power
+of the cpu from idle/busy power of the shared resources. The cpu can be tricked
+into different per-cpu idle states by disabling the other states. Based on
+various combinations of measurements with specific cpus busy and disabling
+idle-states it is possible to extrapolate the idle-state power.
diff --git a/Documentation/scheduler/sched-tune.txt b/Documentation/scheduler/sched-tune.txt
new file mode 100644
index 000000000000..9bd2231c01b1
--- /dev/null
+++ b/Documentation/scheduler/sched-tune.txt
@@ -0,0 +1,366 @@
+ Central, scheduler-driven, power-performance control
+ (EXPERIMENTAL)
+
+Abstract
+========
+
+The topic of a single simple power-performance tunable, that is wholly
+scheduler centric, and has well defined and predictable properties has come up
+on several occasions in the past [1,2]. With techniques such as a scheduler
+driven DVFS [3], we now have a good framework for implementing such a tunable.
+This document describes the overall ideas behind its design and implementation.
+
+
+Table of Contents
+=================
+
+1. Motivation
+2. Introduction
+3. Signal Boosting Strategy
+4. OPP selection using boosted CPU utilization
+5. Per task group boosting
+6. Question and Answers
+ - What about "auto" mode?
+ - What about boosting on a congested system?
+ - How CPUs are boosted when we have tasks with multiple boost values?
+7. References
+
+
+1. Motivation
+=============
+
+Sched-DVFS [3] is a new event-driven cpufreq governor which allows the
+scheduler to select the optimal DVFS operating point (OPP) for running a task
+allocated to a CPU. The introduction of sched-DVFS enables running workloads at
+the most energy efficient OPPs.
+
+However, sometimes it may be desired to intentionally boost the performance of
+a workload even if that could imply a reasonable increase in energy
+consumption. For example, in order to reduce the response time of a task, we
+may want to run the task at a higher OPP than the one that is actually required
+by it's CPU bandwidth demand.
+
+This last requirement is especially important if we consider that one of the
+main goals of the sched-DVFS component is to replace all currently available
+CPUFreq policies. Since sched-DVFS is event based, as opposed to the sampling
+driven governors we currently have, it is already more responsive at selecting
+the optimal OPP to run tasks allocated to a CPU. However, just tracking the
+actual task load demand may not be enough from a performance standpoint. For
+example, it is not possible to get behaviors similar to those provided by the
+"performance" and "interactive" CPUFreq governors.
+
+This document describes an implementation of a tunable, stacked on top of the
+sched-DVFS which extends its functionality to support task performance
+boosting.
+
+By "performance boosting" we mean the reduction of the time required to
+complete a task activation, i.e. the time elapsed from a task wakeup to its
+next deactivation (e.g. because it goes back to sleep or it terminates). For
+example, if we consider a simple periodic task which executes the same workload
+for 5[s] every 20[s] while running at a certain OPP, a boosted execution of
+that task must complete each of its activations in less than 5[s].
+
+A previous attempt [5] to introduce such a boosting feature has not been
+successful mainly because of the complexity of the proposed solution. The
+approach described in this document exposes a single simple interface to
+user-space. This single tunable knob allows the tuning of system wide
+scheduler behaviours ranging from energy efficiency at one end through to
+incremental performance boosting at the other end. This first tunable affects
+all tasks. However, a more advanced extension of the concept is also provided
+which uses CGroups to boost the performance of only selected tasks while using
+the energy efficient default for all others.
+
+The rest of this document introduces in more details the proposed solution
+which has been named SchedTune.
+
+
+2. Introduction
+===============
+
+SchedTune exposes a simple user-space interface with a single power-performance
+tunable:
+
+ /proc/sys/kernel/sched_cfs_boost
+
+This permits expressing a boost value as an integer in the range [0..100].
+
+A value of 0 (default) configures the CFS scheduler for maximum energy
+efficiency. This means that sched-DVFS runs the tasks at the minimum OPP
+required to satisfy their workload demand.
+A value of 100 configures scheduler for maximum performance, which translates
+to the selection of the maximum OPP on that CPU.
+
+The range between 0 and 100 can be set to satisfy other scenarios suitably. For
+example to satisfy interactive response or depending on other system events
+(battery level etc).
+
+A CGroup based extension is also provided, which permits further user-space
+defined task classification to tune the scheduler for different goals depending
+on the specific nature of the task, e.g. background vs interactive vs
+low-priority.
+
+The overall design of the SchedTune module is built on top of "Per-Entity Load
+Tracking" (PELT) signals and sched-DVFS by introducing a bias on the Operating
+Performance Point (OPP) selection.
+Each time a task is allocated on a CPU, sched-DVFS has the opportunity to tune
+the operating frequency of that CPU to better match the workload demand. The
+selection of the actual OPP being activated is influenced by the global boost
+value, or the boost value for the task CGroup when in use.
+
+This simple biasing approach leverages existing frameworks, which means minimal
+modifications to the scheduler, and yet it allows to achieve a range of
+different behaviours all from a single simple tunable knob.
+The only new concept introduced is that of signal boosting.
+
+
+3. Signal Boosting Strategy
+===========================
+
+The whole PELT machinery works based on the value of a few load tracking signals
+which basically track the CPU bandwidth requirements for tasks and the capacity
+of CPUs. The basic idea behind the SchedTune knob is to artificially inflate
+some of these load tracking signals to make a task or RQ appears more demanding
+that it actually is.
+
+Which signals have to be inflated depends on the specific "consumer". However,
+independently from the specific (signal, consumer) pair, it is important to
+define a simple and possibly consistent strategy for the concept of boosting a
+signal.
+
+A boosting strategy defines how the "abstract" user-space defined
+sched_cfs_boost value is translated into an internal "margin" value to be added
+to a signal to get its inflated value:
+
+ margin := boosting_strategy(sched_cfs_boost, signal)
+ boosted_signal := signal + margin
+
+Different boosting strategies were identified and analyzed before selecting the
+one found to be most effective.
+
+Signal Proportional Compensation (SPC)
+--------------------------------------
+
+In this boosting strategy the sched_cfs_boost value is used to compute a
+margin which is proportional to the complement of the original signal.
+When a signal has a maximum possible value, its complement is defined as
+the delta from the actual value and its possible maximum.
+
+Since the tunable implementation uses signals which have SCHED_LOAD_SCALE as
+the maximum possible value, the margin becomes:
+
+ margin := sched_cfs_boost * (SCHED_LOAD_SCALE - signal)
+
+Using this boosting strategy:
+- a 100% sched_cfs_boost means that the signal is scaled to the maximum value
+- each value in the range of sched_cfs_boost effectively inflates the signal in
+ question by a quantity which is proportional to the maximum value.
+
+For example, by applying the SPC boosting strategy to the selection of the OPP
+to run a task it is possible to achieve these behaviors:
+
+- 0% boosting: run the task at the minimum OPP required by its workload
+- 100% boosting: run the task at the maximum OPP available for the CPU
+- 50% boosting: run at the half-way OPP between minimum and maximum
+
+Which means that, at 50% boosting, a task will be scheduled to run at half of
+the maximum theoretically achievable performance on the specific target
+platform.
+
+A graphical representation of an SPC boosted signal is represented in the
+following figure where:
+ a) "-" represents the original signal
+ b) "b" represents a 50% boosted signal
+ c) "p" represents a 100% boosted signal
+
+
+ ^
+ | SCHED_LOAD_SCALE
+ +-----------------------------------------------------------------+
+ |pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
+ |
+ | boosted_signal
+ | bbbbbbbbbbbbbbbbbbbbbbbb
+ |
+ | original signal
+ | bbbbbbbbbbbbbbbbbbbbbbbb+----------------------+
+ | |
+ |bbbbbbbbbbbbbbbbbb |
+ | |
+ | |
+ | |
+ | +-----------------------+
+ | |
+ | |
+ | |
+ |------------------+
+ |
+ |
+ +----------------------------------------------------------------------->
+
+The plot above shows a ramped load signal (titled 'original_signal') and it's
+boosted equivalent. For each step of the original signal the boosted signal
+corresponding to a 50% boost is midway from the original signal and the upper
+bound. Boosting by 100% generates a boosted signal which is always saturated to
+the upper bound.
+
+
+4. OPP selection using boosted CPU utilization
+==============================================
+
+It is worth calling out that the implementation does not introduce any new load
+signals. Instead, it provides an API to tune existing signals. This tuning is
+done on demand and only in scheduler code paths where it is sensible to do so.
+The new API calls are defined to return either the default signal or a boosted
+one, depending on the value of sched_cfs_boost. This is a clean an non invasive
+modification of the existing existing code paths.
+
+The signal representing a CPU's utilization is boosted according to the
+previously described SPC boosting strategy. To sched-DVFS, this allows a CPU
+(ie CFS run-queue) to appear more used then it actually is.
+
+Thus, with the sched_cfs_boost enabled we have the following main functions to
+get the current utilization of a CPU:
+
+ cpu_util()
+ boosted_cpu_util()
+
+The new boosted_cpu_util() is similar to the first but returns a boosted
+utilization signal which is a function of the sched_cfs_boost value.
+
+This function is used in the CFS scheduler code paths where sched-DVFS needs to
+decide the OPP to run a CPU at.
+For example, this allows selecting the highest OPP for a CPU which has
+the boost value set to 100%.
+
+
+5. Per task group boosting
+==========================
+
+The availability of a single knob which is used to boost all tasks in the
+system is certainly a simple solution but it quite likely doesn't fit many
+utilization scenarios, especially in the mobile device space.
+
+For example, on battery powered devices there usually are many background
+services which are long running and need energy efficient scheduling. On the
+other hand, some applications are more performance sensitive and require an
+interactive response and/or maximum performance, regardless of the energy cost.
+To better service such scenarios, the SchedTune implementation has an extension
+that provides a more fine grained boosting interface.
+
+A new CGroup controller, namely "schedtune", could be enabled which allows to
+defined and configure task groups with different boosting values.
+Tasks that require special performance can be put into separate CGroups.
+The value of the boost associated with the tasks in this group can be specified
+using a single knob exposed by the CGroup controller:
+
+ schedtune.boost
+
+This knob allows the definition of a boost value that is to be used for
+SPC boosting of all tasks attached to this group.
+
+The current schedtune controller implementation is really simple and has these
+main characteristics:
+
+ 1) It is only possible to create 1 level depth hierarchies
+
+ The root control groups define the system-wide boost value to be applied
+ by default to all tasks. Its direct subgroups are named "boost groups" and
+ they define the boost value for specific set of tasks.
+ Further nested subgroups are not allowed since they do not have a sensible
+ meaning from a user-space standpoint.
+
+ 2) It is possible to define only a limited number of "boost groups"
+
+ This number is defined at compile time and by default configured to 16.
+ This is a design decision motivated by two main reasons:
+ a) In a real system we do not expect utilization scenarios with more then few
+ boost groups. For example, a reasonable collection of groups could be
+ just "background", "interactive" and "performance".
+ b) It simplifies the implementation considerably, especially for the code
+ which has to compute the per CPU boosting once there are multiple
+ RUNNABLE tasks with different boost values.
+
+Such a simple design should allow servicing the main utilization scenarios identified
+so far. It provides a simple interface which can be used to manage the
+power-performance of all tasks or only selected tasks.
+Moreover, this interface can be easily integrated by user-space run-times (e.g.
+Android, ChromeOS) to implement a QoS solution for task boosting based on tasks
+classification, which has been a long standing requirement.
+
+Setup and usage
+---------------
+
+0. Use a kernel with CGROUP_SCHEDTUNE support enabled
+
+1. Check that the "schedtune" CGroup controller is available:
+
+ root@linaro-nano:~# cat /proc/cgroups
+ #subsys_name hierarchy num_cgroups enabled
+ cpuset 0 1 1
+ cpu 0 1 1
+ schedtune 0 1 1
+
+2. Mount a tmpfs to create the CGroups mount point (Optional)
+
+ root@linaro-nano:~# sudo mount -t tmpfs cgroups /sys/fs/cgroup
+
+3. Mount the "schedtune" controller
+
+ root@linaro-nano:~# mkdir /sys/fs/cgroup/stune
+ root@linaro-nano:~# sudo mount -t cgroup -o schedtune stune /sys/fs/cgroup/stune
+
+4. Setup the system-wide boost value (Optional)
+
+ If not configured the root control group has a 0% boost value, which
+ basically disables boosting for all tasks in the system thus running in
+ an energy-efficient mode.
+
+ root@linaro-nano:~# echo $SYSBOOST > /sys/fs/cgroup/stune/schedtune.boost
+
+5. Create task groups and configure their specific boost value (Optional)
+
+ For example here we create a "performance" boost group configure to boost
+ all its tasks to 100%
+
+ root@linaro-nano:~# mkdir /sys/fs/cgroup/stune/performance
+ root@linaro-nano:~# echo 100 > /sys/fs/cgroup/stune/performance/schedtune.boost
+
+6. Move tasks into the boost group
+
+ For example, the following moves the tasks with PID $TASKPID (and all its
+ threads) into the "performance" boost group.
+
+ root@linaro-nano:~# echo "TASKPID > /sys/fs/cgroup/stune/performance/cgroup.procs
+
+This simple configuration allows only the threads of the $TASKPID task to run,
+when needed, at the highest OPP in the most capable CPU of the system.
+
+
+6. Question and Answers
+=======================
+
+What about "auto" mode?
+-----------------------
+
+The 'auto' mode as described in [5] can be implemented by interfacing SchedTune
+with some suitable user-space element. This element could use the exposed
+system-wide or cgroup based interface.
+
+How are multiple groups of tasks with different boost values managed?
+---------------------------------------------------------------------
+
+The current SchedTune implementation keeps track of the boosted RUNNABLE tasks
+on a CPU. Once sched-DVFS selects the OPP to run a CPU at, the CPU utilization
+is boosted with a value which is the maximum of the boost values of the
+currently RUNNABLE tasks in its RQ.
+
+This allows sched-DVFS to boost a CPU only while there are boosted tasks ready
+to run and switch back to the energy efficient mode as soon as the last boosted
+task is dequeued.
+
+
+7. References
+=============
+[1] http://lwn.net/Articles/552889
+[2] http://lkml.org/lkml/2012/5/18/91
+[3] http://lkml.org/lkml/2015/6/26/620
diff --git a/arch/arm/include/asm/topology.h b/arch/arm/include/asm/topology.h
index 370f7a732900..e3e596cbb1a7 100644
--- a/arch/arm/include/asm/topology.h
+++ b/arch/arm/include/asm/topology.h
@@ -24,6 +24,13 @@ void init_cpu_topology(void);
void store_cpu_topology(unsigned int cpuid);
const struct cpumask *cpu_coregroup_mask(int cpu);
+#ifdef CONFIG_CPU_FREQ
+#include <linux/cpufreq.h>
+#define arch_scale_freq_capacity cpufreq_scale_freq_capacity
+#endif
+#define arch_scale_cpu_capacity scale_cpu_capacity
+extern unsigned long scale_cpu_capacity(struct sched_domain *sd, int cpu);
+
#else
static inline void init_cpu_topology(void) { }
diff --git a/arch/arm/kernel/topology.c b/arch/arm/kernel/topology.c
index 08b7847bf912..f5941004efba 100644
--- a/arch/arm/kernel/topology.c
+++ b/arch/arm/kernel/topology.c
@@ -42,9 +42,15 @@
*/
static DEFINE_PER_CPU(unsigned long, cpu_scale);
-unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
+unsigned long scale_cpu_capacity(struct sched_domain *sd, int cpu)
{
+#if CONFIG_CPU_FREQ
+ unsigned long max_freq_scale = cpufreq_scale_max_freq_capacity(cpu);
+
+ return per_cpu(cpu_scale, cpu) * max_freq_scale >> SCHED_CAPACITY_SHIFT;
+#else
return per_cpu(cpu_scale, cpu);
+#endif
}
static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
@@ -153,6 +159,8 @@ static void __init parse_dt_topology(void)
}
+static const struct sched_group_energy * const cpu_core_energy(int cpu);
+
/*
* Look for a customed capacity of a CPU in the cpu_capacity table during the
* boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
@@ -160,10 +168,14 @@ static void __init parse_dt_topology(void)
*/
static void update_cpu_capacity(unsigned int cpu)
{
- if (!cpu_capacity(cpu))
- return;
+ unsigned long capacity = SCHED_CAPACITY_SCALE;
+
+ if (cpu_core_energy(cpu)) {
+ int max_cap_idx = cpu_core_energy(cpu)->nr_cap_states - 1;
+ capacity = cpu_core_energy(cpu)->cap_states[max_cap_idx].cap;
+ }
- set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity);
+ set_capacity_scale(cpu, capacity);
pr_info("CPU%u: update cpu_capacity %lu\n",
cpu, arch_scale_cpu_capacity(NULL, cpu));
@@ -275,17 +287,138 @@ void store_cpu_topology(unsigned int cpuid)
cpu_topology[cpuid].socket_id, mpidr);
}
+/*
+ * ARM TC2 specific energy cost model data. There are no unit requirements for
+ * the data. Data can be normalized to any reference point, but the
+ * normalization must be consistent. That is, one bogo-joule/watt must be the
+ * same quantity for all data, but we don't care what it is.
+ */
+static struct idle_state idle_states_cluster_a7[] = {
+ { .power = 25 }, /* arch_cpu_idle() (active idle) = WFI */
+ { .power = 25 }, /* WFI */
+ { .power = 10 }, /* cluster-sleep-l */
+ };
+
+static struct idle_state idle_states_cluster_a15[] = {
+ { .power = 70 }, /* arch_cpu_idle() (active idle) = WFI */
+ { .power = 70 }, /* WFI */
+ { .power = 25 }, /* cluster-sleep-b */
+ };
+
+static struct capacity_state cap_states_cluster_a7[] = {
+ /* Cluster only power */
+ { .cap = 150, .power = 2967, }, /* 350 MHz */
+ { .cap = 172, .power = 2792, }, /* 400 MHz */
+ { .cap = 215, .power = 2810, }, /* 500 MHz */
+ { .cap = 258, .power = 2815, }, /* 600 MHz */
+ { .cap = 301, .power = 2919, }, /* 700 MHz */
+ { .cap = 344, .power = 2847, }, /* 800 MHz */
+ { .cap = 387, .power = 3917, }, /* 900 MHz */
+ { .cap = 430, .power = 4905, }, /* 1000 MHz */
+ };
+
+static struct capacity_state cap_states_cluster_a15[] = {
+ /* Cluster only power */
+ { .cap = 426, .power = 7920, }, /* 500 MHz */
+ { .cap = 512, .power = 8165, }, /* 600 MHz */
+ { .cap = 597, .power = 8172, }, /* 700 MHz */
+ { .cap = 682, .power = 8195, }, /* 800 MHz */
+ { .cap = 768, .power = 8265, }, /* 900 MHz */
+ { .cap = 853, .power = 8446, }, /* 1000 MHz */
+ { .cap = 938, .power = 11426, }, /* 1100 MHz */
+ { .cap = 1024, .power = 15200, }, /* 1200 MHz */
+ };
+
+static struct sched_group_energy energy_cluster_a7 = {
+ .nr_idle_states = ARRAY_SIZE(idle_states_cluster_a7),
+ .idle_states = idle_states_cluster_a7,
+ .nr_cap_states = ARRAY_SIZE(cap_states_cluster_a7),
+ .cap_states = cap_states_cluster_a7,
+};
+
+static struct sched_group_energy energy_cluster_a15 = {
+ .nr_idle_states = ARRAY_SIZE(idle_states_cluster_a15),
+ .idle_states = idle_states_cluster_a15,
+ .nr_cap_states = ARRAY_SIZE(cap_states_cluster_a15),
+ .cap_states = cap_states_cluster_a15,
+};
+
+static struct idle_state idle_states_core_a7[] = {
+ { .power = 0 }, /* arch_cpu_idle (active idle) = WFI */
+ { .power = 0 }, /* WFI */
+ { .power = 0 }, /* cluster-sleep-l */
+ };
+
+static struct idle_state idle_states_core_a15[] = {
+ { .power = 0 }, /* arch_cpu_idle (active idle) = WFI */
+ { .power = 0 }, /* WFI */
+ { .power = 0 }, /* cluster-sleep-b */
+ };
+
+static struct capacity_state cap_states_core_a7[] = {
+ /* Power per cpu */
+ { .cap = 150, .power = 187, }, /* 350 MHz */
+ { .cap = 172, .power = 275, }, /* 400 MHz */
+ { .cap = 215, .power = 334, }, /* 500 MHz */
+ { .cap = 258, .power = 407, }, /* 600 MHz */
+ { .cap = 301, .power = 447, }, /* 700 MHz */
+ { .cap = 344, .power = 549, }, /* 800 MHz */
+ { .cap = 387, .power = 761, }, /* 900 MHz */
+ { .cap = 430, .power = 1024, }, /* 1000 MHz */
+ };
+
+static struct capacity_state cap_states_core_a15[] = {
+ /* Power per cpu */
+ { .cap = 426, .power = 2021, }, /* 500 MHz */
+ { .cap = 512, .power = 2312, }, /* 600 MHz */
+ { .cap = 597, .power = 2756, }, /* 700 MHz */
+ { .cap = 682, .power = 3125, }, /* 800 MHz */
+ { .cap = 768, .power = 3524, }, /* 900 MHz */
+ { .cap = 853, .power = 3846, }, /* 1000 MHz */
+ { .cap = 938, .power = 5177, }, /* 1100 MHz */
+ { .cap = 1024, .power = 6997, }, /* 1200 MHz */
+ };
+
+static struct sched_group_energy energy_core_a7 = {
+ .nr_idle_states = ARRAY_SIZE(idle_states_core_a7),
+ .idle_states = idle_states_core_a7,
+ .nr_cap_states = ARRAY_SIZE(cap_states_core_a7),
+ .cap_states = cap_states_core_a7,
+};
+
+static struct sched_group_energy energy_core_a15 = {
+ .nr_idle_states = ARRAY_SIZE(idle_states_core_a15),
+ .idle_states = idle_states_core_a15,
+ .nr_cap_states = ARRAY_SIZE(cap_states_core_a15),
+ .cap_states = cap_states_core_a15,
+};
+
+/* sd energy functions */
+static inline
+const struct sched_group_energy * const cpu_cluster_energy(int cpu)
+{
+ return cpu_topology[cpu].socket_id ? &energy_cluster_a7 :
+ &energy_cluster_a15;
+}
+
+static inline
+const struct sched_group_energy * const cpu_core_energy(int cpu)
+{
+ return cpu_topology[cpu].socket_id ? &energy_core_a7 :
+ &energy_core_a15;
+}
+
static inline int cpu_corepower_flags(void)
{
- return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN;
+ return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN | \
+ SD_SHARE_CAP_STATES;
}
static struct sched_domain_topology_level arm_topology[] = {
#ifdef CONFIG_SCHED_MC
- { cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
- { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
+ { cpu_coregroup_mask, cpu_corepower_flags, cpu_core_energy, SD_INIT_NAME(MC) },
#endif
- { cpu_cpu_mask, SD_INIT_NAME(DIE) },
+ { cpu_cpu_mask, NULL, cpu_cluster_energy, SD_INIT_NAME(DIE) },
{ NULL, },
};
diff --git a/arch/arm64/include/asm/topology.h b/arch/arm64/include/asm/topology.h
index a3e9d6fdbf21..bbd362cd1ed1 100644
--- a/arch/arm64/include/asm/topology.h
+++ b/arch/arm64/include/asm/topology.h
@@ -22,6 +22,15 @@ void init_cpu_topology(void);
void store_cpu_topology(unsigned int cpuid);
const struct cpumask *cpu_coregroup_mask(int cpu);
+struct sched_domain;
+#ifdef CONFIG_CPU_FREQ
+#define arch_scale_freq_capacity cpufreq_scale_freq_capacity
+extern unsigned long cpufreq_scale_freq_capacity(struct sched_domain *sd, int cpu);
+extern unsigned long cpufreq_scale_max_freq_capacity(int cpu);
+#endif
+#define arch_scale_cpu_capacity scale_cpu_capacity
+extern unsigned long scale_cpu_capacity(struct sched_domain *sd, int cpu);
+
#include <asm-generic/topology.h>
#endif /* _ASM_ARM_TOPOLOGY_H */
diff --git a/arch/arm64/kernel/topology.c b/arch/arm64/kernel/topology.c
index 694f6deedbab..5b2c67a510d8 100644
--- a/arch/arm64/kernel/topology.c
+++ b/arch/arm64/kernel/topology.c
@@ -19,10 +19,30 @@
#include <linux/nodemask.h>
#include <linux/of.h>
#include <linux/sched.h>
+#include <linux/sched.h>
+#include <linux/sched_energy.h>
#include <asm/cputype.h>
#include <asm/topology.h>
+static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
+
+unsigned long scale_cpu_capacity(struct sched_domain *sd, int cpu)
+{
+#ifdef CONFIG_CPU_FREQ
+ unsigned long max_freq_scale = cpufreq_scale_max_freq_capacity(cpu);
+
+ return per_cpu(cpu_scale, cpu) * max_freq_scale >> SCHED_CAPACITY_SHIFT;
+#else
+ return per_cpu(cpu_scale, cpu);
+#endif
+}
+
+static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
+{
+ per_cpu(cpu_scale, cpu) = capacity;
+}
+
static int __init get_cpu_for_node(struct device_node *node)
{
struct device_node *cpu_node;
@@ -206,11 +226,67 @@ out:
struct cpu_topology cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);
+/* sd energy functions */
+static inline
+const struct sched_group_energy * const cpu_cluster_energy(int cpu)
+{
+ struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL1];
+
+ if (!sge) {
+ pr_warn("Invalid sched_group_energy for Cluster%d\n", cpu);
+ return NULL;
+ }
+
+ return sge;
+}
+
+static inline
+const struct sched_group_energy * const cpu_core_energy(int cpu)
+{
+ struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL0];
+
+ if (!sge) {
+ pr_warn("Invalid sched_group_energy for CPU%d\n", cpu);
+ return NULL;
+ }
+
+ return sge;
+}
+
const struct cpumask *cpu_coregroup_mask(int cpu)
{
return &cpu_topology[cpu].core_sibling;
}
+static inline int cpu_corepower_flags(void)
+{
+ return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN | \
+ SD_SHARE_CAP_STATES;
+}
+
+static struct sched_domain_topology_level arm64_topology[] = {
+#ifdef CONFIG_SCHED_MC
+ { cpu_coregroup_mask, cpu_corepower_flags, cpu_core_energy, SD_INIT_NAME(MC) },
+#endif
+ { cpu_cpu_mask, NULL, cpu_cluster_energy, SD_INIT_NAME(DIE) },
+ { NULL, },
+};
+
+static void update_cpu_capacity(unsigned int cpu)
+{
+ unsigned long capacity = SCHED_CAPACITY_SCALE;
+
+ if (cpu_core_energy(cpu)) {
+ int max_cap_idx = cpu_core_energy(cpu)->nr_cap_states - 1;
+ capacity = cpu_core_energy(cpu)->cap_states[max_cap_idx].cap;
+ }
+
+ set_capacity_scale(cpu, capacity);
+
+ pr_info("CPU%d: update cpu_capacity %lu\n",
+ cpu, arch_scale_cpu_capacity(NULL, cpu));
+}
+
static void update_siblings_masks(unsigned int cpuid)
{
struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
@@ -272,6 +348,7 @@ void store_cpu_topology(unsigned int cpuid)
topology_populated:
update_siblings_masks(cpuid);
+ update_cpu_capacity(cpuid);
}
static void __init reset_cpu_topology(void)
@@ -302,4 +379,8 @@ void __init init_cpu_topology(void)
*/
if (of_have_populated_dt() && parse_dt_topology())
reset_cpu_topology();
+ else
+ set_sched_topology(arm64_topology);
+
+ init_sched_energy_costs();
}
diff --git a/drivers/cpufreq/Kconfig b/drivers/cpufreq/Kconfig
index 75f63efd7b43..d43c401ff190 100644
--- a/drivers/cpufreq/Kconfig
+++ b/drivers/cpufreq/Kconfig
@@ -112,6 +112,14 @@ config CPU_FREQ_DEFAULT_GOV_INTERACTIVE
loading your cpufreq low-level hardware driver, using the
'interactive' governor for latency-sensitive workloads.
+config CPU_FREQ_DEFAULT_GOV_SCHED
+ bool "sched"
+ select CPU_FREQ_GOV_SCHED
+ help
+ Use the CPUfreq governor 'sched' as default. This scales
+ cpu frequency using CPU utilization estimates from the
+ scheduler.
+
endchoice
config CPU_FREQ_GOV_PERFORMANCE
@@ -207,6 +215,19 @@ config CPU_FREQ_GOV_CONSERVATIVE
If in doubt, say N.
+config CPU_FREQ_GOV_SCHED
+ bool "'sched' cpufreq governor"
+ depends on CPU_FREQ
+ depends on SMP
+ select CPU_FREQ_GOV_COMMON
+ help
+ 'sched' - this governor scales cpu frequency from the
+ scheduler as a function of cpu capacity utilization. It does
+ not evaluate utilization on a periodic basis (as ondemand
+ does) but instead is event-driven by the scheduler.
+
+ If in doubt, say N.
+
comment "CPU frequency scaling drivers"
config CPUFREQ_DT
diff --git a/drivers/cpufreq/cpufreq.c b/drivers/cpufreq/cpufreq.c
index e49512718325..7264820e6443 100644
--- a/drivers/cpufreq/cpufreq.c
+++ b/drivers/cpufreq/cpufreq.c
@@ -29,6 +29,7 @@
#include <linux/suspend.h>
#include <linux/syscore_ops.h>
#include <linux/tick.h>
+#include <linux/sched.h>
#include <trace/events/power.h>
static LIST_HEAD(cpufreq_policy_list);
@@ -154,6 +155,12 @@ bool have_governor_per_policy(void)
}
EXPORT_SYMBOL_GPL(have_governor_per_policy);
+bool cpufreq_driver_is_slow(void)
+{
+ return !(cpufreq_driver->flags & CPUFREQ_DRIVER_FAST);
+}
+EXPORT_SYMBOL_GPL(cpufreq_driver_is_slow);
+
struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
{
if (have_governor_per_policy())
@@ -347,6 +354,50 @@ static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
#endif
}
+/*********************************************************************
+ * FREQUENCY INVARIANT CPU CAPACITY *
+ *********************************************************************/
+
+static DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
+static DEFINE_PER_CPU(unsigned long, max_freq_scale) = SCHED_CAPACITY_SCALE;
+
+static void
+scale_freq_capacity(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs)
+{
+ unsigned long cur = freqs ? freqs->new : policy->cur;
+ unsigned long scale = (cur << SCHED_CAPACITY_SHIFT) / policy->max;
+ struct cpufreq_cpuinfo *cpuinfo = &policy->cpuinfo;
+ int cpu;
+
+ pr_debug("cpus %*pbl cur/cur max freq %lu/%u kHz freq scale %lu\n",
+ cpumask_pr_args(policy->cpus), cur, policy->max, scale);
+
+ for_each_cpu(cpu, policy->cpus)
+ per_cpu(freq_scale, cpu) = scale;
+
+ if (freqs)
+ return;
+
+ scale = (policy->max << SCHED_CAPACITY_SHIFT) / cpuinfo->max_freq;
+
+ pr_debug("cpus %*pbl cur max/max freq %u/%u kHz max freq scale %lu\n",
+ cpumask_pr_args(policy->cpus), policy->max, cpuinfo->max_freq,
+ scale);
+
+ for_each_cpu(cpu, policy->cpus)
+ per_cpu(max_freq_scale, cpu) = scale;
+}
+
+unsigned long cpufreq_scale_freq_capacity(struct sched_domain *sd, int cpu)
+{
+ return per_cpu(freq_scale, cpu);
+}
+
+unsigned long cpufreq_scale_max_freq_capacity(int cpu)
+{
+ return per_cpu(max_freq_scale, cpu);
+}
+
static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
struct cpufreq_freqs *freqs, unsigned int state)
{
@@ -423,6 +474,7 @@ static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
struct cpufreq_freqs *freqs)
{
+ int cpu;
/*
* Catch double invocations of _begin() which lead to self-deadlock.
@@ -450,6 +502,10 @@ wait:
spin_unlock(&policy->transition_lock);
+ scale_freq_capacity(policy, freqs);
+ for_each_cpu(cpu, policy->cpus)
+ trace_cpu_capacity(capacity_curr_of(cpu), cpu);
+
cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
}
EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
@@ -2126,6 +2182,8 @@ static int cpufreq_set_policy(struct cpufreq_policy *policy,
blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
CPUFREQ_NOTIFY, new_policy);
+ scale_freq_capacity(new_policy, NULL);
+
policy->min = new_policy->min;
policy->max = new_policy->max;
trace_cpu_frequency_limits(policy->max, policy->min, policy->cpu);
diff --git a/drivers/cpuidle/cpuidle.c b/drivers/cpuidle/cpuidle.c
index 17a6dc0e2111..b9a6cceb7bac 100644
--- a/drivers/cpuidle/cpuidle.c
+++ b/drivers/cpuidle/cpuidle.c
@@ -192,7 +192,7 @@ int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver *drv,
}
/* Take note of the planned idle state. */
- sched_idle_set_state(target_state);
+ sched_idle_set_state(target_state, index);
trace_cpu_idle_rcuidle(index, dev->cpu);
time_start = ktime_get();
@@ -205,7 +205,7 @@ int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver *drv,
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, dev->cpu);
/* The cpu is no longer idle or about to enter idle. */
- sched_idle_set_state(NULL);
+ sched_idle_set_state(NULL, -1);
if (broadcast) {
if (WARN_ON_ONCE(!irqs_disabled()))
diff --git a/include/linux/cgroup_subsys.h b/include/linux/cgroup_subsys.h
index 1a96fdaa33d5..e133705d794a 100644
--- a/include/linux/cgroup_subsys.h
+++ b/include/linux/cgroup_subsys.h
@@ -26,6 +26,10 @@ SUBSYS(cpu)
SUBSYS(cpuacct)
#endif
+#if IS_ENABLED(CONFIG_CGROUP_SCHEDTUNE)
+SUBSYS(schedtune)
+#endif
+
#if IS_ENABLED(CONFIG_BLK_CGROUP)
SUBSYS(io)
#endif
diff --git a/include/linux/cpufreq.h b/include/linux/cpufreq.h
index 3ac01621cd1f..60571292a802 100644
--- a/include/linux/cpufreq.h
+++ b/include/linux/cpufreq.h
@@ -160,6 +160,7 @@ u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy);
int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu);
int cpufreq_update_policy(unsigned int cpu);
bool have_governor_per_policy(void);
+bool cpufreq_driver_is_slow(void);
struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy);
#else
static inline unsigned int cpufreq_get(unsigned int cpu)
@@ -317,6 +318,14 @@ struct cpufreq_driver {
*/
#define CPUFREQ_NEED_INITIAL_FREQ_CHECK (1 << 5)
+/*
+ * Indicates that it is safe to call cpufreq_driver_target from
+ * non-interruptable context in scheduler hot paths. Drivers must
+ * opt-in to this flag, as the safe default is that they might sleep
+ * or be too slow for hot path use.
+ */
+#define CPUFREQ_DRIVER_FAST (1 << 6)
+
int cpufreq_register_driver(struct cpufreq_driver *driver_data);
int cpufreq_unregister_driver(struct cpufreq_driver *driver_data);
@@ -490,6 +499,9 @@ extern struct cpufreq_governor cpufreq_gov_conservative;
#elif defined(CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE)
extern struct cpufreq_governor cpufreq_gov_interactive;
#define CPUFREQ_DEFAULT_GOVERNOR (&cpufreq_gov_interactive)
+#elif defined(CONFIG_CPU_FREQ_DEFAULT_GOV_SCHED)
+extern struct cpufreq_governor cpufreq_gov_sched;
+#define CPUFREQ_DEFAULT_GOVERNOR (&cpufreq_gov_sched)
#endif
/*********************************************************************
@@ -619,4 +631,8 @@ unsigned int cpufreq_generic_get(unsigned int cpu);
int cpufreq_generic_init(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table,
unsigned int transition_latency);
+
+struct sched_domain;
+unsigned long cpufreq_scale_freq_capacity(struct sched_domain *sd, int cpu);
+unsigned long cpufreq_scale_max_freq_capacity(int cpu);
#endif /* _LINUX_CPUFREQ_H */
diff --git a/include/linux/cpuidle.h b/include/linux/cpuidle.h
index 786ad32631a6..6eae1576499e 100644
--- a/include/linux/cpuidle.h
+++ b/include/linux/cpuidle.h
@@ -204,7 +204,7 @@ static inline int cpuidle_enter_freeze(struct cpuidle_driver *drv,
#endif
/* kernel/sched/idle.c */
-extern void sched_idle_set_state(struct cpuidle_state *idle_state);
+extern void sched_idle_set_state(struct cpuidle_state *idle_state, int index);
extern void default_idle_call(void);
#ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED
diff --git a/include/linux/sched.h b/include/linux/sched.h
index a8012d691abf..81a220c5ecdb 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -173,6 +173,9 @@ extern bool single_task_running(void);
extern unsigned long nr_iowait(void);
extern unsigned long nr_iowait_cpu(int cpu);
extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
+#ifdef CONFIG_CPU_QUIET
+extern u64 nr_running_integral(unsigned int cpu);
+#endif
extern void calc_global_load(unsigned long ticks);
@@ -314,6 +317,15 @@ extern char ___assert_task_state[1 - 2*!!(
/* Task command name length */
#define TASK_COMM_LEN 16
+enum task_event {
+ PUT_PREV_TASK = 0,
+ PICK_NEXT_TASK = 1,
+ TASK_WAKE = 2,
+ TASK_MIGRATE = 3,
+ TASK_UPDATE = 4,
+ IRQ_UPDATE = 5,
+};
+
#include <linux/spinlock.h>
/*
@@ -927,6 +939,14 @@ enum cpu_idle_type {
#define SCHED_CAPACITY_SHIFT 10
#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
+struct sched_capacity_reqs {
+ unsigned long cfs;
+ unsigned long rt;
+ unsigned long dl;
+
+ unsigned long total;
+};
+
/*
* Wake-queues are lists of tasks with a pending wakeup, whose
* callers have already marked the task as woken internally,
@@ -989,6 +1009,7 @@ extern void wake_up_q(struct wake_q_head *head);
#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
#define SD_NUMA 0x4000 /* cross-node balancing */
+#define SD_SHARE_CAP_STATES 0x8000 /* Domain members share capacity state */
#ifdef CONFIG_SCHED_SMT
static inline int cpu_smt_flags(void)
@@ -1021,6 +1042,24 @@ struct sched_domain_attr {
extern int sched_domain_level_max;
+struct capacity_state {
+ unsigned long cap; /* compute capacity */
+ unsigned long power; /* power consumption at this compute capacity */
+};
+
+struct idle_state {
+ unsigned long power; /* power consumption in this idle state */
+};
+
+struct sched_group_energy {
+ unsigned int nr_idle_states; /* number of idle states */
+ struct idle_state *idle_states; /* ptr to idle state array */
+ unsigned int nr_cap_states; /* number of capacity states */
+ struct capacity_state *cap_states; /* ptr to capacity state array */
+};
+
+unsigned long capacity_curr_of(int cpu);
+
struct sched_group;
struct sched_domain {
@@ -1119,6 +1158,8 @@ bool cpus_share_cache(int this_cpu, int that_cpu);
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
typedef int (*sched_domain_flags_f)(void);
+typedef
+const struct sched_group_energy * const(*sched_domain_energy_f)(int cpu);
#define SDTL_OVERLAP 0x01
@@ -1131,6 +1172,7 @@ struct sd_data {
struct sched_domain_topology_level {
sched_domain_mask_f mask;
sched_domain_flags_f sd_flags;
+ sched_domain_energy_f energy;
int flags;
int numa_level;
struct sd_data data;
@@ -1241,6 +1283,41 @@ struct sched_statistics {
};
#endif
+#ifdef CONFIG_SCHED_WALT
+#define RAVG_HIST_SIZE_MAX 5
+
+/* ravg represents frequency scaled cpu-demand of tasks */
+struct ravg {
+ /*
+ * 'mark_start' marks the beginning of an event (task waking up, task
+ * starting to execute, task being preempted) within a window
+ *
+ * 'sum' represents how runnable a task has been within current
+ * window. It incorporates both running time and wait time and is
+ * frequency scaled.
+ *
+ * 'sum_history' keeps track of history of 'sum' seen over previous
+ * RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
+ * ignored.
+ *
+ * 'demand' represents maximum sum seen over previous
+ * sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
+ * demand for tasks.
+ *
+ * 'curr_window' represents task's contribution to cpu busy time
+ * statistics (rq->curr_runnable_sum) in current window
+ *
+ * 'prev_window' represents task's contribution to cpu busy time
+ * statistics (rq->prev_runnable_sum) in previous window
+ */
+ u64 mark_start;
+ u32 sum, demand;
+ u32 sum_history[RAVG_HIST_SIZE_MAX];
+ u32 curr_window, prev_window;
+ u16 active_windows;
+};
+#endif
+
struct sched_entity {
struct load_weight load; /* for load-balancing */
struct rb_node run_node;
@@ -1398,6 +1475,15 @@ struct task_struct {
const struct sched_class *sched_class;
struct sched_entity se;
struct sched_rt_entity rt;
+#ifdef CONFIG_SCHED_WALT
+ struct ravg ravg;
+ /*
+ * 'init_load_pct' represents the initial task load assigned to children
+ * of this task
+ */
+ u32 init_load_pct;
+#endif
+
#ifdef CONFIG_CGROUP_SCHED
struct task_group *sched_task_group;
#endif
diff --git a/include/linux/sched/sysctl.h b/include/linux/sched/sysctl.h
index c9e4731cf10b..d68e88c9d4d7 100644
--- a/include/linux/sched/sysctl.h
+++ b/include/linux/sched/sysctl.h
@@ -39,6 +39,16 @@ extern unsigned int sysctl_sched_latency;
extern unsigned int sysctl_sched_min_granularity;
extern unsigned int sysctl_sched_wakeup_granularity;
extern unsigned int sysctl_sched_child_runs_first;
+extern unsigned int sysctl_sched_is_big_little;
+extern unsigned int sysctl_sched_sync_hint_enable;
+extern unsigned int sysctl_sched_initial_task_util;
+extern unsigned int sysctl_sched_cstate_aware;
+#ifdef CONFIG_SCHED_WALT
+extern unsigned int sysctl_sched_use_walt_cpu_util;
+extern unsigned int sysctl_sched_use_walt_task_util;
+extern unsigned int sysctl_sched_walt_init_task_load_pct;
+extern unsigned int sysctl_sched_walt_cpu_high_irqload;
+#endif
enum sched_tunable_scaling {
SCHED_TUNABLESCALING_NONE,
@@ -77,6 +87,22 @@ extern int sysctl_sched_rt_runtime;
extern unsigned int sysctl_sched_cfs_bandwidth_slice;
#endif
+#ifdef CONFIG_SCHED_TUNE
+extern unsigned int sysctl_sched_cfs_boost;
+int sysctl_sched_cfs_boost_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *length,
+ loff_t *ppos);
+static inline unsigned int get_sysctl_sched_cfs_boost(void)
+{
+ return sysctl_sched_cfs_boost;
+}
+#else
+static inline unsigned int get_sysctl_sched_cfs_boost(void)
+{
+ return 0;
+}
+#endif
+
#ifdef CONFIG_SCHED_AUTOGROUP
extern unsigned int sysctl_sched_autogroup_enabled;
#endif
diff --git a/include/linux/sched_energy.h b/include/linux/sched_energy.h
new file mode 100644
index 000000000000..1daf3e1f98a7
--- /dev/null
+++ b/include/linux/sched_energy.h
@@ -0,0 +1,44 @@
+#ifndef _LINUX_SCHED_ENERGY_H
+#define _LINUX_SCHED_ENERGY_H
+
+#include <linux/sched.h>
+#include <linux/slab.h>
+
+/*
+ * There doesn't seem to be an NR_CPUS style max number of sched domain
+ * levels so here's an arbitrary constant one for the moment.
+ *
+ * The levels alluded to here correspond to entries in struct
+ * sched_domain_topology_level that are meant to be populated by arch
+ * specific code (topology.c).
+ */
+#define NR_SD_LEVELS 8
+
+#define SD_LEVEL0 0
+#define SD_LEVEL1 1
+#define SD_LEVEL2 2
+#define SD_LEVEL3 3
+#define SD_LEVEL4 4
+#define SD_LEVEL5 5
+#define SD_LEVEL6 6
+#define SD_LEVEL7 7
+
+/*
+ * Convenience macro for iterating through said sd levels.
+ */
+#define for_each_possible_sd_level(level) \
+ for (level = 0; level < NR_SD_LEVELS; level++)
+
+#ifdef CONFIG_SMP
+
+extern struct sched_group_energy *sge_array[NR_CPUS][NR_SD_LEVELS];
+
+void init_sched_energy_costs(void);
+
+#else
+
+#define init_sched_energy_costs() do { } while (0)
+
+#endif /* CONFIG_SMP */
+
+#endif
diff --git a/include/linux/vmstat.h b/include/linux/vmstat.h
index 3e5d9075960f..73fae8c4a5fb 100644
--- a/include/linux/vmstat.h
+++ b/include/linux/vmstat.h
@@ -189,6 +189,7 @@ extern void __inc_zone_state(struct zone *, enum zone_stat_item);
extern void dec_zone_state(struct zone *, enum zone_stat_item);
extern void __dec_zone_state(struct zone *, enum zone_stat_item);
+void quiet_vmstat(void);
void cpu_vm_stats_fold(int cpu);
void refresh_zone_stat_thresholds(void);
@@ -249,6 +250,7 @@ static inline void __dec_zone_page_state(struct page *page,
static inline void refresh_zone_stat_thresholds(void) { }
static inline void cpu_vm_stats_fold(int cpu) { }
+static inline void quiet_vmstat(void) { }
static inline void drain_zonestat(struct zone *zone,
struct per_cpu_pageset *pset) { }
diff --git a/include/trace/events/cpufreq_sched.h b/include/trace/events/cpufreq_sched.h
new file mode 100644
index 000000000000..a46cd088e969
--- /dev/null
+++ b/include/trace/events/cpufreq_sched.h
@@ -0,0 +1,87 @@
+/*
+ * Copyright (C) 2015 Steve Muckle <smuckle@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM cpufreq_sched
+
+#if !defined(_TRACE_CPUFREQ_SCHED_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_CPUFREQ_SCHED_H
+
+#include <linux/sched.h>
+#include <linux/tracepoint.h>
+
+TRACE_EVENT(cpufreq_sched_throttled,
+ TP_PROTO(unsigned int rem),
+ TP_ARGS(rem),
+ TP_STRUCT__entry(
+ __field( unsigned int, rem)
+ ),
+ TP_fast_assign(
+ __entry->rem = rem;
+ ),
+ TP_printk("throttled - %d usec remaining", __entry->rem)
+);
+
+TRACE_EVENT(cpufreq_sched_request_opp,
+ TP_PROTO(int cpu,
+ unsigned long capacity,
+ unsigned int freq_new,
+ unsigned int requested_freq),
+ TP_ARGS(cpu, capacity, freq_new, requested_freq),
+ TP_STRUCT__entry(
+ __field( int, cpu)
+ __field( unsigned long, capacity)
+ __field( unsigned int, freq_new)
+ __field( unsigned int, requested_freq)
+ ),
+ TP_fast_assign(
+ __entry->cpu = cpu;
+ __entry->capacity = capacity;
+ __entry->freq_new = freq_new;
+ __entry->requested_freq = requested_freq;
+ ),
+ TP_printk("cpu %d cap change, cluster cap request %ld => OPP %d "
+ "(cur %d)",
+ __entry->cpu, __entry->capacity, __entry->freq_new,
+ __entry->requested_freq)
+);
+
+TRACE_EVENT(cpufreq_sched_update_capacity,
+ TP_PROTO(int cpu,
+ bool request,
+ struct sched_capacity_reqs *scr,
+ unsigned long new_capacity),
+ TP_ARGS(cpu, request, scr, new_capacity),
+ TP_STRUCT__entry(
+ __field( int, cpu)
+ __field( bool, request)
+ __field( unsigned long, cfs)
+ __field( unsigned long, rt)
+ __field( unsigned long, dl)
+ __field( unsigned long, total)
+ __field( unsigned long, new_total)
+ ),
+ TP_fast_assign(
+ __entry->cpu = cpu;
+ __entry->request = request;
+ __entry->cfs = scr->cfs;
+ __entry->rt = scr->rt;
+ __entry->dl = scr->dl;
+ __entry->total = scr->total;
+ __entry->new_total = new_capacity;
+ ),
+ TP_printk("cpu=%d set_cap=%d cfs=%ld rt=%ld dl=%ld old_tot=%ld "
+ "new_tot=%ld",
+ __entry->cpu, __entry->request, __entry->cfs, __entry->rt,
+ __entry->dl, __entry->total, __entry->new_total)
+);
+
+#endif /* _TRACE_CPUFREQ_SCHED_H */
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
diff --git a/include/trace/events/power.h b/include/trace/events/power.h
index 9af0d898016a..8924cc2b4ca8 100644
--- a/include/trace/events/power.h
+++ b/include/trace/events/power.h
@@ -145,6 +145,13 @@ TRACE_EVENT(cpu_frequency_limits,
(unsigned long)__entry->cpu_id)
);
+DEFINE_EVENT(cpu, cpu_capacity,
+
+ TP_PROTO(unsigned int capacity, unsigned int cpu_id),
+
+ TP_ARGS(capacity, cpu_id)
+);
+
TRACE_EVENT(device_pm_callback_start,
TP_PROTO(struct device *dev, const char *pm_ops, int event),
diff --git a/include/trace/events/sched.h b/include/trace/events/sched.h
index d34eba74af27..c50310a7fd6d 100644
--- a/include/trace/events/sched.h
+++ b/include/trace/events/sched.h
@@ -611,6 +611,503 @@ TRACE_EVENT(sched_wake_idle_without_ipi,
TP_printk("cpu=%d", __entry->cpu)
);
+
+TRACE_EVENT(sched_contrib_scale_f,
+
+ TP_PROTO(int cpu, unsigned long freq_scale_factor,
+ unsigned long cpu_scale_factor),
+
+ TP_ARGS(cpu, freq_scale_factor, cpu_scale_factor),
+
+ TP_STRUCT__entry(
+ __field(int, cpu)
+ __field(unsigned long, freq_scale_factor)
+ __field(unsigned long, cpu_scale_factor)
+ ),
+
+ TP_fast_assign(
+ __entry->cpu = cpu;
+ __entry->freq_scale_factor = freq_scale_factor;
+ __entry->cpu_scale_factor = cpu_scale_factor;
+ ),
+
+ TP_printk("cpu=%d freq_scale_factor=%lu cpu_scale_factor=%lu",
+ __entry->cpu, __entry->freq_scale_factor,
+ __entry->cpu_scale_factor)
+);
+
+#ifdef CONFIG_SMP
+
+/*
+ * Tracepoint for accounting sched averages for tasks.
+ */
+TRACE_EVENT(sched_load_avg_task,
+
+ TP_PROTO(struct task_struct *tsk, struct sched_avg *avg),
+
+ TP_ARGS(tsk, avg),
+
+ TP_STRUCT__entry(
+ __array( char, comm, TASK_COMM_LEN )
+ __field( pid_t, pid )
+ __field( int, cpu )
+ __field( unsigned long, load_avg )
+ __field( unsigned long, util_avg )
+ __field( u64, load_sum )
+ __field( u32, util_sum )
+ __field( u32, period_contrib )
+ ),
+
+ TP_fast_assign(
+ memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
+ __entry->pid = tsk->pid;
+ __entry->cpu = task_cpu(tsk);
+ __entry->load_avg = avg->load_avg;
+ __entry->util_avg = avg->util_avg;
+ __entry->load_sum = avg->load_sum;
+ __entry->util_sum = avg->util_sum;
+ __entry->period_contrib = avg->period_contrib;
+ ),
+
+ TP_printk("comm=%s pid=%d cpu=%d load_avg=%lu util_avg=%lu load_sum=%llu"
+ " util_sum=%u period_contrib=%u",
+ __entry->comm,
+ __entry->pid,
+ __entry->cpu,
+ __entry->load_avg,
+ __entry->util_avg,
+ (u64)__entry->load_sum,
+ (u32)__entry->util_sum,
+ (u32)__entry->period_contrib)
+);
+
+/*
+ * Tracepoint for accounting sched averages for cpus.
+ */
+TRACE_EVENT(sched_load_avg_cpu,
+
+ TP_PROTO(int cpu, struct cfs_rq *cfs_rq),
+
+ TP_ARGS(cpu, cfs_rq),
+
+ TP_STRUCT__entry(
+ __field( int, cpu )
+ __field( unsigned long, load_avg )
+ __field( unsigned long, util_avg )
+ ),
+
+ TP_fast_assign(
+ __entry->cpu = cpu;
+ __entry->load_avg = cfs_rq->avg.load_avg;
+ __entry->util_avg = cfs_rq->avg.util_avg;
+ ),
+
+ TP_printk("cpu=%d load_avg=%lu util_avg=%lu",
+ __entry->cpu, __entry->load_avg, __entry->util_avg)
+);
+
+/*
+ * Tracepoint for sched_tune_config settings
+ */
+TRACE_EVENT(sched_tune_config,
+
+ TP_PROTO(int boost),
+
+ TP_ARGS(boost),
+
+ TP_STRUCT__entry(
+ __field( int, boost )
+ ),
+
+ TP_fast_assign(
+ __entry->boost = boost;
+ ),
+
+ TP_printk("boost=%d ", __entry->boost)
+);
+
+/*
+ * Tracepoint for accounting CPU boosted utilization
+ */
+TRACE_EVENT(sched_boost_cpu,
+
+ TP_PROTO(int cpu, unsigned long util, long margin),
+
+ TP_ARGS(cpu, util, margin),
+
+ TP_STRUCT__entry(
+ __field( int, cpu )
+ __field( unsigned long, util )
+ __field(long, margin )
+ ),
+
+ TP_fast_assign(
+ __entry->cpu = cpu;
+ __entry->util = util;
+ __entry->margin = margin;
+ ),
+
+ TP_printk("cpu=%d util=%lu margin=%ld",
+ __entry->cpu,
+ __entry->util,
+ __entry->margin)
+);
+
+/*
+ * Tracepoint for schedtune_tasks_update
+ */
+TRACE_EVENT(sched_tune_tasks_update,
+
+ TP_PROTO(struct task_struct *tsk, int cpu, int tasks, int idx,
+ int boost, int max_boost),
+
+ TP_ARGS(tsk, cpu, tasks, idx, boost, max_boost),
+
+ TP_STRUCT__entry(
+ __array( char, comm, TASK_COMM_LEN )
+ __field( pid_t, pid )
+ __field( int, cpu )
+ __field( int, tasks )
+ __field( int, idx )
+ __field( int, boost )
+ __field( int, max_boost )
+ ),
+
+ TP_fast_assign(
+ memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
+ __entry->pid = tsk->pid;
+ __entry->cpu = cpu;
+ __entry->tasks = tasks;
+ __entry->idx = idx;
+ __entry->boost = boost;
+ __entry->max_boost = max_boost;
+ ),
+
+ TP_printk("pid=%d comm=%s "
+ "cpu=%d tasks=%d idx=%d boost=%d max_boost=%d",
+ __entry->pid, __entry->comm,
+ __entry->cpu, __entry->tasks, __entry->idx,
+ __entry->boost, __entry->max_boost)
+);
+
+/*
+ * Tracepoint for schedtune_boostgroup_update
+ */
+TRACE_EVENT(sched_tune_boostgroup_update,
+
+ TP_PROTO(int cpu, int variation, int max_boost),
+
+ TP_ARGS(cpu, variation, max_boost),
+
+ TP_STRUCT__entry(
+ __field( int, cpu )
+ __field( int, variation )
+ __field( int, max_boost )
+ ),
+
+ TP_fast_assign(
+ __entry->cpu = cpu;
+ __entry->variation = variation;
+ __entry->max_boost = max_boost;
+ ),
+
+ TP_printk("cpu=%d variation=%d max_boost=%d",
+ __entry->cpu, __entry->variation, __entry->max_boost)
+);
+
+/*
+ * Tracepoint for accounting task boosted utilization
+ */
+TRACE_EVENT(sched_boost_task,
+
+ TP_PROTO(struct task_struct *tsk, unsigned long util, long margin),
+
+ TP_ARGS(tsk, util, margin),
+
+ TP_STRUCT__entry(
+ __array( char, comm, TASK_COMM_LEN )
+ __field( pid_t, pid )
+ __field( unsigned long, util )
+ __field( long, margin )
+
+ ),
+
+ TP_fast_assign(
+ memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
+ __entry->pid = tsk->pid;
+ __entry->util = util;
+ __entry->margin = margin;
+ ),
+
+ TP_printk("comm=%s pid=%d util=%lu margin=%ld",
+ __entry->comm, __entry->pid,
+ __entry->util,
+ __entry->margin)
+);
+
+/*
+ * Tracepoint for accounting sched group energy
+ */
+TRACE_EVENT(sched_energy_diff,
+
+ TP_PROTO(struct task_struct *tsk, int scpu, int dcpu, int udelta,
+ int nrgb, int nrga, int nrgd, int capb, int capa, int capd,
+ int nrgn, int nrgp),
+
+ TP_ARGS(tsk, scpu, dcpu, udelta,
+ nrgb, nrga, nrgd, capb, capa, capd,
+ nrgn, nrgp),
+
+ TP_STRUCT__entry(
+ __array( char, comm, TASK_COMM_LEN )
+ __field( pid_t, pid )
+ __field( int, scpu )
+ __field( int, dcpu )
+ __field( int, udelta )
+ __field( int, nrgb )
+ __field( int, nrga )
+ __field( int, nrgd )
+ __field( int, capb )
+ __field( int, capa )
+ __field( int, capd )
+ __field( int, nrgn )
+ __field( int, nrgp )
+ ),
+
+ TP_fast_assign(
+ memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
+ __entry->pid = tsk->pid;
+ __entry->scpu = scpu;
+ __entry->dcpu = dcpu;
+ __entry->udelta = udelta;
+ __entry->nrgb = nrgb;
+ __entry->nrga = nrga;
+ __entry->nrgd = nrgd;
+ __entry->capb = capb;
+ __entry->capa = capa;
+ __entry->capd = capd;
+ __entry->nrgn = nrgn;
+ __entry->nrgp = nrgp;
+ ),
+
+ TP_printk("pid=%d comm=%s "
+ "src_cpu=%d dst_cpu=%d usage_delta=%d "
+ "nrg_before=%d nrg_after=%d nrg_diff=%d "
+ "cap_before=%d cap_after=%d cap_delta=%d "
+ "nrg_delta=%d nrg_payoff=%d",
+ __entry->pid, __entry->comm,
+ __entry->scpu, __entry->dcpu, __entry->udelta,
+ __entry->nrgb, __entry->nrga, __entry->nrgd,
+ __entry->capb, __entry->capa, __entry->capd,
+ __entry->nrgn, __entry->nrgp)
+);
+
+/*
+ * Tracepoint for schedtune_tasks_update
+ */
+TRACE_EVENT(sched_tune_filter,
+
+ TP_PROTO(int nrg_delta, int cap_delta,
+ int nrg_gain, int cap_gain,
+ int payoff, int region),
+
+ TP_ARGS(nrg_delta, cap_delta, nrg_gain, cap_gain, payoff, region),
+
+ TP_STRUCT__entry(
+ __field( int, nrg_delta )
+ __field( int, cap_delta )
+ __field( int, nrg_gain )
+ __field( int, cap_gain )
+ __field( int, payoff )
+ __field( int, region )
+ ),
+
+ TP_fast_assign(
+ __entry->nrg_delta = nrg_delta;
+ __entry->cap_delta = cap_delta;
+ __entry->nrg_gain = nrg_gain;
+ __entry->cap_gain = cap_gain;
+ __entry->payoff = payoff;
+ __entry->region = region;
+ ),
+
+ TP_printk("nrg_delta=%d cap_delta=%d nrg_gain=%d cap_gain=%d payoff=%d region=%d",
+ __entry->nrg_delta, __entry->cap_delta,
+ __entry->nrg_gain, __entry->cap_gain,
+ __entry->payoff, __entry->region)
+);
+
+/*
+ * Tracepoint for system overutilized flag
+ */
+TRACE_EVENT(sched_overutilized,
+
+ TP_PROTO(bool overutilized),
+
+ TP_ARGS(overutilized),
+
+ TP_STRUCT__entry(
+ __field( bool, overutilized )
+ ),
+
+ TP_fast_assign(
+ __entry->overutilized = overutilized;
+ ),
+
+ TP_printk("overutilized=%d",
+ __entry->overutilized ? 1 : 0)
+);
+#ifdef CONFIG_SCHED_WALT
+struct rq;
+
+TRACE_EVENT(walt_update_task_ravg,
+
+ TP_PROTO(struct task_struct *p, struct rq *rq, int evt,
+ u64 wallclock, u64 irqtime),
+
+ TP_ARGS(p, rq, evt, wallclock, irqtime),
+
+ TP_STRUCT__entry(
+ __array( char, comm, TASK_COMM_LEN )
+ __field( pid_t, pid )
+ __field( pid_t, cur_pid )
+ __field(unsigned int, cur_freq )
+ __field( u64, wallclock )
+ __field( u64, mark_start )
+ __field( u64, delta_m )
+ __field( u64, win_start )
+ __field( u64, delta )
+ __field( u64, irqtime )
+ __field( int, evt )
+ __field(unsigned int, demand )
+ __field(unsigned int, sum )
+ __field( int, cpu )
+ __field( u64, cs )
+ __field( u64, ps )
+ __field( u32, curr_window )
+ __field( u32, prev_window )
+ __field( u64, nt_cs )
+ __field( u64, nt_ps )
+ __field( u32, active_windows )
+ ),
+
+ TP_fast_assign(
+ __entry->wallclock = wallclock;
+ __entry->win_start = rq->window_start;
+ __entry->delta = (wallclock - rq->window_start);
+ __entry->evt = evt;
+ __entry->cpu = rq->cpu;
+ __entry->cur_pid = rq->curr->pid;
+ __entry->cur_freq = rq->cur_freq;
+ memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
+ __entry->pid = p->pid;
+ __entry->mark_start = p->ravg.mark_start;
+ __entry->delta_m = (wallclock - p->ravg.mark_start);
+ __entry->demand = p->ravg.demand;
+ __entry->sum = p->ravg.sum;
+ __entry->irqtime = irqtime;
+ __entry->cs = rq->curr_runnable_sum;
+ __entry->ps = rq->prev_runnable_sum;
+ __entry->curr_window = p->ravg.curr_window;
+ __entry->prev_window = p->ravg.prev_window;
+ __entry->nt_cs = rq->nt_curr_runnable_sum;
+ __entry->nt_ps = rq->nt_prev_runnable_sum;
+ __entry->active_windows = p->ravg.active_windows;
+ ),
+
+ TP_printk("wc %llu ws %llu delta %llu event %d cpu %d cur_freq %u cur_pid %d task %d (%s) ms %llu delta %llu demand %u sum %u irqtime %llu"
+ " cs %llu ps %llu cur_window %u prev_window %u nt_cs %llu nt_ps %llu active_wins %u"
+ , __entry->wallclock, __entry->win_start, __entry->delta,
+ __entry->evt, __entry->cpu,
+ __entry->cur_freq, __entry->cur_pid,
+ __entry->pid, __entry->comm, __entry->mark_start,
+ __entry->delta_m, __entry->demand,
+ __entry->sum, __entry->irqtime,
+ __entry->cs, __entry->ps,
+ __entry->curr_window, __entry->prev_window,
+ __entry->nt_cs, __entry->nt_ps,
+ __entry->active_windows
+ )
+);
+
+TRACE_EVENT(walt_update_history,
+
+ TP_PROTO(struct rq *rq, struct task_struct *p, u32 runtime, int samples,
+ int evt),
+
+ TP_ARGS(rq, p, runtime, samples, evt),
+
+ TP_STRUCT__entry(
+ __array( char, comm, TASK_COMM_LEN )
+ __field( pid_t, pid )
+ __field(unsigned int, runtime )
+ __field( int, samples )
+ __field( int, evt )
+ __field( u64, demand )
+ __field(unsigned int, walt_avg )
+ __field(unsigned int, pelt_avg )
+ __array( u32, hist, RAVG_HIST_SIZE_MAX)
+ __field( int, cpu )
+ ),
+
+ TP_fast_assign(
+ memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
+ __entry->pid = p->pid;
+ __entry->runtime = runtime;
+ __entry->samples = samples;
+ __entry->evt = evt;
+ __entry->demand = p->ravg.demand;
+ __entry->walt_avg = (__entry->demand << 10) / walt_ravg_window,
+ __entry->pelt_avg = p->se.avg.util_avg;
+ memcpy(__entry->hist, p->ravg.sum_history,
+ RAVG_HIST_SIZE_MAX * sizeof(u32));
+ __entry->cpu = rq->cpu;
+ ),
+
+ TP_printk("%d (%s): runtime %u samples %d event %d demand %llu"
+ " walt %u pelt %u (hist: %u %u %u %u %u) cpu %d",
+ __entry->pid, __entry->comm,
+ __entry->runtime, __entry->samples, __entry->evt,
+ __entry->demand,
+ __entry->walt_avg,
+ __entry->pelt_avg,
+ __entry->hist[0], __entry->hist[1],
+ __entry->hist[2], __entry->hist[3],
+ __entry->hist[4], __entry->cpu)
+);
+
+TRACE_EVENT(walt_migration_update_sum,
+
+ TP_PROTO(struct rq *rq, struct task_struct *p),
+
+ TP_ARGS(rq, p),
+
+ TP_STRUCT__entry(
+ __field(int, cpu )
+ __field(int, pid )
+ __field( u64, cs )
+ __field( u64, ps )
+ __field( s64, nt_cs )
+ __field( s64, nt_ps )
+ ),
+
+ TP_fast_assign(
+ __entry->cpu = cpu_of(rq);
+ __entry->cs = rq->curr_runnable_sum;
+ __entry->ps = rq->prev_runnable_sum;
+ __entry->nt_cs = (s64)rq->nt_curr_runnable_sum;
+ __entry->nt_ps = (s64)rq->nt_prev_runnable_sum;
+ __entry->pid = p->pid;
+ ),
+
+ TP_printk("cpu %d: cs %llu ps %llu nt_cs %lld nt_ps %lld pid %d",
+ __entry->cpu, __entry->cs, __entry->ps,
+ __entry->nt_cs, __entry->nt_ps, __entry->pid)
+);
+#endif /* CONFIG_SCHED_WALT */
+
+#endif /* CONFIG_SMP */
+
#endif /* _TRACE_SCHED_H */
/* This part must be outside protection */
diff --git a/init/Kconfig b/init/Kconfig
index e1d1d6936f92..e71e35cf723c 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -392,6 +392,15 @@ config IRQ_TIME_ACCOUNTING
endchoice
+config SCHED_WALT
+ bool "Support window based load tracking"
+ depends on SMP
+ help
+ This feature will allow the scheduler to maintain a tunable window
+ based set of metrics for tasks and runqueues. These metrics can be
+ used to guide task placement as well as task frequency requirements
+ for cpufreq governors.
+
config BSD_PROCESS_ACCT
bool "BSD Process Accounting"
depends on MULTIUSER
@@ -999,6 +1008,23 @@ config CGROUP_CPUACCT
Provides a simple Resource Controller for monitoring the
total CPU consumed by the tasks in a cgroup.
+config CGROUP_SCHEDTUNE
+ bool "CFS tasks boosting cgroup subsystem (EXPERIMENTAL)"
+ depends on SCHED_TUNE
+ help
+ This option provides the "schedtune" controller which improves the
+ flexibility of the task boosting mechanism by introducing the support
+ to define "per task" boost values.
+
+ This new controller:
+ 1. allows only a two layers hierarchy, where the root defines the
+ system-wide boost value and its direct childrens define each one a
+ different "class of tasks" to be boosted with a different value
+ 2. supports up to 16 different task classes, each one which could be
+ configured with a different boost value
+
+ Say N if unsure.
+
config PAGE_COUNTER
bool
@@ -1237,6 +1263,33 @@ config SCHED_AUTOGROUP
desktop applications. Task group autogeneration is currently based
upon task session.
+config SCHED_TUNE
+ bool "Boosting for CFS tasks (EXPERIMENTAL)"
+ depends on SMP
+ help
+ This option enables the system-wide support for task boosting.
+ When this support is enabled a new sysctl interface is exposed to
+ userspace via:
+ /proc/sys/kernel/sched_cfs_boost
+ which allows to set a system-wide boost value in range [0..100].
+
+ The currently boosting strategy is implemented in such a way that:
+ - a 0% boost value requires to operate in "standard" mode by
+ scheduling all tasks at the minimum capacities required by their
+ workload demand
+ - a 100% boost value requires to push at maximum the task
+ performances, "regardless" of the incurred energy consumption
+
+ A boost value in between these two boundaries is used to bias the
+ power/performance trade-off, the higher the boost value the more the
+ scheduler is biased toward performance boosting instead of energy
+ efficiency.
+
+ Since this support exposes a single system-wide knob, the specified
+ boost value is applied to all (CFS) tasks in the system.
+
+ If unsure, say N.
+
config SYSFS_DEPRECATED
bool "Enable deprecated sysfs features to support old userspace tools"
depends on SYSFS
diff --git a/kernel/exit.c b/kernel/exit.c
index 07110c6020a0..92ff63200287 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -54,6 +54,8 @@
#include <linux/writeback.h>
#include <linux/shm.h>
+#include "sched/tune.h"
+
#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/pgtable.h>
@@ -699,6 +701,9 @@ void do_exit(long code)
}
exit_signals(tsk); /* sets PF_EXITING */
+
+ schedtune_exit_task(tsk);
+
/*
* tsk->flags are checked in the futex code to protect against
* an exiting task cleaning up the robust pi futexes.
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index 67687973ce80..623ce4bde0d5 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -14,8 +14,11 @@ endif
obj-y += core.o loadavg.o clock.o cputime.o
obj-y += idle_task.o fair.o rt.o deadline.o stop_task.o
obj-y += wait.o completion.o idle.o
-obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o
+obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o energy.o
+obj-$(CONFIG_SCHED_WALT) += walt.o
obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o
obj-$(CONFIG_SCHEDSTATS) += stats.o
obj-$(CONFIG_SCHED_DEBUG) += debug.o
+obj-$(CONFIG_SCHED_TUNE) += tune.o
obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
+obj-$(CONFIG_CPU_FREQ_GOV_SCHED) += cpufreq_sched.o
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index b290af9c37a1..c90bfb620981 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -89,6 +89,7 @@
#define CREATE_TRACE_POINTS
#include <trace/events/sched.h>
+#include "walt.h"
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
@@ -287,6 +288,18 @@ int sysctl_sched_rt_runtime = 950000;
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;
+struct rq *
+lock_rq_of(struct task_struct *p, unsigned long *flags)
+{
+ return task_rq_lock(p, flags);
+}
+
+void
+unlock_rq_of(struct rq *rq, struct task_struct *p, unsigned long *flags)
+{
+ task_rq_unlock(rq, p, flags);
+}
+
/*
* this_rq_lock - lock this runqueue and disable interrupts.
*/
@@ -1073,7 +1086,9 @@ static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new
dequeue_task(rq, p, 0);
p->on_rq = TASK_ON_RQ_MIGRATING;
+ double_lock_balance(rq, cpu_rq(new_cpu));
set_task_cpu(p, new_cpu);
+ double_unlock_balance(rq, cpu_rq(new_cpu));
raw_spin_unlock(&rq->lock);
rq = cpu_rq(new_cpu);
@@ -1297,6 +1312,8 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
p->sched_class->migrate_task_rq(p);
p->se.nr_migrations++;
perf_event_task_migrate(p);
+
+ walt_fixup_busy_time(p, new_cpu);
}
__set_task_cpu(p, new_cpu);
@@ -1925,6 +1942,10 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
{
unsigned long flags;
int cpu, success = 0;
+#ifdef CONFIG_SMP
+ struct rq *rq;
+ u64 wallclock;
+#endif
/*
* If we are going to wake up a thread waiting for CONDITION we
@@ -1982,6 +2003,14 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
*/
smp_rmb();
+ rq = cpu_rq(task_cpu(p));
+
+ raw_spin_lock(&rq->lock);
+ wallclock = walt_ktime_clock();
+ walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
+ walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
+ raw_spin_unlock(&rq->lock);
+
p->sched_contributes_to_load = !!task_contributes_to_load(p);
p->state = TASK_WAKING;
@@ -1989,10 +2018,12 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
p->sched_class->task_waking(p);
cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
+
if (task_cpu(p) != cpu) {
wake_flags |= WF_MIGRATED;
set_task_cpu(p, cpu);
}
+
#endif /* CONFIG_SMP */
ttwu_queue(p, cpu);
@@ -2041,8 +2072,13 @@ static void try_to_wake_up_local(struct task_struct *p)
trace_sched_waking(p);
- if (!task_on_rq_queued(p))
+ if (!task_on_rq_queued(p)) {
+ u64 wallclock = walt_ktime_clock();
+
+ walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
+ walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
ttwu_activate(rq, p, ENQUEUE_WAKEUP);
+ }
ttwu_do_wakeup(rq, p, 0);
ttwu_stat(p, smp_processor_id(), 0);
@@ -2108,6 +2144,7 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
p->se.nr_migrations = 0;
p->se.vruntime = 0;
INIT_LIST_HEAD(&p->se.group_node);
+ walt_init_new_task_load(p);
#ifdef CONFIG_SCHEDSTATS
memset(&p->se.statistics, 0, sizeof(p->se.statistics));
@@ -2375,6 +2412,9 @@ void wake_up_new_task(struct task_struct *p)
struct rq *rq;
raw_spin_lock_irqsave(&p->pi_lock, flags);
+
+ walt_init_new_task_load(p);
+
/* Initialize new task's runnable average */
init_entity_runnable_average(&p->se);
#ifdef CONFIG_SMP
@@ -2387,7 +2427,8 @@ void wake_up_new_task(struct task_struct *p)
#endif
rq = __task_rq_lock(p);
- activate_task(rq, p, 0);
+ walt_mark_task_starting(p);
+ activate_task(rq, p, ENQUEUE_WAKEUP_NEW);
p->on_rq = TASK_ON_RQ_QUEUED;
trace_sched_wakeup_new(p);
check_preempt_curr(rq, p, WF_FORK);
@@ -2768,6 +2809,36 @@ unsigned long nr_iowait_cpu(int cpu)
return atomic_read(&this->nr_iowait);
}
+#ifdef CONFIG_CPU_QUIET
+u64 nr_running_integral(unsigned int cpu)
+{
+ unsigned int seqcnt;
+ u64 integral;
+ struct rq *q;
+
+ if (cpu >= nr_cpu_ids)
+ return 0;
+
+ q = cpu_rq(cpu);
+
+ /*
+ * Update average to avoid reading stalled value if there were
+ * no run-queue changes for a long time. On the other hand if
+ * the changes are happening right now, just read current value
+ * directly.
+ */
+
+ seqcnt = read_seqcount_begin(&q->ave_seqcnt);
+ integral = do_nr_running_integral(q);
+ if (read_seqcount_retry(&q->ave_seqcnt, seqcnt)) {
+ read_seqcount_begin(&q->ave_seqcnt);
+ integral = q->nr_running_integral;
+ }
+
+ return integral;
+}
+#endif
+
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
struct rq *rq = this_rq();
@@ -2854,6 +2925,93 @@ unsigned long long task_sched_runtime(struct task_struct *p)
return ns;
}
+#ifdef CONFIG_CPU_FREQ_GOV_SCHED
+
+static inline
+unsigned long add_capacity_margin(unsigned long cpu_capacity)
+{
+ cpu_capacity = cpu_capacity * capacity_margin;
+ cpu_capacity /= SCHED_CAPACITY_SCALE;
+ return cpu_capacity;
+}
+
+static inline
+unsigned long sum_capacity_reqs(unsigned long cfs_cap,
+ struct sched_capacity_reqs *scr)
+{
+ unsigned long total = add_capacity_margin(cfs_cap + scr->rt);
+ return total += scr->dl;
+}
+
+static void sched_freq_tick_pelt(int cpu)
+{
+ unsigned long cpu_utilization = capacity_max;
+ unsigned long capacity_curr = capacity_curr_of(cpu);
+ struct sched_capacity_reqs *scr;
+
+ scr = &per_cpu(cpu_sched_capacity_reqs, cpu);
+ if (sum_capacity_reqs(cpu_utilization, scr) < capacity_curr)
+ return;
+
+ /*
+ * To make free room for a task that is building up its "real"
+ * utilization and to harm its performance the least, request
+ * a jump to a higher OPP as soon as the margin of free capacity
+ * is impacted (specified by capacity_margin).
+ */
+ set_cfs_cpu_capacity(cpu, true, cpu_utilization);
+}
+
+#ifdef CONFIG_SCHED_WALT
+static void sched_freq_tick_walt(int cpu)
+{
+ unsigned long cpu_utilization = cpu_util(cpu);
+ unsigned long capacity_curr = capacity_curr_of(cpu);
+
+ if (walt_disabled || !sysctl_sched_use_walt_cpu_util)
+ return sched_freq_tick_pelt(cpu);
+
+ /*
+ * Add a margin to the WALT utilization.
+ * NOTE: WALT tracks a single CPU signal for all the scheduling
+ * classes, thus this margin is going to be added to the DL class as
+ * well, which is something we do not do in sched_freq_tick_pelt case.
+ */
+ cpu_utilization = add_capacity_margin(cpu_utilization);
+ if (cpu_utilization <= capacity_curr)
+ return;
+
+ /*
+ * It is likely that the load is growing so we
+ * keep the added margin in our request as an
+ * extra boost.
+ */
+ set_cfs_cpu_capacity(cpu, true, cpu_utilization);
+
+}
+#define _sched_freq_tick(cpu) sched_freq_tick_walt(cpu)
+#else
+#define _sched_freq_tick(cpu) sched_freq_tick_pelt(cpu)
+#endif /* CONFIG_SCHED_WALT */
+
+static void sched_freq_tick(int cpu)
+{
+ unsigned long capacity_orig, capacity_curr;
+
+ if (!sched_freq())
+ return;
+
+ capacity_orig = capacity_orig_of(cpu);
+ capacity_curr = capacity_curr_of(cpu);
+ if (capacity_curr == capacity_orig)
+ return;
+
+ _sched_freq_tick(cpu);
+}
+#else
+static inline void sched_freq_tick(int cpu) { }
+#endif /* CONFIG_CPU_FREQ_GOV_SCHED */
+
/*
* This function gets called by the timer code, with HZ frequency.
* We call it with interrupts disabled.
@@ -2867,10 +3025,14 @@ void scheduler_tick(void)
sched_clock_tick();
raw_spin_lock(&rq->lock);
+ walt_set_window_start(rq);
update_rq_clock(rq);
curr->sched_class->task_tick(rq, curr, 0);
update_cpu_load_active(rq);
+ walt_update_task_ravg(rq->curr, rq, TASK_UPDATE,
+ walt_ktime_clock(), 0);
calc_global_load_tick(rq);
+ sched_freq_tick(cpu);
raw_spin_unlock(&rq->lock);
perf_event_task_tick();
@@ -3107,6 +3269,7 @@ static void __sched notrace __schedule(bool preempt)
unsigned long *switch_count;
struct rq *rq;
int cpu;
+ u64 wallclock;
cpu = smp_processor_id();
rq = cpu_rq(cpu);
@@ -3168,6 +3331,9 @@ static void __sched notrace __schedule(bool preempt)
update_rq_clock(rq);
next = pick_next_task(rq, prev);
+ wallclock = walt_ktime_clock();
+ walt_update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
+ walt_update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
clear_tsk_need_resched(prev);
clear_preempt_need_resched();
rq->clock_skip_update = 0;
@@ -4992,6 +5158,7 @@ void init_idle(struct task_struct *idle, int cpu)
raw_spin_lock(&rq->lock);
__sched_fork(0, idle);
+
idle->state = TASK_RUNNING;
idle->se.exec_start = sched_clock();
@@ -5374,9 +5541,60 @@ set_table_entry(struct ctl_table *entry,
}
static struct ctl_table *
+sd_alloc_ctl_energy_table(struct sched_group_energy *sge)
+{
+ struct ctl_table *table = sd_alloc_ctl_entry(5);
+
+ if (table == NULL)
+ return NULL;
+
+ set_table_entry(&table[0], "nr_idle_states", &sge->nr_idle_states,
+ sizeof(int), 0644, proc_dointvec_minmax, false);
+ set_table_entry(&table[1], "idle_states", &sge->idle_states[0].power,
+ sge->nr_idle_states*sizeof(struct idle_state), 0644,
+ proc_doulongvec_minmax, false);
+ set_table_entry(&table[2], "nr_cap_states", &sge->nr_cap_states,
+ sizeof(int), 0644, proc_dointvec_minmax, false);
+ set_table_entry(&table[3], "cap_states", &sge->cap_states[0].cap,
+ sge->nr_cap_states*sizeof(struct capacity_state), 0644,
+ proc_doulongvec_minmax, false);
+
+ return table;
+}
+
+static struct ctl_table *
+sd_alloc_ctl_group_table(struct sched_group *sg)
+{
+ struct ctl_table *table = sd_alloc_ctl_entry(2);
+
+ if (table == NULL)
+ return NULL;
+
+ table->procname = kstrdup("energy", GFP_KERNEL);
+ table->mode = 0555;
+ table->child = sd_alloc_ctl_energy_table((struct sched_group_energy *)sg->sge);
+
+ return table;
+}
+
+static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
- struct ctl_table *table = sd_alloc_ctl_entry(14);
+ struct ctl_table *table;
+ unsigned int nr_entries = 14;
+
+ int i = 0;
+ struct sched_group *sg = sd->groups;
+
+ if (sg->sge) {
+ int nr_sgs = 0;
+
+ do {} while (nr_sgs++, sg = sg->next, sg != sd->groups);
+
+ nr_entries += nr_sgs;
+ }
+
+ table = sd_alloc_ctl_entry(nr_entries);
if (table == NULL)
return NULL;
@@ -5409,7 +5627,19 @@ sd_alloc_ctl_domain_table(struct sched_domain *sd)
sizeof(long), 0644, proc_doulongvec_minmax, false);
set_table_entry(&table[12], "name", sd->name,
CORENAME_MAX_SIZE, 0444, proc_dostring, false);
- /* &table[13] is terminator */
+ sg = sd->groups;
+ if (sg->sge) {
+ char buf[32];
+ struct ctl_table *entry = &table[13];
+
+ do {
+ snprintf(buf, 32, "group%d", i);
+ entry->procname = kstrdup(buf, GFP_KERNEL);
+ entry->mode = 0555;
+ entry->child = sd_alloc_ctl_group_table(sg);
+ } while (entry++, i++, sg = sg->next, sg != sd->groups);
+ }
+ /* &table[nr_entries-1] is terminator */
return table;
}
@@ -5525,6 +5755,9 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_UP_PREPARE:
+ raw_spin_lock_irqsave(&rq->lock, flags);
+ walt_set_window_start(rq);
+ raw_spin_unlock_irqrestore(&rq->lock, flags);
rq->calc_load_update = calc_load_update;
break;
@@ -5544,6 +5777,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
sched_ttwu_pending();
/* Update our root-domain */
raw_spin_lock_irqsave(&rq->lock, flags);
+ walt_migrate_sync_cpu(cpu);
if (rq->rd) {
BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
set_rq_offline(rq);
@@ -5715,7 +5949,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
printk(KERN_CONT " %*pbl",
cpumask_pr_args(sched_group_cpus(group)));
if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
- printk(KERN_CONT " (cpu_capacity = %d)",
+ printk(KERN_CONT " (cpu_capacity = %lu)",
group->sgc->capacity);
}
@@ -5776,7 +6010,8 @@ static int sd_degenerate(struct sched_domain *sd)
SD_BALANCE_EXEC |
SD_SHARE_CPUCAPACITY |
SD_SHARE_PKG_RESOURCES |
- SD_SHARE_POWERDOMAIN)) {
+ SD_SHARE_POWERDOMAIN |
+ SD_SHARE_CAP_STATES)) {
if (sd->groups != sd->groups->next)
return 0;
}
@@ -5808,7 +6043,8 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
SD_SHARE_CPUCAPACITY |
SD_SHARE_PKG_RESOURCES |
SD_PREFER_SIBLING |
- SD_SHARE_POWERDOMAIN);
+ SD_SHARE_POWERDOMAIN |
+ SD_SHARE_CAP_STATES);
if (nr_node_ids == 1)
pflags &= ~SD_SERIALIZE;
}
@@ -5887,6 +6123,8 @@ static int init_rootdomain(struct root_domain *rd)
if (cpupri_init(&rd->cpupri) != 0)
goto free_rto_mask;
+
+ init_max_cpu_capacity(&rd->max_cpu_capacity);
return 0;
free_rto_mask:
@@ -5992,11 +6230,13 @@ DEFINE_PER_CPU(int, sd_llc_id);
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
+DEFINE_PER_CPU(struct sched_domain *, sd_ea);
+DEFINE_PER_CPU(struct sched_domain *, sd_scs);
static void update_top_cache_domain(int cpu)
{
struct sched_domain *sd;
- struct sched_domain *busy_sd = NULL;
+ struct sched_domain *busy_sd = NULL, *ea_sd = NULL;
int id = cpu;
int size = 1;
@@ -6017,6 +6257,17 @@ static void update_top_cache_domain(int cpu)
sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
+
+ for_each_domain(cpu, sd) {
+ if (sd->groups->sge)
+ ea_sd = sd;
+ else
+ break;
+ }
+ rcu_assign_pointer(per_cpu(sd_ea, cpu), ea_sd);
+
+ sd = highest_flag_domain(cpu, SD_SHARE_CAP_STATES);
+ rcu_assign_pointer(per_cpu(sd_scs, cpu), sd);
}
/*
@@ -6177,6 +6428,7 @@ build_overlap_sched_groups(struct sched_domain *sd, int cpu)
* die on a /0 trap.
*/
sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
+ sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
/*
* Make sure the first group of this domain contains the
@@ -6306,6 +6558,66 @@ static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
}
/*
+ * Check that the per-cpu provided sd energy data is consistent for all cpus
+ * within the mask.
+ */
+static inline void check_sched_energy_data(int cpu, sched_domain_energy_f fn,
+ const struct cpumask *cpumask)
+{
+ const struct sched_group_energy * const sge = fn(cpu);
+ struct cpumask mask;
+ int i;
+
+ if (cpumask_weight(cpumask) <= 1)
+ return;
+
+ cpumask_xor(&mask, cpumask, get_cpu_mask(cpu));
+
+ for_each_cpu(i, &mask) {
+ const struct sched_group_energy * const e = fn(i);
+ int y;
+
+ BUG_ON(e->nr_idle_states != sge->nr_idle_states);
+
+ for (y = 0; y < (e->nr_idle_states); y++) {
+ BUG_ON(e->idle_states[y].power !=
+ sge->idle_states[y].power);
+ }
+
+ BUG_ON(e->nr_cap_states != sge->nr_cap_states);
+
+ for (y = 0; y < (e->nr_cap_states); y++) {
+ BUG_ON(e->cap_states[y].cap != sge->cap_states[y].cap);
+ BUG_ON(e->cap_states[y].power !=
+ sge->cap_states[y].power);
+ }
+ }
+}
+
+static void init_sched_energy(int cpu, struct sched_domain *sd,
+ sched_domain_energy_f fn)
+{
+ if (!(fn && fn(cpu)))
+ return;
+
+ if (cpu != group_balance_cpu(sd->groups))
+ return;
+
+ if (sd->child && !sd->child->groups->sge) {
+ pr_err("BUG: EAS setup broken for CPU%d\n", cpu);
+#ifdef CONFIG_SCHED_DEBUG
+ pr_err(" energy data on %s but not on %s domain\n",
+ sd->name, sd->child->name);
+#endif
+ return;
+ }
+
+ check_sched_energy_data(cpu, fn, sched_group_cpus(sd->groups));
+
+ sd->groups->sge = fn(cpu);
+}
+
+/*
* Initializers for schedule domains
* Non-inlined to reduce accumulated stack pressure in build_sched_domains()
*/
@@ -6413,6 +6725,7 @@ static int sched_domains_curr_level;
* SD_SHARE_PKG_RESOURCES - describes shared caches
* SD_NUMA - describes NUMA topologies
* SD_SHARE_POWERDOMAIN - describes shared power domain
+ * SD_SHARE_CAP_STATES - describes shared capacity states
*
* Odd one out:
* SD_ASYM_PACKING - describes SMT quirks
@@ -6422,7 +6735,8 @@ static int sched_domains_curr_level;
SD_SHARE_PKG_RESOURCES | \
SD_NUMA | \
SD_ASYM_PACKING | \
- SD_SHARE_POWERDOMAIN)
+ SD_SHARE_POWERDOMAIN | \
+ SD_SHARE_CAP_STATES)
static struct sched_domain *
sd_init(struct sched_domain_topology_level *tl, int cpu)
@@ -6972,6 +7286,7 @@ static int build_sched_domains(const struct cpumask *cpu_map,
enum s_alloc alloc_state;
struct sched_domain *sd;
struct s_data d;
+ struct rq *rq = NULL;
int i, ret = -ENOMEM;
alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
@@ -7010,10 +7325,13 @@ static int build_sched_domains(const struct cpumask *cpu_map,
/* Calculate CPU capacity for physical packages and nodes */
for (i = nr_cpumask_bits-1; i >= 0; i--) {
+ struct sched_domain_topology_level *tl = sched_domain_topology;
+
if (!cpumask_test_cpu(i, cpu_map))
continue;
- for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
+ for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent, tl++) {
+ init_sched_energy(i, sd, tl->energy);
claim_allocations(i, sd);
init_sched_groups_capacity(i, sd);
}
@@ -7022,6 +7340,7 @@ static int build_sched_domains(const struct cpumask *cpu_map,
/* Attach the domains */
rcu_read_lock();
for_each_cpu(i, cpu_map) {
+ rq = cpu_rq(i);
sd = *per_cpu_ptr(d.sd, i);
cpu_attach_domain(sd, d.rd, i);
}
@@ -7303,6 +7622,7 @@ void __init sched_init_smp(void)
{
cpumask_var_t non_isolated_cpus;
+ walt_init_cpu_efficiency();
alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
@@ -7480,6 +7800,11 @@ void __init sched_init(void)
rq->idle_stamp = 0;
rq->avg_idle = 2*sysctl_sched_migration_cost;
rq->max_idle_balance_cost = sysctl_sched_migration_cost;
+#ifdef CONFIG_SCHED_WALT
+ rq->cur_irqload = 0;
+ rq->avg_irqload = 0;
+ rq->irqload_ts = 0;
+#endif
INIT_LIST_HEAD(&rq->cfs_tasks);
diff --git a/kernel/sched/cpufreq_sched.c b/kernel/sched/cpufreq_sched.c
new file mode 100644
index 000000000000..f6f9b9b3a4a8
--- /dev/null
+++ b/kernel/sched/cpufreq_sched.c
@@ -0,0 +1,499 @@
+/*
+ * Copyright (C) 2015 Michael Turquette <mturquette@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/cpufreq.h>
+#include <linux/module.h>
+#include <linux/kthread.h>
+#include <linux/percpu.h>
+#include <linux/irq_work.h>
+#include <linux/delay.h>
+#include <linux/string.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/cpufreq_sched.h>
+
+#include "sched.h"
+
+#define THROTTLE_DOWN_NSEC 50000000 /* 50ms default */
+#define THROTTLE_UP_NSEC 500000 /* 500us default */
+
+struct static_key __read_mostly __sched_freq = STATIC_KEY_INIT_FALSE;
+static bool __read_mostly cpufreq_driver_slow;
+
+#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHED
+static struct cpufreq_governor cpufreq_gov_sched;
+#endif
+
+static DEFINE_PER_CPU(unsigned long, enabled);
+DEFINE_PER_CPU(struct sched_capacity_reqs, cpu_sched_capacity_reqs);
+
+/**
+ * gov_data - per-policy data internal to the governor
+ * @up_throttle: next throttling period expiry if increasing OPP
+ * @down_throttle: next throttling period expiry if decreasing OPP
+ * @up_throttle_nsec: throttle period length in nanoseconds if increasing OPP
+ * @down_throttle_nsec: throttle period length in nanoseconds if decreasing OPP
+ * @task: worker thread for dvfs transition that may block/sleep
+ * @irq_work: callback used to wake up worker thread
+ * @requested_freq: last frequency requested by the sched governor
+ *
+ * struct gov_data is the per-policy cpufreq_sched-specific data structure. A
+ * per-policy instance of it is created when the cpufreq_sched governor receives
+ * the CPUFREQ_GOV_START condition and a pointer to it exists in the gov_data
+ * member of struct cpufreq_policy.
+ *
+ * Readers of this data must call down_read(policy->rwsem). Writers must
+ * call down_write(policy->rwsem).
+ */
+struct gov_data {
+ ktime_t up_throttle;
+ ktime_t down_throttle;
+ unsigned int up_throttle_nsec;
+ unsigned int down_throttle_nsec;
+ struct task_struct *task;
+ struct irq_work irq_work;
+ unsigned int requested_freq;
+};
+
+static void cpufreq_sched_try_driver_target(struct cpufreq_policy *policy,
+ unsigned int freq)
+{
+ struct gov_data *gd = policy->governor_data;
+
+ /* avoid race with cpufreq_sched_stop */
+ if (!down_write_trylock(&policy->rwsem))
+ return;
+
+ __cpufreq_driver_target(policy, freq, CPUFREQ_RELATION_L);
+
+ gd->up_throttle = ktime_add_ns(ktime_get(), gd->up_throttle_nsec);
+ gd->down_throttle = ktime_add_ns(ktime_get(), gd->down_throttle_nsec);
+ up_write(&policy->rwsem);
+}
+
+static bool finish_last_request(struct gov_data *gd, unsigned int cur_freq)
+{
+ ktime_t now = ktime_get();
+
+ ktime_t throttle = gd->requested_freq < cur_freq ?
+ gd->down_throttle : gd->up_throttle;
+
+ if (ktime_after(now, throttle))
+ return false;
+
+ while (1) {
+ int usec_left = ktime_to_ns(ktime_sub(throttle, now));
+
+ usec_left /= NSEC_PER_USEC;
+ trace_cpufreq_sched_throttled(usec_left);
+ usleep_range(usec_left, usec_left + 100);
+ now = ktime_get();
+ if (ktime_after(now, throttle))
+ return true;
+ }
+}
+
+/*
+ * we pass in struct cpufreq_policy. This is safe because changing out the
+ * policy requires a call to __cpufreq_governor(policy, CPUFREQ_GOV_STOP),
+ * which tears down all of the data structures and __cpufreq_governor(policy,
+ * CPUFREQ_GOV_START) will do a full rebuild, including this kthread with the
+ * new policy pointer
+ */
+static int cpufreq_sched_thread(void *data)
+{
+ struct sched_param param;
+ struct cpufreq_policy *policy;
+ struct gov_data *gd;
+ unsigned int new_request = 0;
+ unsigned int last_request = 0;
+ int ret;
+
+ policy = (struct cpufreq_policy *) data;
+ gd = policy->governor_data;
+
+ param.sched_priority = 50;
+ ret = sched_setscheduler_nocheck(gd->task, SCHED_FIFO, &param);
+ if (ret) {
+ pr_warn("%s: failed to set SCHED_FIFO\n", __func__);
+ do_exit(-EINVAL);
+ } else {
+ pr_debug("%s: kthread (%d) set to SCHED_FIFO\n",
+ __func__, gd->task->pid);
+ }
+
+ do {
+ new_request = gd->requested_freq;
+ if (new_request == last_request) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (kthread_should_stop())
+ break;
+ schedule();
+ } else {
+ /*
+ * if the frequency thread sleeps while waiting to be
+ * unthrottled, start over to check for a newer request
+ */
+ if (finish_last_request(gd, policy->cur))
+ continue;
+ last_request = new_request;
+ cpufreq_sched_try_driver_target(policy, new_request);
+ }
+ } while (!kthread_should_stop());
+
+ return 0;
+}
+
+static void cpufreq_sched_irq_work(struct irq_work *irq_work)
+{
+ struct gov_data *gd;
+
+ gd = container_of(irq_work, struct gov_data, irq_work);
+ if (!gd)
+ return;
+
+ wake_up_process(gd->task);
+}
+
+static void update_fdomain_capacity_request(int cpu)
+{
+ unsigned int freq_new, index_new, cpu_tmp;
+ struct cpufreq_policy *policy;
+ struct gov_data *gd;
+ unsigned long capacity = 0;
+
+ /*
+ * Avoid grabbing the policy if possible. A test is still
+ * required after locking the CPU's policy to avoid racing
+ * with the governor changing.
+ */
+ if (!per_cpu(enabled, cpu))
+ return;
+
+ policy = cpufreq_cpu_get(cpu);
+ if (IS_ERR_OR_NULL(policy))
+ return;
+
+ if (policy->governor != &cpufreq_gov_sched ||
+ !policy->governor_data)
+ goto out;
+
+ gd = policy->governor_data;
+
+ /* find max capacity requested by cpus in this policy */
+ for_each_cpu(cpu_tmp, policy->cpus) {
+ struct sched_capacity_reqs *scr;
+
+ scr = &per_cpu(cpu_sched_capacity_reqs, cpu_tmp);
+ capacity = max(capacity, scr->total);
+ }
+
+ /* Convert the new maximum capacity request into a cpu frequency */
+ freq_new = capacity * policy->max >> SCHED_CAPACITY_SHIFT;
+ if (cpufreq_frequency_table_target(policy, policy->freq_table,
+ freq_new, CPUFREQ_RELATION_L,
+ &index_new))
+ goto out;
+ freq_new = policy->freq_table[index_new].frequency;
+
+ if (freq_new > policy->max)
+ freq_new = policy->max;
+
+ if (freq_new < policy->min)
+ freq_new = policy->min;
+
+ trace_cpufreq_sched_request_opp(cpu, capacity, freq_new,
+ gd->requested_freq);
+ if (freq_new == gd->requested_freq)
+ goto out;
+
+ gd->requested_freq = freq_new;
+
+ /*
+ * Throttling is not yet supported on platforms with fast cpufreq
+ * drivers.
+ */
+ if (cpufreq_driver_slow)
+ irq_work_queue_on(&gd->irq_work, cpu);
+ else
+ cpufreq_sched_try_driver_target(policy, freq_new);
+
+out:
+ cpufreq_cpu_put(policy);
+}
+
+void update_cpu_capacity_request(int cpu, bool request)
+{
+ unsigned long new_capacity;
+ struct sched_capacity_reqs *scr;
+
+ /* The rq lock serializes access to the CPU's sched_capacity_reqs. */
+ lockdep_assert_held(&cpu_rq(cpu)->lock);
+
+ scr = &per_cpu(cpu_sched_capacity_reqs, cpu);
+
+ new_capacity = scr->cfs + scr->rt;
+ new_capacity = new_capacity * capacity_margin
+ / SCHED_CAPACITY_SCALE;
+ new_capacity += scr->dl;
+
+ if (new_capacity == scr->total)
+ return;
+
+ trace_cpufreq_sched_update_capacity(cpu, request, scr, new_capacity);
+
+ scr->total = new_capacity;
+ if (request)
+ update_fdomain_capacity_request(cpu);
+}
+
+static inline void set_sched_freq(void)
+{
+ static_key_slow_inc(&__sched_freq);
+}
+
+static inline void clear_sched_freq(void)
+{
+ static_key_slow_dec(&__sched_freq);
+}
+
+static struct attribute_group sched_attr_group_gov_pol;
+static struct attribute_group *get_sysfs_attr(void)
+{
+ return &sched_attr_group_gov_pol;
+}
+
+static int cpufreq_sched_policy_init(struct cpufreq_policy *policy)
+{
+ struct gov_data *gd;
+ int cpu;
+ int rc;
+
+ for_each_cpu(cpu, policy->cpus)
+ memset(&per_cpu(cpu_sched_capacity_reqs, cpu), 0,
+ sizeof(struct sched_capacity_reqs));
+
+ gd = kzalloc(sizeof(*gd), GFP_KERNEL);
+ if (!gd)
+ return -ENOMEM;
+
+ gd->up_throttle_nsec = policy->cpuinfo.transition_latency ?
+ policy->cpuinfo.transition_latency :
+ THROTTLE_UP_NSEC;
+ gd->down_throttle_nsec = THROTTLE_DOWN_NSEC;
+ pr_debug("%s: throttle threshold = %u [ns]\n",
+ __func__, gd->up_throttle_nsec);
+
+ rc = sysfs_create_group(get_governor_parent_kobj(policy), get_sysfs_attr());
+ if (rc) {
+ pr_err("%s: couldn't create sysfs attributes: %d\n", __func__, rc);
+ goto err;
+ }
+
+ policy->governor_data = gd;
+ if (cpufreq_driver_is_slow()) {
+ cpufreq_driver_slow = true;
+ gd->task = kthread_create(cpufreq_sched_thread, policy,
+ "kschedfreq:%d",
+ cpumask_first(policy->related_cpus));
+ if (IS_ERR_OR_NULL(gd->task)) {
+ pr_err("%s: failed to create kschedfreq thread\n",
+ __func__);
+ goto err;
+ }
+ get_task_struct(gd->task);
+ kthread_bind_mask(gd->task, policy->related_cpus);
+ wake_up_process(gd->task);
+ init_irq_work(&gd->irq_work, cpufreq_sched_irq_work);
+ }
+
+ set_sched_freq();
+
+ return 0;
+
+err:
+ policy->governor_data = NULL;
+ kfree(gd);
+ return -ENOMEM;
+}
+
+static int cpufreq_sched_policy_exit(struct cpufreq_policy *policy)
+{
+ struct gov_data *gd = policy->governor_data;
+
+ clear_sched_freq();
+ if (cpufreq_driver_slow) {
+ kthread_stop(gd->task);
+ put_task_struct(gd->task);
+ }
+
+ sysfs_remove_group(get_governor_parent_kobj(policy), get_sysfs_attr());
+
+ policy->governor_data = NULL;
+
+ kfree(gd);
+ return 0;
+}
+
+static int cpufreq_sched_start(struct cpufreq_policy *policy)
+{
+ int cpu;
+
+ for_each_cpu(cpu, policy->cpus)
+ per_cpu(enabled, cpu) = 1;
+
+ return 0;
+}
+
+static void cpufreq_sched_limits(struct cpufreq_policy *policy)
+{
+ unsigned int clamp_freq;
+ struct gov_data *gd = policy->governor_data;;
+
+ pr_debug("limit event for cpu %u: %u - %u kHz, currently %u kHz\n",
+ policy->cpu, policy->min, policy->max,
+ policy->cur);
+
+ clamp_freq = clamp(gd->requested_freq, policy->min, policy->max);
+
+ if (policy->cur != clamp_freq)
+ __cpufreq_driver_target(policy, clamp_freq, CPUFREQ_RELATION_L);
+}
+
+static int cpufreq_sched_stop(struct cpufreq_policy *policy)
+{
+ int cpu;
+
+ for_each_cpu(cpu, policy->cpus)
+ per_cpu(enabled, cpu) = 0;
+
+ return 0;
+}
+
+static int cpufreq_sched_setup(struct cpufreq_policy *policy,
+ unsigned int event)
+{
+ switch (event) {
+ case CPUFREQ_GOV_POLICY_INIT:
+ return cpufreq_sched_policy_init(policy);
+ case CPUFREQ_GOV_POLICY_EXIT:
+ return cpufreq_sched_policy_exit(policy);
+ case CPUFREQ_GOV_START:
+ return cpufreq_sched_start(policy);
+ case CPUFREQ_GOV_STOP:
+ return cpufreq_sched_stop(policy);
+ case CPUFREQ_GOV_LIMITS:
+ cpufreq_sched_limits(policy);
+ break;
+ }
+ return 0;
+}
+
+/* Tunables */
+static ssize_t show_up_throttle_nsec(struct gov_data *gd, char *buf)
+{
+ return sprintf(buf, "%u\n", gd->up_throttle_nsec);
+}
+
+static ssize_t store_up_throttle_nsec(struct gov_data *gd,
+ const char *buf, size_t count)
+{
+ int ret;
+ long unsigned int val;
+
+ ret = kstrtoul(buf, 0, &val);
+ if (ret < 0)
+ return ret;
+ gd->up_throttle_nsec = val;
+ return count;
+}
+
+static ssize_t show_down_throttle_nsec(struct gov_data *gd, char *buf)
+{
+ return sprintf(buf, "%u\n", gd->down_throttle_nsec);
+}
+
+static ssize_t store_down_throttle_nsec(struct gov_data *gd,
+ const char *buf, size_t count)
+{
+ int ret;
+ long unsigned int val;
+
+ ret = kstrtoul(buf, 0, &val);
+ if (ret < 0)
+ return ret;
+ gd->down_throttle_nsec = val;
+ return count;
+}
+
+/*
+ * Create show/store routines
+ * - sys: One governor instance for complete SYSTEM
+ * - pol: One governor instance per struct cpufreq_policy
+ */
+#define show_gov_pol_sys(file_name) \
+static ssize_t show_##file_name##_gov_pol \
+(struct cpufreq_policy *policy, char *buf) \
+{ \
+ return show_##file_name(policy->governor_data, buf); \
+}
+
+#define store_gov_pol_sys(file_name) \
+static ssize_t store_##file_name##_gov_pol \
+(struct cpufreq_policy *policy, const char *buf, size_t count) \
+{ \
+ return store_##file_name(policy->governor_data, buf, count); \
+}
+
+#define gov_pol_attr_rw(_name) \
+ static struct freq_attr _name##_gov_pol = \
+ __ATTR(_name, 0644, show_##_name##_gov_pol, store_##_name##_gov_pol)
+
+#define show_store_gov_pol_sys(file_name) \
+ show_gov_pol_sys(file_name); \
+ store_gov_pol_sys(file_name)
+#define tunable_handlers(file_name) \
+ show_gov_pol_sys(file_name); \
+ store_gov_pol_sys(file_name); \
+ gov_pol_attr_rw(file_name)
+
+tunable_handlers(down_throttle_nsec);
+tunable_handlers(up_throttle_nsec);
+
+/* Per policy governor instance */
+static struct attribute *sched_attributes_gov_pol[] = {
+ &up_throttle_nsec_gov_pol.attr,
+ &down_throttle_nsec_gov_pol.attr,
+ NULL,
+};
+
+static struct attribute_group sched_attr_group_gov_pol = {
+ .attrs = sched_attributes_gov_pol,
+ .name = "sched",
+};
+
+#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHED
+static
+#endif
+struct cpufreq_governor cpufreq_gov_sched = {
+ .name = "sched",
+ .governor = cpufreq_sched_setup,
+ .owner = THIS_MODULE,
+};
+
+static int __init cpufreq_sched_init(void)
+{
+ int cpu;
+
+ for_each_cpu(cpu, cpu_possible_mask)
+ per_cpu(enabled, cpu) = 0;
+ return cpufreq_register_governor(&cpufreq_gov_sched);
+}
+
+/* Try to make this the default governor */
+fs_initcall(cpufreq_sched_init);
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index 05de80b48586..442a9f7a2832 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -5,6 +5,7 @@
#include <linux/static_key.h>
#include <linux/context_tracking.h>
#include "sched.h"
+#include "walt.h"
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
@@ -49,6 +50,10 @@ void irqtime_account_irq(struct task_struct *curr)
unsigned long flags;
s64 delta;
int cpu;
+#ifdef CONFIG_SCHED_WALT
+ u64 wallclock;
+ bool account = true;
+#endif
if (!sched_clock_irqtime)
return;
@@ -56,6 +61,9 @@ void irqtime_account_irq(struct task_struct *curr)
local_irq_save(flags);
cpu = smp_processor_id();
+#ifdef CONFIG_SCHED_WALT
+ wallclock = sched_clock_cpu(cpu);
+#endif
delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
__this_cpu_add(irq_start_time, delta);
@@ -70,8 +78,16 @@ void irqtime_account_irq(struct task_struct *curr)
__this_cpu_add(cpu_hardirq_time, delta);
else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
__this_cpu_add(cpu_softirq_time, delta);
+#ifdef CONFIG_SCHED_WALT
+ else
+ account = false;
+#endif
irq_time_write_end();
+#ifdef CONFIG_SCHED_WALT
+ if (account)
+ walt_account_irqtime(cpu, curr, delta, wallclock);
+#endif
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(irqtime_account_irq);
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index 8b0a15e285f9..9d9eb50d4059 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -43,6 +43,24 @@ static inline int on_dl_rq(struct sched_dl_entity *dl_se)
return !RB_EMPTY_NODE(&dl_se->rb_node);
}
+static void add_average_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ u64 se_bw = dl_se->dl_bw;
+
+ dl_rq->avg_bw += se_bw;
+}
+
+static void clear_average_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ u64 se_bw = dl_se->dl_bw;
+
+ dl_rq->avg_bw -= se_bw;
+ if (dl_rq->avg_bw < 0) {
+ WARN_ON(1);
+ dl_rq->avg_bw = 0;
+ }
+}
+
static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
{
struct sched_dl_entity *dl_se = &p->dl;
@@ -494,6 +512,9 @@ static void update_dl_entity(struct sched_dl_entity *dl_se,
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
struct rq *rq = rq_of_dl_rq(dl_rq);
+ if (dl_se->dl_new)
+ add_average_bw(dl_se, dl_rq);
+
/*
* The arrival of a new instance needs special treatment, i.e.,
* the actual scheduling parameters have to be "renewed".
@@ -741,8 +762,6 @@ static void update_curr_dl(struct rq *rq)
curr->se.exec_start = rq_clock_task(rq);
cpuacct_charge(curr, delta_exec);
- sched_rt_avg_update(rq, delta_exec);
-
dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
if (dl_runtime_exceeded(dl_se)) {
dl_se->dl_throttled = 1;
@@ -1241,6 +1260,8 @@ static void task_fork_dl(struct task_struct *p)
static void task_dead_dl(struct task_struct *p)
{
struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
+ struct dl_rq *dl_rq = dl_rq_of_se(&p->dl);
+ struct rq *rq = rq_of_dl_rq(dl_rq);
/*
* Since we are TASK_DEAD we won't slip out of the domain!
@@ -1249,6 +1270,8 @@ static void task_dead_dl(struct task_struct *p)
/* XXX we should retain the bw until 0-lag */
dl_b->total_bw -= p->dl.dl_bw;
raw_spin_unlock_irq(&dl_b->lock);
+
+ clear_average_bw(&p->dl, &rq->dl);
}
static void set_curr_task_dl(struct rq *rq)
@@ -1556,7 +1579,9 @@ retry:
}
deactivate_task(rq, next_task, 0);
+ clear_average_bw(&next_task->dl, &rq->dl);
set_task_cpu(next_task, later_rq->cpu);
+ add_average_bw(&next_task->dl, &later_rq->dl);
activate_task(later_rq, next_task, 0);
ret = 1;
@@ -1644,7 +1669,9 @@ static void pull_dl_task(struct rq *this_rq)
resched = true;
deactivate_task(src_rq, p, 0);
+ clear_average_bw(&p->dl, &src_rq->dl);
set_task_cpu(p, this_cpu);
+ add_average_bw(&p->dl, &this_rq->dl);
activate_task(this_rq, p, 0);
dmin = p->dl.deadline;
@@ -1750,6 +1777,8 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p)
if (!start_dl_timer(p))
__dl_clear_params(p);
+ clear_average_bw(&p->dl, &rq->dl);
+
/*
* Since this might be the only -deadline task on the rq,
* this is the right place to try to pull some other one
diff --git a/kernel/sched/energy.c b/kernel/sched/energy.c
new file mode 100644
index 000000000000..b0656b7a93e3
--- /dev/null
+++ b/kernel/sched/energy.c
@@ -0,0 +1,124 @@
+/*
+ * Obtain energy cost data from DT and populate relevant scheduler data
+ * structures.
+ *
+ * Copyright (C) 2015 ARM Ltd.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+#define pr_fmt(fmt) "sched-energy: " fmt
+
+#define DEBUG
+
+#include <linux/gfp.h>
+#include <linux/of.h>
+#include <linux/printk.h>
+#include <linux/sched.h>
+#include <linux/sched_energy.h>
+#include <linux/stddef.h>
+
+struct sched_group_energy *sge_array[NR_CPUS][NR_SD_LEVELS];
+
+static void free_resources(void)
+{
+ int cpu, sd_level;
+ struct sched_group_energy *sge;
+
+ for_each_possible_cpu(cpu) {
+ for_each_possible_sd_level(sd_level) {
+ sge = sge_array[cpu][sd_level];
+ if (sge) {
+ kfree(sge->cap_states);
+ kfree(sge->idle_states);
+ kfree(sge);
+ }
+ }
+ }
+}
+
+void init_sched_energy_costs(void)
+{
+ struct device_node *cn, *cp;
+ struct capacity_state *cap_states;
+ struct idle_state *idle_states;
+ struct sched_group_energy *sge;
+ const struct property *prop;
+ int sd_level, i, nstates, cpu;
+ const __be32 *val;
+
+ for_each_possible_cpu(cpu) {
+ cn = of_get_cpu_node(cpu, NULL);
+ if (!cn) {
+ pr_warn("CPU device node missing for CPU %d\n", cpu);
+ return;
+ }
+
+ if (!of_find_property(cn, "sched-energy-costs", NULL)) {
+ pr_warn("CPU device node has no sched-energy-costs\n");
+ return;
+ }
+
+ for_each_possible_sd_level(sd_level) {
+ cp = of_parse_phandle(cn, "sched-energy-costs", sd_level);
+ if (!cp)
+ break;
+
+ prop = of_find_property(cp, "busy-cost-data", NULL);
+ if (!prop || !prop->value) {
+ pr_warn("No busy-cost data, skipping sched_energy init\n");
+ goto out;
+ }
+
+ sge = kcalloc(1, sizeof(struct sched_group_energy),
+ GFP_NOWAIT);
+
+ nstates = (prop->length / sizeof(u32)) / 2;
+ cap_states = kcalloc(nstates,
+ sizeof(struct capacity_state),
+ GFP_NOWAIT);
+
+ for (i = 0, val = prop->value; i < nstates; i++) {
+ cap_states[i].cap = be32_to_cpup(val++);
+ cap_states[i].power = be32_to_cpup(val++);
+ }
+
+ sge->nr_cap_states = nstates;
+ sge->cap_states = cap_states;
+
+ prop = of_find_property(cp, "idle-cost-data", NULL);
+ if (!prop || !prop->value) {
+ pr_warn("No idle-cost data, skipping sched_energy init\n");
+ goto out;
+ }
+
+ nstates = (prop->length / sizeof(u32));
+ idle_states = kcalloc(nstates,
+ sizeof(struct idle_state),
+ GFP_NOWAIT);
+
+ for (i = 0, val = prop->value; i < nstates; i++)
+ idle_states[i].power = be32_to_cpup(val++);
+
+ sge->nr_idle_states = nstates;
+ sge->idle_states = idle_states;
+
+ sge_array[cpu][sd_level] = sge;
+ }
+ }
+
+ pr_info("Sched-energy-costs installed from DT\n");
+ return;
+
+out:
+ free_resources();
+}
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index ba24bfe4ac51..c362be1df195 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -30,10 +30,13 @@
#include <linux/mempolicy.h>
#include <linux/migrate.h>
#include <linux/task_work.h>
+#include <linux/module.h>
#include <trace/events/sched.h>
#include "sched.h"
+#include "tune.h"
+#include "walt.h"
/*
* Targeted preemption latency for CPU-bound tasks:
@@ -50,6 +53,17 @@
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
+unsigned int sysctl_sched_is_big_little = 0;
+unsigned int sysctl_sched_sync_hint_enable = 1;
+unsigned int sysctl_sched_initial_task_util = 0;
+unsigned int sysctl_sched_cstate_aware = 1;
+
+#ifdef CONFIG_SCHED_WALT
+unsigned int sysctl_sched_use_walt_cpu_util = 1;
+unsigned int sysctl_sched_use_walt_task_util = 1;
+__read_mostly unsigned int sysctl_sched_walt_cpu_high_irqload =
+ (10 * NSEC_PER_MSEC);
+#endif
/*
* The initial- and re-scaling of tunables is configurable
* (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
@@ -682,7 +696,9 @@ void init_entity_runnable_average(struct sched_entity *se)
sa->period_contrib = 1023;
sa->load_avg = scale_load_down(se->load.weight);
sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
- sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
+ sa->util_avg = sched_freq() ?
+ sysctl_sched_initial_task_util :
+ scale_load_down(SCHED_LOAD_SCALE);
sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
}
@@ -2586,6 +2602,7 @@ __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
scale_freq = arch_scale_freq_capacity(NULL, cpu);
scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
+ trace_sched_contrib_scale_f(cpu, scale_freq, scale_cpu);
/* delta_w is the amount already accumulated against our next period */
delta_w = sa->period_contrib;
@@ -2729,6 +2746,10 @@ static inline void update_load_avg(struct sched_entity *se, int update_tg)
if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
update_tg_load_avg(cfs_rq, 0);
+
+ if (entity_is_task(se))
+ trace_sched_load_avg_task(task_of(se), &se->avg);
+ trace_sched_load_avg_cpu(cpu, cfs_rq);
}
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
@@ -2809,27 +2830,45 @@ dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
}
-/*
- * Task first catches up with cfs_rq, and then subtract
- * itself from the cfs_rq (task must be off the queue now).
- */
-void remove_entity_load_avg(struct sched_entity *se)
-{
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 last_update_time;
-
#ifndef CONFIG_64BIT
+static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
+{
u64 last_update_time_copy;
+ u64 last_update_time;
do {
last_update_time_copy = cfs_rq->load_last_update_time_copy;
smp_rmb();
last_update_time = cfs_rq->avg.last_update_time;
} while (last_update_time != last_update_time_copy);
+
+ return last_update_time;
+}
#else
- last_update_time = cfs_rq->avg.last_update_time;
+static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
+{
+ return cfs_rq->avg.last_update_time;
+}
#endif
+/*
+ * Task first catches up with cfs_rq, and then subtract
+ * itself from the cfs_rq (task must be off the queue now).
+ */
+void remove_entity_load_avg(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+ u64 last_update_time;
+
+ /*
+ * Newly created task or never used group entity should not be removed
+ * from its (source) cfs_rq
+ */
+ if (se->avg.last_update_time == 0)
+ return;
+
+ last_update_time = cfs_rq_last_update_time(cfs_rq);
+
__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
@@ -4127,6 +4166,28 @@ static inline void hrtick_update(struct rq *rq)
}
#endif
+#ifdef CONFIG_SMP
+static bool cpu_overutilized(int cpu);
+static inline unsigned long boosted_cpu_util(int cpu);
+#else
+#define boosted_cpu_util(cpu) cpu_util(cpu)
+#endif
+
+#ifdef CONFIG_SMP
+static void update_capacity_of(int cpu)
+{
+ unsigned long req_cap;
+
+ if (!sched_freq())
+ return;
+
+ /* Convert scale-invariant capacity to cpu. */
+ req_cap = boosted_cpu_util(cpu);
+ req_cap = req_cap * SCHED_CAPACITY_SCALE / capacity_orig_of(cpu);
+ set_cfs_cpu_capacity(cpu, true, req_cap);
+}
+#endif
+
/*
* The enqueue_task method is called before nr_running is
* increased. Here we update the fair scheduling stats and
@@ -4137,6 +4198,10 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &p->se;
+#ifdef CONFIG_SMP
+ int task_new = flags & ENQUEUE_WAKEUP_NEW;
+ int task_wakeup = flags & ENQUEUE_WAKEUP;
+#endif
for_each_sched_entity(se) {
if (se->on_rq)
@@ -4153,6 +4218,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
cfs_rq->h_nr_running++;
+ walt_inc_cfs_cumulative_runnable_avg(cfs_rq, p);
flags = ENQUEUE_WAKEUP;
}
@@ -4160,6 +4226,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
cfs_rq->h_nr_running++;
+ walt_inc_cfs_cumulative_runnable_avg(cfs_rq, p);
if (cfs_rq_throttled(cfs_rq))
break;
@@ -4171,6 +4238,31 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (!se)
add_nr_running(rq, 1);
+#ifdef CONFIG_SMP
+
+ if (!se) {
+ walt_inc_cumulative_runnable_avg(rq, p);
+ if (!task_new && !rq->rd->overutilized &&
+ cpu_overutilized(rq->cpu)) {
+ rq->rd->overutilized = true;
+ trace_sched_overutilized(true);
+ }
+
+ /*
+ * We want to potentially trigger a freq switch
+ * request only for tasks that are waking up; this is
+ * because we get here also during load balancing, but
+ * in these cases it seems wise to trigger as single
+ * request after load balancing is done.
+ */
+ if (task_new || task_wakeup)
+ update_capacity_of(cpu_of(rq));
+ }
+
+ /* Update SchedTune accouting */
+ schedtune_enqueue_task(p, cpu_of(rq));
+
+#endif /* CONFIG_SMP */
hrtick_update(rq);
}
@@ -4200,6 +4292,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
cfs_rq->h_nr_running--;
+ walt_dec_cfs_cumulative_runnable_avg(cfs_rq, p);
/* Don't dequeue parent if it has other entities besides us */
if (cfs_rq->load.weight) {
@@ -4220,6 +4313,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
cfs_rq->h_nr_running--;
+ walt_dec_cfs_cumulative_runnable_avg(cfs_rq, p);
if (cfs_rq_throttled(cfs_rq))
break;
@@ -4231,6 +4325,32 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (!se)
sub_nr_running(rq, 1);
+#ifdef CONFIG_SMP
+
+ if (!se) {
+ walt_dec_cumulative_runnable_avg(rq, p);
+
+ /*
+ * We want to potentially trigger a freq switch
+ * request only for tasks that are going to sleep;
+ * this is because we get here also during load
+ * balancing, but in these cases it seems wise to
+ * trigger as single request after load balancing is
+ * done.
+ */
+ if (task_sleep) {
+ if (rq->cfs.nr_running)
+ update_capacity_of(cpu_of(rq));
+ else if (sched_freq())
+ set_cfs_cpu_capacity(cpu_of(rq), false, 0);
+ }
+ }
+
+ /* Update SchedTune accouting */
+ schedtune_dequeue_task(p, cpu_of(rq));
+
+#endif /* CONFIG_SMP */
+
hrtick_update(rq);
}
@@ -4457,15 +4577,6 @@ static unsigned long target_load(int cpu, int type)
return max(rq->cpu_load[type-1], total);
}
-static unsigned long capacity_of(int cpu)
-{
- return cpu_rq(cpu)->cpu_capacity;
-}
-
-static unsigned long capacity_orig_of(int cpu)
-{
- return cpu_rq(cpu)->cpu_capacity_orig;
-}
static unsigned long cpu_avg_load_per_task(int cpu)
{
@@ -4635,6 +4746,392 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
#endif
/*
+ * Returns the current capacity of cpu after applying both
+ * cpu and freq scaling.
+ */
+unsigned long capacity_curr_of(int cpu)
+{
+ return cpu_rq(cpu)->cpu_capacity_orig *
+ arch_scale_freq_capacity(NULL, cpu)
+ >> SCHED_CAPACITY_SHIFT;
+}
+
+static inline bool energy_aware(void)
+{
+ return sched_feat(ENERGY_AWARE);
+}
+
+struct energy_env {
+ struct sched_group *sg_top;
+ struct sched_group *sg_cap;
+ int cap_idx;
+ int util_delta;
+ int src_cpu;
+ int dst_cpu;
+ int energy;
+ int payoff;
+ struct task_struct *task;
+ struct {
+ int before;
+ int after;
+ int delta;
+ int diff;
+ } nrg;
+ struct {
+ int before;
+ int after;
+ int delta;
+ } cap;
+};
+
+/*
+ * __cpu_norm_util() returns the cpu util relative to a specific capacity,
+ * i.e. it's busy ratio, in the range [0..SCHED_LOAD_SCALE] which is useful for
+ * energy calculations. Using the scale-invariant util returned by
+ * cpu_util() and approximating scale-invariant util by:
+ *
+ * util ~ (curr_freq/max_freq)*1024 * capacity_orig/1024 * running_time/time
+ *
+ * the normalized util can be found using the specific capacity.
+ *
+ * capacity = capacity_orig * curr_freq/max_freq
+ *
+ * norm_util = running_time/time ~ util/capacity
+ */
+static unsigned long __cpu_norm_util(int cpu, unsigned long capacity, int delta)
+{
+ int util = __cpu_util(cpu, delta);
+
+ if (util >= capacity)
+ return SCHED_CAPACITY_SCALE;
+
+ return (util << SCHED_CAPACITY_SHIFT)/capacity;
+}
+
+static int calc_util_delta(struct energy_env *eenv, int cpu)
+{
+ if (cpu == eenv->src_cpu)
+ return -eenv->util_delta;
+ if (cpu == eenv->dst_cpu)
+ return eenv->util_delta;
+ return 0;
+}
+
+static
+unsigned long group_max_util(struct energy_env *eenv)
+{
+ int i, delta;
+ unsigned long max_util = 0;
+
+ for_each_cpu(i, sched_group_cpus(eenv->sg_cap)) {
+ delta = calc_util_delta(eenv, i);
+ max_util = max(max_util, __cpu_util(i, delta));
+ }
+
+ return max_util;
+}
+
+/*
+ * group_norm_util() returns the approximated group util relative to it's
+ * current capacity (busy ratio) in the range [0..SCHED_LOAD_SCALE] for use in
+ * energy calculations. Since task executions may or may not overlap in time in
+ * the group the true normalized util is between max(cpu_norm_util(i)) and
+ * sum(cpu_norm_util(i)) when iterating over all cpus in the group, i. The
+ * latter is used as the estimate as it leads to a more pessimistic energy
+ * estimate (more busy).
+ */
+static unsigned
+long group_norm_util(struct energy_env *eenv, struct sched_group *sg)
+{
+ int i, delta;
+ unsigned long util_sum = 0;
+ unsigned long capacity = sg->sge->cap_states[eenv->cap_idx].cap;
+
+ for_each_cpu(i, sched_group_cpus(sg)) {
+ delta = calc_util_delta(eenv, i);
+ util_sum += __cpu_norm_util(i, capacity, delta);
+ }
+
+ if (util_sum > SCHED_CAPACITY_SCALE)
+ return SCHED_CAPACITY_SCALE;
+ return util_sum;
+}
+
+static int find_new_capacity(struct energy_env *eenv,
+ const struct sched_group_energy const *sge)
+{
+ int idx;
+ unsigned long util = group_max_util(eenv);
+
+ for (idx = 0; idx < sge->nr_cap_states; idx++) {
+ if (sge->cap_states[idx].cap >= util)
+ break;
+ }
+
+ eenv->cap_idx = idx;
+
+ return idx;
+}
+
+static int group_idle_state(struct sched_group *sg)
+{
+ int i, state = INT_MAX;
+
+ /* Find the shallowest idle state in the sched group. */
+ for_each_cpu(i, sched_group_cpus(sg))
+ state = min(state, idle_get_state_idx(cpu_rq(i)));
+
+ /* Take non-cpuidle idling into account (active idle/arch_cpu_idle()) */
+ state++;
+
+ return state;
+}
+
+/*
+ * sched_group_energy(): Computes the absolute energy consumption of cpus
+ * belonging to the sched_group including shared resources shared only by
+ * members of the group. Iterates over all cpus in the hierarchy below the
+ * sched_group starting from the bottom working it's way up before going to
+ * the next cpu until all cpus are covered at all levels. The current
+ * implementation is likely to gather the same util statistics multiple times.
+ * This can probably be done in a faster but more complex way.
+ * Note: sched_group_energy() may fail when racing with sched_domain updates.
+ */
+static int sched_group_energy(struct energy_env *eenv)
+{
+ struct sched_domain *sd;
+ int cpu, total_energy = 0;
+ struct cpumask visit_cpus;
+ struct sched_group *sg;
+
+ WARN_ON(!eenv->sg_top->sge);
+
+ cpumask_copy(&visit_cpus, sched_group_cpus(eenv->sg_top));
+
+ while (!cpumask_empty(&visit_cpus)) {
+ struct sched_group *sg_shared_cap = NULL;
+
+ cpu = cpumask_first(&visit_cpus);
+
+ /*
+ * Is the group utilization affected by cpus outside this
+ * sched_group?
+ */
+ sd = rcu_dereference(per_cpu(sd_scs, cpu));
+
+ if (!sd)
+ /*
+ * We most probably raced with hotplug; returning a
+ * wrong energy estimation is better than entering an
+ * infinite loop.
+ */
+ return -EINVAL;
+
+ if (sd->parent)
+ sg_shared_cap = sd->parent->groups;
+
+ for_each_domain(cpu, sd) {
+ sg = sd->groups;
+
+ /* Has this sched_domain already been visited? */
+ if (sd->child && group_first_cpu(sg) != cpu)
+ break;
+
+ do {
+ unsigned long group_util;
+ int sg_busy_energy, sg_idle_energy;
+ int cap_idx, idle_idx;
+
+ if (sg_shared_cap && sg_shared_cap->group_weight >= sg->group_weight)
+ eenv->sg_cap = sg_shared_cap;
+ else
+ eenv->sg_cap = sg;
+
+ cap_idx = find_new_capacity(eenv, sg->sge);
+
+ if (sg->group_weight == 1) {
+ /* Remove capacity of src CPU (before task move) */
+ if (eenv->util_delta == 0 &&
+ cpumask_test_cpu(eenv->src_cpu, sched_group_cpus(sg))) {
+ eenv->cap.before = sg->sge->cap_states[cap_idx].cap;
+ eenv->cap.delta -= eenv->cap.before;
+ }
+ /* Add capacity of dst CPU (after task move) */
+ if (eenv->util_delta != 0 &&
+ cpumask_test_cpu(eenv->dst_cpu, sched_group_cpus(sg))) {
+ eenv->cap.after = sg->sge->cap_states[cap_idx].cap;
+ eenv->cap.delta += eenv->cap.after;
+ }
+ }
+
+ idle_idx = group_idle_state(sg);
+ group_util = group_norm_util(eenv, sg);
+ sg_busy_energy = (group_util * sg->sge->cap_states[cap_idx].power)
+ >> SCHED_CAPACITY_SHIFT;
+ sg_idle_energy = ((SCHED_LOAD_SCALE-group_util)
+ * sg->sge->idle_states[idle_idx].power)
+ >> SCHED_CAPACITY_SHIFT;
+
+ total_energy += sg_busy_energy + sg_idle_energy;
+
+ if (!sd->child)
+ cpumask_xor(&visit_cpus, &visit_cpus, sched_group_cpus(sg));
+
+ if (cpumask_equal(sched_group_cpus(sg), sched_group_cpus(eenv->sg_top)))
+ goto next_cpu;
+
+ } while (sg = sg->next, sg != sd->groups);
+ }
+next_cpu:
+ cpumask_clear_cpu(cpu, &visit_cpus);
+ continue;
+ }
+
+ eenv->energy = total_energy;
+ return 0;
+}
+
+static inline bool cpu_in_sg(struct sched_group *sg, int cpu)
+{
+ return cpu != -1 && cpumask_test_cpu(cpu, sched_group_cpus(sg));
+}
+
+/*
+ * energy_diff(): Estimate the energy impact of changing the utilization
+ * distribution. eenv specifies the change: utilisation amount, source, and
+ * destination cpu. Source or destination cpu may be -1 in which case the
+ * utilization is removed from or added to the system (e.g. task wake-up). If
+ * both are specified, the utilization is migrated.
+ */
+static inline int __energy_diff(struct energy_env *eenv)
+{
+ struct sched_domain *sd;
+ struct sched_group *sg;
+ int sd_cpu = -1, energy_before = 0, energy_after = 0;
+
+ struct energy_env eenv_before = {
+ .util_delta = 0,
+ .src_cpu = eenv->src_cpu,
+ .dst_cpu = eenv->dst_cpu,
+ .nrg = { 0, 0, 0, 0},
+ .cap = { 0, 0, 0 },
+ };
+
+ if (eenv->src_cpu == eenv->dst_cpu)
+ return 0;
+
+ sd_cpu = (eenv->src_cpu != -1) ? eenv->src_cpu : eenv->dst_cpu;
+ sd = rcu_dereference(per_cpu(sd_ea, sd_cpu));
+
+ if (!sd)
+ return 0; /* Error */
+
+ sg = sd->groups;
+
+ do {
+ if (cpu_in_sg(sg, eenv->src_cpu) || cpu_in_sg(sg, eenv->dst_cpu)) {
+ eenv_before.sg_top = eenv->sg_top = sg;
+
+ if (sched_group_energy(&eenv_before))
+ return 0; /* Invalid result abort */
+ energy_before += eenv_before.energy;
+
+ /* Keep track of SRC cpu (before) capacity */
+ eenv->cap.before = eenv_before.cap.before;
+ eenv->cap.delta = eenv_before.cap.delta;
+
+ if (sched_group_energy(eenv))
+ return 0; /* Invalid result abort */
+ energy_after += eenv->energy;
+ }
+ } while (sg = sg->next, sg != sd->groups);
+
+ eenv->nrg.before = energy_before;
+ eenv->nrg.after = energy_after;
+ eenv->nrg.diff = eenv->nrg.after - eenv->nrg.before;
+ eenv->payoff = 0;
+
+ trace_sched_energy_diff(eenv->task,
+ eenv->src_cpu, eenv->dst_cpu, eenv->util_delta,
+ eenv->nrg.before, eenv->nrg.after, eenv->nrg.diff,
+ eenv->cap.before, eenv->cap.after, eenv->cap.delta,
+ eenv->nrg.delta, eenv->payoff);
+
+ return eenv->nrg.diff;
+}
+
+#ifdef CONFIG_SCHED_TUNE
+
+struct target_nrg schedtune_target_nrg;
+
+/*
+ * System energy normalization
+ * Returns the normalized value, in the range [0..SCHED_LOAD_SCALE],
+ * corresponding to the specified energy variation.
+ */
+static inline int
+normalize_energy(int energy_diff)
+{
+ u32 normalized_nrg;
+#ifdef CONFIG_SCHED_DEBUG
+ int max_delta;
+
+ /* Check for boundaries */
+ max_delta = schedtune_target_nrg.max_power;
+ max_delta -= schedtune_target_nrg.min_power;
+ WARN_ON(abs(energy_diff) >= max_delta);
+#endif
+
+ /* Do scaling using positive numbers to increase the range */
+ normalized_nrg = (energy_diff < 0) ? -energy_diff : energy_diff;
+
+ /* Scale by energy magnitude */
+ normalized_nrg <<= SCHED_LOAD_SHIFT;
+
+ /* Normalize on max energy for target platform */
+ normalized_nrg = reciprocal_divide(
+ normalized_nrg, schedtune_target_nrg.rdiv);
+
+ return (energy_diff < 0) ? -normalized_nrg : normalized_nrg;
+}
+
+static inline int
+energy_diff(struct energy_env *eenv)
+{
+ int boost = schedtune_task_boost(eenv->task);
+ int nrg_delta;
+
+ /* Conpute "absolute" energy diff */
+ __energy_diff(eenv);
+
+ /* Return energy diff when boost margin is 0 */
+ if (boost == 0)
+ return eenv->nrg.diff;
+
+ /* Compute normalized energy diff */
+ nrg_delta = normalize_energy(eenv->nrg.diff);
+ eenv->nrg.delta = nrg_delta;
+
+ eenv->payoff = schedtune_accept_deltas(
+ eenv->nrg.delta,
+ eenv->cap.delta,
+ eenv->task);
+
+ /*
+ * When SchedTune is enabled, the energy_diff() function will return
+ * the computed energy payoff value. Since the energy_diff() return
+ * value is expected to be negative by its callers, this evaluation
+ * function return a negative value each time the evaluation return a
+ * positive payoff, which is the condition for the acceptance of
+ * a scheduling decision
+ */
+ return -eenv->payoff;
+}
+#else /* CONFIG_SCHED_TUNE */
+#define energy_diff(eenv) __energy_diff(eenv)
+#endif
+
+/*
* Detect M:N waker/wakee relationships via a switching-frequency heuristic.
* A waker of many should wake a different task than the one last awakened
* at a frequency roughly N times higher than one of its wakees. In order
@@ -4725,6 +5222,160 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
return 1;
}
+static inline unsigned long task_util(struct task_struct *p)
+{
+#ifdef CONFIG_SCHED_WALT
+ if (!walt_disabled && sysctl_sched_use_walt_task_util) {
+ unsigned long demand = p->ravg.demand;
+ return (demand << 10) / walt_ravg_window;
+ }
+#endif
+ return p->se.avg.util_avg;
+}
+
+unsigned int capacity_margin = 1280; /* ~20% margin */
+
+static inline unsigned long boosted_task_util(struct task_struct *task);
+
+static inline bool __task_fits(struct task_struct *p, int cpu, int util)
+{
+ unsigned long capacity = capacity_of(cpu);
+
+ util += boosted_task_util(p);
+
+ return (capacity * 1024) > (util * capacity_margin);
+}
+
+static inline bool task_fits_max(struct task_struct *p, int cpu)
+{
+ unsigned long capacity = capacity_of(cpu);
+ unsigned long max_capacity = cpu_rq(cpu)->rd->max_cpu_capacity.val;
+
+ if (capacity == max_capacity)
+ return true;
+
+ if (capacity * capacity_margin > max_capacity * 1024)
+ return true;
+
+ return __task_fits(p, cpu, 0);
+}
+
+static inline bool task_fits_spare(struct task_struct *p, int cpu)
+{
+ return __task_fits(p, cpu, cpu_util(cpu));
+}
+
+static bool cpu_overutilized(int cpu)
+{
+ return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
+}
+
+#ifdef CONFIG_SCHED_TUNE
+
+static long
+schedtune_margin(unsigned long signal, long boost)
+{
+ long long margin = 0;
+
+ /*
+ * Signal proportional compensation (SPC)
+ *
+ * The Boost (B) value is used to compute a Margin (M) which is
+ * proportional to the complement of the original Signal (S):
+ * M = B * (SCHED_LOAD_SCALE - S), if B is positive
+ * M = B * S, if B is negative
+ * The obtained M could be used by the caller to "boost" S.
+ */
+ if (boost >= 0) {
+ margin = SCHED_LOAD_SCALE - signal;
+ margin *= boost;
+ } else
+ margin = -signal * boost;
+ /*
+ * Fast integer division by constant:
+ * Constant : (C) = 100
+ * Precision : 0.1% (P) = 0.1
+ * Reference : C * 100 / P (R) = 100000
+ *
+ * Thus:
+ * Shift bits : ceil(log(R,2)) (S) = 17
+ * Mult const : round(2^S/C) (M) = 1311
+ *
+ *
+ */
+ margin *= 1311;
+ margin >>= 17;
+
+ if (boost < 0)
+ margin *= -1;
+ return margin;
+}
+
+static inline int
+schedtune_cpu_margin(unsigned long util, int cpu)
+{
+ int boost = schedtune_cpu_boost(cpu);
+
+ if (boost == 0)
+ return 0;
+
+ return schedtune_margin(util, boost);
+}
+
+static inline long
+schedtune_task_margin(struct task_struct *task)
+{
+ int boost = schedtune_task_boost(task);
+ unsigned long util;
+ long margin;
+
+ if (boost == 0)
+ return 0;
+
+ util = task_util(task);
+ margin = schedtune_margin(util, boost);
+
+ return margin;
+}
+
+#else /* CONFIG_SCHED_TUNE */
+
+static inline int
+schedtune_cpu_margin(unsigned long util, int cpu)
+{
+ return 0;
+}
+
+static inline int
+schedtune_task_margin(struct task_struct *task)
+{
+ return 0;
+}
+
+#endif /* CONFIG_SCHED_TUNE */
+
+static inline unsigned long
+boosted_cpu_util(int cpu)
+{
+ unsigned long util = cpu_util(cpu);
+ long margin = schedtune_cpu_margin(util, cpu);
+
+ trace_sched_boost_cpu(cpu, util, margin);
+
+ return util + margin;
+}
+
+static inline unsigned long
+boosted_task_util(struct task_struct *task)
+{
+ unsigned long util = task_util(task);
+ long margin = schedtune_task_margin(task);
+
+ trace_sched_boost_task(task, util, margin);
+
+ return util + margin;
+}
+
/*
* find_idlest_group finds and returns the least busy CPU group within the
* domain.
@@ -4734,7 +5385,10 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
int this_cpu, int sd_flag)
{
struct sched_group *idlest = NULL, *group = sd->groups;
+ struct sched_group *fit_group = NULL, *spare_group = NULL;
unsigned long min_load = ULONG_MAX, this_load = 0;
+ unsigned long fit_capacity = ULONG_MAX;
+ unsigned long max_spare_capacity = capacity_margin - SCHED_LOAD_SCALE;
int load_idx = sd->forkexec_idx;
int imbalance = 100 + (sd->imbalance_pct-100)/2;
@@ -4742,7 +5396,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
load_idx = sd->wake_idx;
do {
- unsigned long load, avg_load;
+ unsigned long load, avg_load, spare_capacity;
int local_group;
int i;
@@ -4765,6 +5419,25 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
load = target_load(i, load_idx);
avg_load += load;
+
+ /*
+ * Look for most energy-efficient group that can fit
+ * that can fit the task.
+ */
+ if (capacity_of(i) < fit_capacity && task_fits_spare(p, i)) {
+ fit_capacity = capacity_of(i);
+ fit_group = group;
+ }
+
+ /*
+ * Look for group which has most spare capacity on a
+ * single cpu.
+ */
+ spare_capacity = capacity_of(i) - cpu_util(i);
+ if (spare_capacity > max_spare_capacity) {
+ max_spare_capacity = spare_capacity;
+ spare_group = group;
+ }
}
/* Adjust by relative CPU capacity of the group */
@@ -4778,6 +5451,12 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
}
} while (group = group->next, group != sd->groups);
+ if (fit_group)
+ return fit_group;
+
+ if (spare_group)
+ return spare_group;
+
if (!idlest || 100*this_load < imbalance*min_load)
return NULL;
return idlest;
@@ -4798,7 +5477,7 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
/* Traverse only the allowed CPUs */
for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
- if (idle_cpu(i)) {
+ if (task_fits_spare(p, i)) {
struct rq *rq = cpu_rq(i);
struct cpuidle_state *idle = idle_get_state(rq);
if (idle && idle->exit_latency < min_exit_latency) {
@@ -4810,7 +5489,8 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
min_exit_latency = idle->exit_latency;
latest_idle_timestamp = rq->idle_stamp;
shallowest_idle_cpu = i;
- } else if ((!idle || idle->exit_latency == min_exit_latency) &&
+ } else if (idle_cpu(i) &&
+ (!idle || idle->exit_latency == min_exit_latency) &&
rq->idle_stamp > latest_idle_timestamp) {
/*
* If equal or no active idle state, then
@@ -4819,6 +5499,13 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
*/
latest_idle_timestamp = rq->idle_stamp;
shallowest_idle_cpu = i;
+ } else if (shallowest_idle_cpu == -1) {
+ /*
+ * If we haven't found an idle CPU yet
+ * pick a non-idle one that can fit the task as
+ * fallback.
+ */
+ shallowest_idle_cpu = i;
}
} else if (shallowest_idle_cpu == -1) {
load = weighted_cpuload(i);
@@ -4840,15 +5527,20 @@ static int select_idle_sibling(struct task_struct *p, int target)
struct sched_domain *sd;
struct sched_group *sg;
int i = task_cpu(p);
+ int best_idle = -1;
+ int best_idle_cstate = -1;
+ int best_idle_capacity = INT_MAX;
- if (idle_cpu(target))
- return target;
+ if (!sysctl_sched_cstate_aware) {
+ if (idle_cpu(target))
+ return target;
- /*
- * If the prevous cpu is cache affine and idle, don't be stupid.
- */
- if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
- return i;
+ /*
+ * If the prevous cpu is cache affine and idle, don't be stupid.
+ */
+ if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
+ return i;
+ }
/*
* Otherwise, iterate the domains and find an elegible idle cpu.
@@ -4861,54 +5553,260 @@ static int select_idle_sibling(struct task_struct *p, int target)
tsk_cpus_allowed(p)))
goto next;
- for_each_cpu(i, sched_group_cpus(sg)) {
- if (i == target || !idle_cpu(i))
- goto next;
- }
+ if (sysctl_sched_cstate_aware) {
+ for_each_cpu_and(i, tsk_cpus_allowed(p), sched_group_cpus(sg)) {
+ struct rq *rq = cpu_rq(i);
+ int idle_idx = idle_get_state_idx(rq);
+ unsigned long new_usage = boosted_task_util(p);
+ unsigned long capacity_orig = capacity_orig_of(i);
+ if (new_usage > capacity_orig || !idle_cpu(i))
+ goto next;
+
+ if (i == target && new_usage <= capacity_curr_of(target))
+ return target;
+
+ if (best_idle < 0 || (idle_idx < best_idle_cstate && capacity_orig <= best_idle_capacity)) {
+ best_idle = i;
+ best_idle_cstate = idle_idx;
+ best_idle_capacity = capacity_orig;
+ }
+ }
+ } else {
+ for_each_cpu(i, sched_group_cpus(sg)) {
+ if (i == target || !idle_cpu(i))
+ goto next;
+ }
- target = cpumask_first_and(sched_group_cpus(sg),
+ target = cpumask_first_and(sched_group_cpus(sg),
tsk_cpus_allowed(p));
- goto done;
+ goto done;
+ }
next:
sg = sg->next;
} while (sg != sd->groups);
}
+ if (best_idle > 0)
+ target = best_idle;
+
done:
return target;
}
-/*
- * cpu_util returns the amount of capacity of a CPU that is used by CFS
- * tasks. The unit of the return value must be the one of capacity so we can
- * compare the utilization with the capacity of the CPU that is available for
- * CFS task (ie cpu_capacity).
- *
- * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
- * recent utilization of currently non-runnable tasks on a CPU. It represents
- * the amount of utilization of a CPU in the range [0..capacity_orig] where
- * capacity_orig is the cpu_capacity available at the highest frequency
- * (arch_scale_freq_capacity()).
- * The utilization of a CPU converges towards a sum equal to or less than the
- * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
- * the running time on this CPU scaled by capacity_curr.
- *
- * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
- * higher than capacity_orig because of unfortunate rounding in
- * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
- * the average stabilizes with the new running time. We need to check that the
- * utilization stays within the range of [0..capacity_orig] and cap it if
- * necessary. Without utilization capping, a group could be seen as overloaded
- * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
- * available capacity. We allow utilization to overshoot capacity_curr (but not
- * capacity_orig) as it useful for predicting the capacity required after task
- * migrations (scheduler-driven DVFS).
- */
-static int cpu_util(int cpu)
+static inline int find_best_target(struct task_struct *p, bool boosted, bool prefer_idle)
+{
+ int iter_cpu;
+ int target_cpu = -1;
+ int target_util = 0;
+ int backup_capacity = 0;
+ int best_idle_cpu = -1;
+ int best_idle_cstate = INT_MAX;
+ int backup_cpu = -1;
+ unsigned long task_util_boosted, new_util;
+
+ task_util_boosted = boosted_task_util(p);
+ for (iter_cpu = 0; iter_cpu < NR_CPUS; iter_cpu++) {
+ int cur_capacity;
+ struct rq *rq;
+ int idle_idx;
+
+ /*
+ * Iterate from higher cpus for boosted tasks.
+ */
+ int i = boosted ? NR_CPUS-iter_cpu-1 : iter_cpu;
+
+ if (!cpu_online(i) || !cpumask_test_cpu(i, tsk_cpus_allowed(p)))
+ continue;
+
+ /*
+ * p's blocked utilization is still accounted for on prev_cpu
+ * so prev_cpu will receive a negative bias due to the double
+ * accounting. However, the blocked utilization may be zero.
+ */
+ new_util = cpu_util(i) + task_util_boosted;
+
+ /*
+ * Ensure minimum capacity to grant the required boost.
+ * The target CPU can be already at a capacity level higher
+ * than the one required to boost the task.
+ */
+ if (new_util > capacity_orig_of(i))
+ continue;
+
+#ifdef CONFIG_SCHED_WALT
+ if (walt_cpu_high_irqload(i))
+ continue;
+#endif
+ /*
+ * Unconditionally favoring tasks that prefer idle cpus to
+ * improve latency.
+ */
+ if (idle_cpu(i) && prefer_idle) {
+ if (best_idle_cpu < 0)
+ best_idle_cpu = i;
+ continue;
+ }
+
+ cur_capacity = capacity_curr_of(i);
+ rq = cpu_rq(i);
+ idle_idx = idle_get_state_idx(rq);
+
+ if (new_util < cur_capacity) {
+ if (cpu_rq(i)->nr_running) {
+ if(prefer_idle) {
+ // Find a target cpu with lowest
+ // utilization.
+ if (target_util == 0 ||
+ target_util < new_util) {
+ target_cpu = i;
+ target_util = new_util;
+ }
+ } else {
+ // Find a target cpu with highest
+ // utilization.
+ if (target_util == 0 ||
+ target_util > new_util) {
+ target_cpu = i;
+ target_util = new_util;
+ }
+ }
+ } else if (!prefer_idle) {
+ if (best_idle_cpu < 0 ||
+ (sysctl_sched_cstate_aware &&
+ best_idle_cstate > idle_idx)) {
+ best_idle_cstate = idle_idx;
+ best_idle_cpu = i;
+ }
+ }
+ } else if (backup_capacity == 0 ||
+ backup_capacity > cur_capacity) {
+ // Find a backup cpu with least capacity.
+ backup_capacity = cur_capacity;
+ backup_cpu = i;
+ }
+ }
+
+ if (prefer_idle && best_idle_cpu >= 0)
+ target_cpu = best_idle_cpu;
+ else if (target_cpu < 0)
+ target_cpu = best_idle_cpu >= 0 ? best_idle_cpu : backup_cpu;
+
+ return target_cpu;
+}
+
+static int energy_aware_wake_cpu(struct task_struct *p, int target, int sync)
{
- unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
- unsigned long capacity = capacity_orig_of(cpu);
+ struct sched_domain *sd;
+ struct sched_group *sg, *sg_target;
+ int target_max_cap = INT_MAX;
+ int target_cpu = task_cpu(p);
+ unsigned long task_util_boosted, new_util;
+ int i;
+
+ if (sysctl_sched_sync_hint_enable && sync) {
+ int cpu = smp_processor_id();
+ cpumask_t search_cpus;
+ cpumask_and(&search_cpus, tsk_cpus_allowed(p), cpu_online_mask);
+ if (cpumask_test_cpu(cpu, &search_cpus))
+ return cpu;
+ }
+
+ sd = rcu_dereference(per_cpu(sd_ea, task_cpu(p)));
+
+ if (!sd)
+ return target;
+
+ sg = sd->groups;
+ sg_target = sg;
+
+ if (sysctl_sched_is_big_little) {
+
+ /*
+ * Find group with sufficient capacity. We only get here if no cpu is
+ * overutilized. We may end up overutilizing a cpu by adding the task,
+ * but that should not be any worse than select_idle_sibling().
+ * load_balance() should sort it out later as we get above the tipping
+ * point.
+ */
+ do {
+ /* Assuming all cpus are the same in group */
+ int max_cap_cpu = group_first_cpu(sg);
+
+ /*
+ * Assume smaller max capacity means more energy-efficient.
+ * Ideally we should query the energy model for the right
+ * answer but it easily ends up in an exhaustive search.
+ */
+ if (capacity_of(max_cap_cpu) < target_max_cap &&
+ task_fits_max(p, max_cap_cpu)) {
+ sg_target = sg;
+ target_max_cap = capacity_of(max_cap_cpu);
+ }
+ } while (sg = sg->next, sg != sd->groups);
+
+ task_util_boosted = boosted_task_util(p);
+ /* Find cpu with sufficient capacity */
+ for_each_cpu_and(i, tsk_cpus_allowed(p), sched_group_cpus(sg_target)) {
+ /*
+ * p's blocked utilization is still accounted for on prev_cpu
+ * so prev_cpu will receive a negative bias due to the double
+ * accounting. However, the blocked utilization may be zero.
+ */
+ new_util = cpu_util(i) + task_util_boosted;
+
+ /*
+ * Ensure minimum capacity to grant the required boost.
+ * The target CPU can be already at a capacity level higher
+ * than the one required to boost the task.
+ */
+ if (new_util > capacity_orig_of(i))
+ continue;
+
+ if (new_util < capacity_curr_of(i)) {
+ target_cpu = i;
+ if (cpu_rq(i)->nr_running)
+ break;
+ }
+
+ /* cpu has capacity at higher OPP, keep it as fallback */
+ if (target_cpu == task_cpu(p))
+ target_cpu = i;
+ }
+ } else {
+ /*
+ * Find a cpu with sufficient capacity
+ */
+#ifdef CONFIG_CGROUP_SCHEDTUNE
+ bool boosted = schedtune_task_boost(p) > 0;
+ bool prefer_idle = schedtune_prefer_idle(p) > 0;
+#else
+ bool boosted = 0;
+ bool prefer_idle = 0;
+#endif
+ int tmp_target = find_best_target(p, boosted, prefer_idle);
+ if (tmp_target >= 0) {
+ target_cpu = tmp_target;
+ if ((boosted || prefer_idle) && idle_cpu(target_cpu))
+ return target_cpu;
+ }
+ }
- return (util >= capacity) ? capacity : util;
+ if (target_cpu != task_cpu(p)) {
+ struct energy_env eenv = {
+ .util_delta = task_util(p),
+ .src_cpu = task_cpu(p),
+ .dst_cpu = target_cpu,
+ .task = p,
+ };
+
+ /* Not enough spare capacity on previous cpu */
+ if (cpu_overutilized(task_cpu(p)))
+ return target_cpu;
+
+ if (energy_diff(&eenv) >= 0)
+ return task_cpu(p);
+ }
+
+ return target_cpu;
}
/*
@@ -4933,7 +5831,9 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
int sync = wake_flags & WF_SYNC;
if (sd_flag & SD_BALANCE_WAKE)
- want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
+ want_affine = (!wake_wide(p) && task_fits_max(p, cpu) &&
+ cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) ||
+ energy_aware();
rcu_read_lock();
for_each_domain(cpu, tmp) {
@@ -4963,7 +5863,9 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
}
if (!sd) {
- if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
+ if (energy_aware() && !cpu_rq(cpu)->rd->overutilized)
+ new_cpu = energy_aware_wake_cpu(p, prev_cpu, sync);
+ else if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
new_cpu = select_idle_sibling(p, new_cpu);
} else while (sd) {
@@ -5033,6 +5935,8 @@ static void task_dead_fair(struct task_struct *p)
{
remove_entity_load_avg(&p->se);
}
+#else
+#define task_fits_max(p, cpu) true
#endif /* CONFIG_SMP */
static unsigned long
@@ -5279,6 +6183,8 @@ again:
if (hrtick_enabled(rq))
hrtick_start_fair(rq, p);
+ rq->misfit_task = !task_fits_max(p, rq->cpu);
+
return p;
simple:
cfs_rq = &rq->cfs;
@@ -5300,9 +6206,12 @@ simple:
if (hrtick_enabled(rq))
hrtick_start_fair(rq, p);
+ rq->misfit_task = !task_fits_max(p, rq->cpu);
+
return p;
idle:
+ rq->misfit_task = 0;
/*
* This is OK, because current is on_cpu, which avoids it being picked
* for load-balance and preemption/IRQs are still disabled avoiding
@@ -5515,6 +6424,13 @@ static unsigned long __read_mostly max_load_balance_interval = HZ/10;
enum fbq_type { regular, remote, all };
+enum group_type {
+ group_other = 0,
+ group_misfit_task,
+ group_imbalanced,
+ group_overloaded,
+};
+
#define LBF_ALL_PINNED 0x01
#define LBF_NEED_BREAK 0x02
#define LBF_DST_PINNED 0x04
@@ -5533,6 +6449,7 @@ struct lb_env {
int new_dst_cpu;
enum cpu_idle_type idle;
long imbalance;
+ unsigned int src_grp_nr_running;
/* The set of CPUs under consideration for load-balancing */
struct cpumask *cpus;
@@ -5543,6 +6460,7 @@ struct lb_env {
unsigned int loop_max;
enum fbq_type fbq_type;
+ enum group_type busiest_group_type;
struct list_head tasks;
};
@@ -5724,7 +6642,9 @@ static void detach_task(struct task_struct *p, struct lb_env *env)
deactivate_task(env->src_rq, p, 0);
p->on_rq = TASK_ON_RQ_MIGRATING;
+ double_lock_balance(env->src_rq, env->dst_rq);
set_task_cpu(p, env->dst_cpu);
+ double_unlock_balance(env->src_rq, env->dst_rq);
}
/*
@@ -5869,6 +6789,10 @@ static void attach_one_task(struct rq *rq, struct task_struct *p)
{
raw_spin_lock(&rq->lock);
attach_task(rq, p);
+ /*
+ * We want to potentially raise target_cpu's OPP.
+ */
+ update_capacity_of(cpu_of(rq));
raw_spin_unlock(&rq->lock);
}
@@ -5890,6 +6814,11 @@ static void attach_tasks(struct lb_env *env)
attach_task(env->dst_rq, p);
}
+ /*
+ * We want to potentially raise env.dst_cpu's OPP.
+ */
+ update_capacity_of(env->dst_cpu);
+
raw_spin_unlock(&env->dst_rq->lock);
}
@@ -5985,12 +6914,6 @@ static unsigned long task_h_load(struct task_struct *p)
/********** Helpers for find_busiest_group ************************/
-enum group_type {
- group_other = 0,
- group_imbalanced,
- group_overloaded,
-};
-
/*
* sg_lb_stats - stats of a sched_group required for load_balancing
*/
@@ -6006,6 +6929,7 @@ struct sg_lb_stats {
unsigned int group_weight;
enum group_type group_type;
int group_no_capacity;
+ int group_misfit_task; /* A cpu has a task too big for its capacity */
#ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running;
unsigned int nr_preferred_running;
@@ -6097,19 +7021,57 @@ static unsigned long scale_rt_capacity(int cpu)
used = div_u64(avg, total);
+ /*
+ * deadline bandwidth is defined at system level so we must
+ * weight this bandwidth with the max capacity of the system.
+ * As a reminder, avg_bw is 20bits width and
+ * scale_cpu_capacity is 10 bits width
+ */
+ used += div_u64(rq->dl.avg_bw, arch_scale_cpu_capacity(NULL, cpu));
+
if (likely(used < SCHED_CAPACITY_SCALE))
return SCHED_CAPACITY_SCALE - used;
return 1;
}
+void init_max_cpu_capacity(struct max_cpu_capacity *mcc)
+{
+ raw_spin_lock_init(&mcc->lock);
+ mcc->val = 0;
+ mcc->cpu = -1;
+}
+
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
{
unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
struct sched_group *sdg = sd->groups;
+ struct max_cpu_capacity *mcc;
+ unsigned long max_capacity;
+ int max_cap_cpu;
+ unsigned long flags;
cpu_rq(cpu)->cpu_capacity_orig = capacity;
+ mcc = &cpu_rq(cpu)->rd->max_cpu_capacity;
+
+ raw_spin_lock_irqsave(&mcc->lock, flags);
+ max_capacity = mcc->val;
+ max_cap_cpu = mcc->cpu;
+
+ if ((max_capacity > capacity && max_cap_cpu == cpu) ||
+ (max_capacity < capacity)) {
+ mcc->val = capacity;
+ mcc->cpu = cpu;
+#ifdef CONFIG_SCHED_DEBUG
+ raw_spin_unlock_irqrestore(&mcc->lock, flags);
+ pr_info("CPU%d: update max cpu_capacity %lu\n", cpu, capacity);
+ goto skip_unlock;
+#endif
+ }
+ raw_spin_unlock_irqrestore(&mcc->lock, flags);
+
+skip_unlock: __attribute__ ((unused));
capacity *= scale_rt_capacity(cpu);
capacity >>= SCHED_CAPACITY_SHIFT;
@@ -6118,13 +7080,14 @@ static void update_cpu_capacity(struct sched_domain *sd, int cpu)
cpu_rq(cpu)->cpu_capacity = capacity;
sdg->sgc->capacity = capacity;
+ sdg->sgc->max_capacity = capacity;
}
void update_group_capacity(struct sched_domain *sd, int cpu)
{
struct sched_domain *child = sd->child;
struct sched_group *group, *sdg = sd->groups;
- unsigned long capacity;
+ unsigned long capacity, max_capacity;
unsigned long interval;
interval = msecs_to_jiffies(sd->balance_interval);
@@ -6137,6 +7100,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
}
capacity = 0;
+ max_capacity = 0;
if (child->flags & SD_OVERLAP) {
/*
@@ -6161,11 +7125,12 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
*/
if (unlikely(!rq->sd)) {
capacity += capacity_of(cpu);
- continue;
+ } else {
+ sgc = rq->sd->groups->sgc;
+ capacity += sgc->capacity;
}
- sgc = rq->sd->groups->sgc;
- capacity += sgc->capacity;
+ max_capacity = max(capacity, max_capacity);
}
} else {
/*
@@ -6175,12 +7140,16 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
group = child->groups;
do {
- capacity += group->sgc->capacity;
+ struct sched_group_capacity *sgc = group->sgc;
+
+ capacity += sgc->capacity;
+ max_capacity = max(sgc->max_capacity, max_capacity);
group = group->next;
} while (group != child->groups);
}
sdg->sgc->capacity = capacity;
+ sdg->sgc->max_capacity = max_capacity;
}
/*
@@ -6275,6 +7244,18 @@ group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
return false;
}
+
+/*
+ * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
+ * per-cpu capacity than sched_group ref.
+ */
+static inline bool
+group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
+{
+ return sg->sgc->max_capacity + capacity_margin - SCHED_LOAD_SCALE <
+ ref->sgc->max_capacity;
+}
+
static inline enum
group_type group_classify(struct sched_group *group,
struct sg_lb_stats *sgs)
@@ -6285,6 +7266,9 @@ group_type group_classify(struct sched_group *group,
if (sg_imbalanced(group))
return group_imbalanced;
+ if (sgs->group_misfit_task)
+ return group_misfit_task;
+
return group_other;
}
@@ -6296,14 +7280,15 @@ group_type group_classify(struct sched_group *group,
* @local_group: Does group contain this_cpu.
* @sgs: variable to hold the statistics for this group.
* @overload: Indicate more than one runnable task for any CPU.
+ * @overutilized: Indicate overutilization for any CPU.
*/
static inline void update_sg_lb_stats(struct lb_env *env,
struct sched_group *group, int load_idx,
int local_group, struct sg_lb_stats *sgs,
- bool *overload)
+ bool *overload, bool *overutilized)
{
unsigned long load;
- int i;
+ int i, nr_running;
memset(sgs, 0, sizeof(*sgs));
@@ -6320,7 +7305,8 @@ static inline void update_sg_lb_stats(struct lb_env *env,
sgs->group_util += cpu_util(i);
sgs->sum_nr_running += rq->cfs.h_nr_running;
- if (rq->nr_running > 1)
+ nr_running = rq->nr_running;
+ if (nr_running > 1)
*overload = true;
#ifdef CONFIG_NUMA_BALANCING
@@ -6328,8 +7314,17 @@ static inline void update_sg_lb_stats(struct lb_env *env,
sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
sgs->sum_weighted_load += weighted_cpuload(i);
- if (idle_cpu(i))
+ /*
+ * No need to call idle_cpu() if nr_running is not 0
+ */
+ if (!nr_running && idle_cpu(i))
sgs->idle_cpus++;
+
+ if (cpu_overutilized(i)) {
+ *overutilized = true;
+ if (!sgs->group_misfit_task && rq->misfit_task)
+ sgs->group_misfit_task = capacity_of(i);
+ }
}
/* Adjust by relative CPU capacity of the group */
@@ -6371,9 +7366,25 @@ static bool update_sd_pick_busiest(struct lb_env *env,
if (sgs->group_type < busiest->group_type)
return false;
+ /*
+ * Candidate sg doesn't face any serious load-balance problems
+ * so don't pick it if the local sg is already filled up.
+ */
+ if (sgs->group_type == group_other &&
+ !group_has_capacity(env, &sds->local_stat))
+ return false;
+
if (sgs->avg_load <= busiest->avg_load)
return false;
+ /*
+ * Candiate sg has no more than one task per cpu and has higher
+ * per-cpu capacity. No reason to pull tasks to less capable cpus.
+ */
+ if (sgs->sum_nr_running <= sgs->group_weight &&
+ group_smaller_cpu_capacity(sds->local, sg))
+ return false;
+
/* This is the busiest node in its class. */
if (!(env->sd->flags & SD_ASYM_PACKING))
return true;
@@ -6435,7 +7446,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
struct sched_group *sg = env->sd->groups;
struct sg_lb_stats tmp_sgs;
int load_idx, prefer_sibling = 0;
- bool overload = false;
+ bool overload = false, overutilized = false;
if (child && child->flags & SD_PREFER_SIBLING)
prefer_sibling = 1;
@@ -6457,7 +7468,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
}
update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
- &overload);
+ &overload, &overutilized);
if (local_group)
goto next_group;
@@ -6479,6 +7490,15 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
sgs->group_type = group_classify(sg, sgs);
}
+ /*
+ * Ignore task groups with misfit tasks if local group has no
+ * capacity or if per-cpu capacity isn't higher.
+ */
+ if (sgs->group_type == group_misfit_task &&
+ (!group_has_capacity(env, &sds->local_stat) ||
+ !group_smaller_cpu_capacity(sg, sds->local)))
+ sgs->group_type = group_other;
+
if (update_sd_pick_busiest(env, sds, sg, sgs)) {
sds->busiest = sg;
sds->busiest_stat = *sgs;
@@ -6495,10 +7515,23 @@ next_group:
if (env->sd->flags & SD_NUMA)
env->fbq_type = fbq_classify_group(&sds->busiest_stat);
+ env->src_grp_nr_running = sds->busiest_stat.sum_nr_running;
+
if (!env->sd->parent) {
/* update overload indicator if we are at root domain */
if (env->dst_rq->rd->overload != overload)
env->dst_rq->rd->overload = overload;
+
+ /* Update over-utilization (tipping point, U >= 0) indicator */
+ if (env->dst_rq->rd->overutilized != overutilized) {
+ env->dst_rq->rd->overutilized = overutilized;
+ trace_sched_overutilized(overutilized);
+ }
+ } else {
+ if (!env->dst_rq->rd->overutilized && overutilized) {
+ env->dst_rq->rd->overutilized = true;
+ trace_sched_overutilized(true);
+ }
}
}
@@ -6647,6 +7680,22 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
*/
if (busiest->avg_load <= sds->avg_load ||
local->avg_load >= sds->avg_load) {
+ /* Misfitting tasks should be migrated in any case */
+ if (busiest->group_type == group_misfit_task) {
+ env->imbalance = busiest->group_misfit_task;
+ return;
+ }
+
+ /*
+ * Busiest group is overloaded, local is not, use the spare
+ * cycles to maximize throughput
+ */
+ if (busiest->group_type == group_overloaded &&
+ local->group_type <= group_misfit_task) {
+ env->imbalance = busiest->load_per_task;
+ return;
+ }
+
env->imbalance = 0;
return fix_small_imbalance(env, sds);
}
@@ -6680,6 +7729,11 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
(sds->avg_load - local->avg_load) * local->group_capacity
) / SCHED_CAPACITY_SCALE;
+ /* Boost imbalance to allow misfit task to be balanced. */
+ if (busiest->group_type == group_misfit_task)
+ env->imbalance = max_t(long, env->imbalance,
+ busiest->group_misfit_task);
+
/*
* if *imbalance is less than the average load per runnable task
* there is no guarantee that any tasks will be moved so we'll have
@@ -6721,6 +7775,10 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
* this level.
*/
update_sd_lb_stats(env, &sds);
+
+ if (energy_aware() && !env->dst_rq->rd->overutilized)
+ goto out_balanced;
+
local = &sds.local_stat;
busiest = &sds.busiest_stat;
@@ -6749,6 +7807,11 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
busiest->group_no_capacity)
goto force_balance;
+ /* Misfitting tasks should be dealt with regardless of the avg load */
+ if (busiest->group_type == group_misfit_task) {
+ goto force_balance;
+ }
+
/*
* If the local group is busier than the selected busiest group
* don't try and pull any tasks.
@@ -6772,7 +7835,8 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
* might end up to just move the imbalance on another group
*/
if ((busiest->group_type != group_overloaded) &&
- (local->idle_cpus <= (busiest->idle_cpus + 1)))
+ (local->idle_cpus <= (busiest->idle_cpus + 1)) &&
+ !group_smaller_cpu_capacity(sds.busiest, sds.local))
goto out_balanced;
} else {
/*
@@ -6785,6 +7849,7 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
}
force_balance:
+ env->busiest_group_type = busiest->group_type;
/* Looks like there is an imbalance. Compute it */
calculate_imbalance(env, &sds);
return sds.busiest;
@@ -6843,7 +7908,8 @@ static struct rq *find_busiest_queue(struct lb_env *env,
*/
if (rq->nr_running == 1 && wl > env->imbalance &&
- !check_cpu_capacity(rq, env->sd))
+ !check_cpu_capacity(rq, env->sd) &&
+ env->busiest_group_type != group_misfit_task)
continue;
/*
@@ -6904,6 +7970,13 @@ static int need_active_balance(struct lb_env *env)
return 1;
}
+ if ((capacity_of(env->src_cpu) < capacity_of(env->dst_cpu)) &&
+ env->src_rq->cfs.h_nr_running == 1 &&
+ cpu_overutilized(env->src_cpu) &&
+ !cpu_overutilized(env->dst_cpu)) {
+ return 1;
+ }
+
return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}
@@ -7025,6 +8098,11 @@ more_balance:
* ld_moved - cumulative load moved across iterations
*/
cur_ld_moved = detach_tasks(&env);
+ /*
+ * We want to potentially lower env.src_cpu's OPP.
+ */
+ if (cur_ld_moved)
+ update_capacity_of(env.src_cpu);
/*
* We've detached some tasks from busiest_rq. Every
@@ -7116,7 +8194,8 @@ more_balance:
* excessive cache_hot migrations and active balances.
*/
if (idle != CPU_NEWLY_IDLE)
- sd->nr_balance_failed++;
+ if (env.src_grp_nr_running > 1)
+ sd->nr_balance_failed++;
if (need_active_balance(&env)) {
raw_spin_lock_irqsave(&busiest->lock, flags);
@@ -7248,6 +8327,7 @@ static int idle_balance(struct rq *this_rq)
struct sched_domain *sd;
int pulled_task = 0;
u64 curr_cost = 0;
+ long removed_util=0;
idle_enter_fair(this_rq);
@@ -7257,8 +8337,9 @@ static int idle_balance(struct rq *this_rq)
*/
this_rq->idle_stamp = rq_clock(this_rq);
- if (this_rq->avg_idle < sysctl_sched_migration_cost ||
- !this_rq->rd->overload) {
+ if (!energy_aware() &&
+ (this_rq->avg_idle < sysctl_sched_migration_cost ||
+ !this_rq->rd->overload)) {
rcu_read_lock();
sd = rcu_dereference_check_sched_domain(this_rq->sd);
if (sd)
@@ -7270,6 +8351,17 @@ static int idle_balance(struct rq *this_rq)
raw_spin_unlock(&this_rq->lock);
+ /*
+ * If removed_util_avg is !0 we most probably migrated some task away
+ * from this_cpu. In this case we might be willing to trigger an OPP
+ * update, but we want to do so if we don't find anybody else to pull
+ * here (we will trigger an OPP update with the pulled task's enqueue
+ * anyway).
+ *
+ * Record removed_util before calling update_blocked_averages, and use
+ * it below (before returning) to see if an OPP update is required.
+ */
+ removed_util = atomic_long_read(&(this_rq->cfs).removed_util_avg);
update_blocked_averages(this_cpu);
rcu_read_lock();
for_each_domain(this_cpu, sd) {
@@ -7334,6 +8426,12 @@ out:
if (pulled_task) {
idle_exit_fair(this_rq);
this_rq->idle_stamp = 0;
+ } else if (removed_util) {
+ /*
+ * No task pulled and someone has been migrated away.
+ * Good case to trigger an OPP update.
+ */
+ update_capacity_of(this_cpu);
}
return pulled_task;
@@ -7393,8 +8491,13 @@ static int active_load_balance_cpu_stop(void *data)
schedstat_inc(sd, alb_count);
p = detach_one_task(&env);
- if (p)
+ if (p) {
schedstat_inc(sd, alb_pushed);
+ /*
+ * We want to potentially lower env.src_cpu's OPP.
+ */
+ update_capacity_of(env.src_cpu);
+ }
else
schedstat_inc(sd, alb_failed);
}
@@ -7774,12 +8877,13 @@ static inline bool nohz_kick_needed(struct rq *rq)
if (time_before(now, nohz.next_balance))
return false;
- if (rq->nr_running >= 2)
+ if (rq->nr_running >= 2 &&
+ (!energy_aware() || cpu_overutilized(cpu)))
return true;
rcu_read_lock();
sd = rcu_dereference(per_cpu(sd_busy, cpu));
- if (sd) {
+ if (sd && !energy_aware()) {
sgc = sd->groups->sgc;
nr_busy = atomic_read(&sgc->nr_busy_cpus);
@@ -7885,6 +8989,16 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
if (static_branch_unlikely(&sched_numa_balancing))
task_tick_numa(rq, curr);
+
+#ifdef CONFIG_SMP
+ if (!rq->rd->overutilized && cpu_overutilized(task_cpu(curr))) {
+ rq->rd->overutilized = true;
+ trace_sched_overutilized(true);
+ }
+
+ rq->misfit_task = !task_fits_max(curr, rq->cpu);
+#endif
+
}
/*
diff --git a/kernel/sched/features.h b/kernel/sched/features.h
index 69631fa46c2f..b634151ce286 100644
--- a/kernel/sched/features.h
+++ b/kernel/sched/features.h
@@ -69,3 +69,8 @@ SCHED_FEAT(RT_RUNTIME_SHARE, true)
SCHED_FEAT(LB_MIN, false)
SCHED_FEAT(ATTACH_AGE_LOAD, true)
+/*
+ * Energy aware scheduling. Use platform energy model to guide scheduling
+ * decisions optimizing for energy efficiency.
+ */
+SCHED_FEAT(ENERGY_AWARE, false)
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index 4a2ef5a02fd3..917c94abf5bb 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -19,9 +19,10 @@
* sched_idle_set_state - Record idle state for the current CPU.
* @idle_state: State to record.
*/
-void sched_idle_set_state(struct cpuidle_state *idle_state)
+void sched_idle_set_state(struct cpuidle_state *idle_state, int index)
{
idle_set_state(this_rq(), idle_state);
+ idle_set_state_idx(this_rq(), index);
}
static int __read_mostly cpu_idle_force_poll;
@@ -219,6 +220,7 @@ static void cpu_idle_loop(void)
*/
__current_set_polling();
+ quiet_vmstat();
tick_nohz_idle_enter();
while (!need_resched()) {
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index 8ec86abe0ea1..8a16cba968c4 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -8,6 +8,8 @@
#include <linux/slab.h>
#include <linux/irq_work.h>
+#include "walt.h"
+
int sched_rr_timeslice = RR_TIMESLICE;
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
@@ -889,6 +891,51 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se)
return rt_task_of(rt_se)->prio;
}
+static void dump_throttled_rt_tasks(struct rt_rq *rt_rq)
+{
+ struct rt_prio_array *array = &rt_rq->active;
+ struct sched_rt_entity *rt_se;
+ char buf[500];
+ char *pos = buf;
+ char *end = buf + sizeof(buf);
+ int idx;
+
+ pos += snprintf(pos, sizeof(buf),
+ "sched: RT throttling activated for rt_rq %p (cpu %d)\n",
+ rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
+
+ if (bitmap_empty(array->bitmap, MAX_RT_PRIO))
+ goto out;
+
+ pos += snprintf(pos, end - pos, "potential CPU hogs:\n");
+ idx = sched_find_first_bit(array->bitmap);
+ while (idx < MAX_RT_PRIO) {
+ list_for_each_entry(rt_se, array->queue + idx, run_list) {
+ struct task_struct *p;
+
+ if (!rt_entity_is_task(rt_se))
+ continue;
+
+ p = rt_task_of(rt_se);
+ if (pos < end)
+ pos += snprintf(pos, end - pos, "\t%s (%d)\n",
+ p->comm, p->pid);
+ }
+ idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx + 1);
+ }
+out:
+#ifdef CONFIG_PANIC_ON_RT_THROTTLING
+ /*
+ * Use pr_err() in the BUG() case since printk_sched() will
+ * not get flushed and deadlock is not a concern.
+ */
+ pr_err("%s", buf);
+ BUG();
+#else
+ printk_deferred("%s", buf);
+#endif
+}
+
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
{
u64 runtime = sched_rt_runtime(rt_rq);
@@ -912,8 +959,14 @@ static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
* but accrue some time due to boosting.
*/
if (likely(rt_b->rt_runtime)) {
+ static bool once = false;
+
rt_rq->rt_throttled = 1;
- printk_deferred_once("sched: RT throttling activated\n");
+
+ if (!once) {
+ once = true;
+ dump_throttled_rt_tasks(rt_rq);
+ }
} else {
/*
* In case we did anyway, make it go away,
@@ -1261,6 +1314,7 @@ enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
rt_se->timeout = 0;
enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
+ walt_inc_cumulative_runnable_avg(rq, p);
if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
enqueue_pushable_task(rq, p);
@@ -1272,6 +1326,7 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
update_curr_rt(rq);
dequeue_rt_entity(rt_se);
+ walt_dec_cumulative_runnable_avg(rq, p);
dequeue_pushable_task(rq, p);
}
@@ -1426,6 +1481,41 @@ static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flag
#endif
}
+#ifdef CONFIG_SMP
+static void sched_rt_update_capacity_req(struct rq *rq)
+{
+ u64 total, used, age_stamp, avg;
+ s64 delta;
+
+ if (!sched_freq())
+ return;
+
+ sched_avg_update(rq);
+ /*
+ * Since we're reading these variables without serialization make sure
+ * we read them once before doing sanity checks on them.
+ */
+ age_stamp = READ_ONCE(rq->age_stamp);
+ avg = READ_ONCE(rq->rt_avg);
+ delta = rq_clock(rq) - age_stamp;
+
+ if (unlikely(delta < 0))
+ delta = 0;
+
+ total = sched_avg_period() + delta;
+
+ used = div_u64(avg, total);
+ if (unlikely(used > SCHED_CAPACITY_SCALE))
+ used = SCHED_CAPACITY_SCALE;
+
+ set_rt_cpu_capacity(rq->cpu, 1, (unsigned long)(used));
+}
+#else
+static inline void sched_rt_update_capacity_req(struct rq *rq)
+{ }
+
+#endif
+
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
struct rt_rq *rt_rq)
{
@@ -1494,8 +1584,17 @@ pick_next_task_rt(struct rq *rq, struct task_struct *prev)
if (prev->sched_class == &rt_sched_class)
update_curr_rt(rq);
- if (!rt_rq->rt_queued)
+ if (!rt_rq->rt_queued) {
+ /*
+ * The next task to be picked on this rq will have a lower
+ * priority than rt tasks so we can spend some time to update
+ * the capacity used by rt tasks based on the last activity.
+ * This value will be the used as an estimation of the next
+ * activity.
+ */
+ sched_rt_update_capacity_req(rq);
return NULL;
+ }
put_prev_task(rq, prev);
@@ -2212,6 +2311,9 @@ static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
update_curr_rt(rq);
+ if (rq->rt.rt_nr_running)
+ sched_rt_update_capacity_req(rq);
+
watchdog(rq, p);
/*
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index b242775bf670..4e2e44e3cc7b 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -410,6 +410,10 @@ struct cfs_rq {
struct list_head leaf_cfs_rq_list;
struct task_group *tg; /* group that "owns" this runqueue */
+#ifdef CONFIG_SCHED_WALT
+ u64 cumulative_runnable_avg;
+#endif
+
#ifdef CONFIG_CFS_BANDWIDTH
int runtime_enabled;
u64 runtime_expires;
@@ -506,10 +510,18 @@ struct dl_rq {
#else
struct dl_bw dl_bw;
#endif
+ /* This is the "average utilization" for this runqueue */
+ s64 avg_bw;
};
#ifdef CONFIG_SMP
+struct max_cpu_capacity {
+ raw_spinlock_t lock;
+ unsigned long val;
+ int cpu;
+};
+
/*
* We add the notion of a root-domain which will be used to define per-domain
* variables. Each exclusive cpuset essentially defines an island domain by
@@ -528,6 +540,9 @@ struct root_domain {
/* Indicate more than one runnable task for any CPU */
bool overload;
+ /* Indicate one or more cpus over-utilized (tipping point) */
+ bool overutilized;
+
/*
* The bit corresponding to a CPU gets set here if such CPU has more
* than one runnable -deadline task (as it is below for RT tasks).
@@ -543,6 +558,9 @@ struct root_domain {
*/
cpumask_var_t rto_mask;
struct cpupri cpupri;
+
+ /* Maximum cpu capacity in the system. */
+ struct max_cpu_capacity max_cpu_capacity;
};
extern struct root_domain def_root_domain;
@@ -572,6 +590,7 @@ struct rq {
#define CPU_LOAD_IDX_MAX 5
unsigned long cpu_load[CPU_LOAD_IDX_MAX];
unsigned long last_load_update_tick;
+ unsigned int misfit_task;
#ifdef CONFIG_NO_HZ_COMMON
u64 nohz_stamp;
unsigned long nohz_flags;
@@ -579,6 +598,14 @@ struct rq {
#ifdef CONFIG_NO_HZ_FULL
unsigned long last_sched_tick;
#endif
+
+#ifdef CONFIG_CPU_QUIET
+ /* time-based average load */
+ u64 nr_last_stamp;
+ u64 nr_running_integral;
+ seqcount_t ave_seqcnt;
+#endif
+
/* capture load from *all* tasks on this cpu: */
struct load_weight load;
unsigned long nr_load_updates;
@@ -640,6 +667,30 @@ struct rq {
u64 max_idle_balance_cost;
#endif
+#ifdef CONFIG_SCHED_WALT
+ /*
+ * max_freq = user or thermal defined maximum
+ * max_possible_freq = maximum supported by hardware
+ */
+ unsigned int cur_freq, max_freq, min_freq, max_possible_freq;
+ struct cpumask freq_domain_cpumask;
+
+ u64 cumulative_runnable_avg;
+ int efficiency; /* Differentiate cpus with different IPC capability */
+ int load_scale_factor;
+ int capacity;
+ int max_possible_capacity;
+ u64 window_start;
+ u64 curr_runnable_sum;
+ u64 prev_runnable_sum;
+ u64 nt_curr_runnable_sum;
+ u64 nt_prev_runnable_sum;
+ u64 cur_irqload;
+ u64 avg_irqload;
+ u64 irqload_ts;
+#endif /* CONFIG_SCHED_WALT */
+
+
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
u64 prev_irq_time;
#endif
@@ -687,6 +738,7 @@ struct rq {
#ifdef CONFIG_CPU_IDLE
/* Must be inspected within a rcu lock section */
struct cpuidle_state *idle_state;
+ int idle_state_idx;
#endif
};
@@ -836,6 +888,8 @@ DECLARE_PER_CPU(int, sd_llc_id);
DECLARE_PER_CPU(struct sched_domain *, sd_numa);
DECLARE_PER_CPU(struct sched_domain *, sd_busy);
DECLARE_PER_CPU(struct sched_domain *, sd_asym);
+DECLARE_PER_CPU(struct sched_domain *, sd_ea);
+DECLARE_PER_CPU(struct sched_domain *, sd_scs);
struct sched_group_capacity {
atomic_t ref;
@@ -843,7 +897,8 @@ struct sched_group_capacity {
* CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
* for a single CPU.
*/
- unsigned int capacity;
+ unsigned long capacity;
+ unsigned long max_capacity; /* Max per-cpu capacity in group */
unsigned long next_update;
int imbalance; /* XXX unrelated to capacity but shared group state */
/*
@@ -860,6 +915,7 @@ struct sched_group {
unsigned int group_weight;
struct sched_group_capacity *sgc;
+ const struct sched_group_energy const *sge;
/*
* The CPUs this group covers.
@@ -1163,6 +1219,7 @@ static const u32 prio_to_wmult[40] = {
#endif
#define ENQUEUE_REPLENISH 0x08
#define ENQUEUE_RESTORE 0x10
+#define ENQUEUE_WAKEUP_NEW 0x20
#define DEQUEUE_SLEEP 0x01
#define DEQUEUE_SAVE 0x02
@@ -1248,6 +1305,7 @@ extern const struct sched_class idle_sched_class;
#ifdef CONFIG_SMP
+extern void init_max_cpu_capacity(struct max_cpu_capacity *mcc);
extern void update_group_capacity(struct sched_domain *sd, int cpu);
extern void trigger_load_balance(struct rq *rq);
@@ -1276,6 +1334,17 @@ static inline struct cpuidle_state *idle_get_state(struct rq *rq)
WARN_ON(!rcu_read_lock_held());
return rq->idle_state;
}
+
+static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
+{
+ rq->idle_state_idx = idle_state_idx;
+}
+
+static inline int idle_get_state_idx(struct rq *rq)
+{
+ WARN_ON(!rcu_read_lock_held());
+ return rq->idle_state_idx;
+}
#else
static inline void idle_set_state(struct rq *rq,
struct cpuidle_state *idle_state)
@@ -1286,6 +1355,15 @@ static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
return NULL;
}
+
+static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
+{
+}
+
+static inline int idle_get_state_idx(struct rq *rq)
+{
+ return -1;
+}
#endif
extern void sysrq_sched_debug_show(void);
@@ -1310,7 +1388,7 @@ unsigned long to_ratio(u64 period, u64 runtime);
extern void init_entity_runnable_average(struct sched_entity *se);
-static inline void add_nr_running(struct rq *rq, unsigned count)
+static inline void __add_nr_running(struct rq *rq, unsigned count)
{
unsigned prev_nr = rq->nr_running;
@@ -1338,11 +1416,48 @@ static inline void add_nr_running(struct rq *rq, unsigned count)
}
}
-static inline void sub_nr_running(struct rq *rq, unsigned count)
+static inline void __sub_nr_running(struct rq *rq, unsigned count)
{
rq->nr_running -= count;
}
+#ifdef CONFIG_CPU_QUIET
+#define NR_AVE_SCALE(x) ((x) << FSHIFT)
+static inline u64 do_nr_running_integral(struct rq *rq)
+{
+ s64 nr, deltax;
+ u64 nr_running_integral = rq->nr_running_integral;
+
+ deltax = rq->clock_task - rq->nr_last_stamp;
+ nr = NR_AVE_SCALE(rq->nr_running);
+
+ nr_running_integral += nr * deltax;
+
+ return nr_running_integral;
+}
+
+static inline void add_nr_running(struct rq *rq, unsigned count)
+{
+ write_seqcount_begin(&rq->ave_seqcnt);
+ rq->nr_running_integral = do_nr_running_integral(rq);
+ rq->nr_last_stamp = rq->clock_task;
+ __add_nr_running(rq, count);
+ write_seqcount_end(&rq->ave_seqcnt);
+}
+
+static inline void sub_nr_running(struct rq *rq, unsigned count)
+{
+ write_seqcount_begin(&rq->ave_seqcnt);
+ rq->nr_running_integral = do_nr_running_integral(rq);
+ rq->nr_last_stamp = rq->clock_task;
+ __sub_nr_running(rq, count);
+ write_seqcount_end(&rq->ave_seqcnt);
+}
+#else
+#define add_nr_running __add_nr_running
+#define sub_nr_running __sub_nr_running
+#endif
+
static inline void rq_last_tick_reset(struct rq *rq)
{
#ifdef CONFIG_NO_HZ_FULL
@@ -1415,10 +1530,145 @@ unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
}
#endif
+#ifdef CONFIG_SMP
+static inline unsigned long capacity_of(int cpu)
+{
+ return cpu_rq(cpu)->cpu_capacity;
+}
+
+static inline unsigned long capacity_orig_of(int cpu)
+{
+ return cpu_rq(cpu)->cpu_capacity_orig;
+}
+
+extern unsigned int sysctl_sched_use_walt_cpu_util;
+extern unsigned int walt_ravg_window;
+extern unsigned int walt_disabled;
+
+/*
+ * cpu_util returns the amount of capacity of a CPU that is used by CFS
+ * tasks. The unit of the return value must be the one of capacity so we can
+ * compare the utilization with the capacity of the CPU that is available for
+ * CFS task (ie cpu_capacity).
+ *
+ * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
+ * recent utilization of currently non-runnable tasks on a CPU. It represents
+ * the amount of utilization of a CPU in the range [0..capacity_orig] where
+ * capacity_orig is the cpu_capacity available at the highest frequency
+ * (arch_scale_freq_capacity()).
+ * The utilization of a CPU converges towards a sum equal to or less than the
+ * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
+ * the running time on this CPU scaled by capacity_curr.
+ *
+ * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
+ * higher than capacity_orig because of unfortunate rounding in
+ * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
+ * the average stabilizes with the new running time. We need to check that the
+ * utilization stays within the range of [0..capacity_orig] and cap it if
+ * necessary. Without utilization capping, a group could be seen as overloaded
+ * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
+ * available capacity. We allow utilization to overshoot capacity_curr (but not
+ * capacity_orig) as it useful for predicting the capacity required after task
+ * migrations (scheduler-driven DVFS).
+ */
+static inline unsigned long __cpu_util(int cpu, int delta)
+{
+ unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
+ unsigned long capacity = capacity_orig_of(cpu);
+
+#ifdef CONFIG_SCHED_WALT
+ if (!walt_disabled && sysctl_sched_use_walt_cpu_util)
+ util = (cpu_rq(cpu)->prev_runnable_sum << SCHED_LOAD_SHIFT) /
+ walt_ravg_window;
+#endif
+ delta += util;
+ if (delta < 0)
+ return 0;
+
+ return (delta >= capacity) ? capacity : delta;
+}
+
+static inline unsigned long cpu_util(int cpu)
+{
+ return __cpu_util(cpu, 0);
+}
+
+#endif
+
+#ifdef CONFIG_CPU_FREQ_GOV_SCHED
+#define capacity_max SCHED_CAPACITY_SCALE
+extern unsigned int capacity_margin;
+extern struct static_key __sched_freq;
+
+static inline bool sched_freq(void)
+{
+ return static_key_false(&__sched_freq);
+}
+
+DECLARE_PER_CPU(struct sched_capacity_reqs, cpu_sched_capacity_reqs);
+void update_cpu_capacity_request(int cpu, bool request);
+
+static inline void set_cfs_cpu_capacity(int cpu, bool request,
+ unsigned long capacity)
+{
+ struct sched_capacity_reqs *scr = &per_cpu(cpu_sched_capacity_reqs, cpu);
+
+#ifdef CONFIG_SCHED_WALT
+ if (!walt_disabled && sysctl_sched_use_walt_cpu_util) {
+ int rtdl = scr->rt + scr->dl;
+ /*
+ * WALT tracks the utilization of a CPU considering the load
+ * generated by all the scheduling classes.
+ * Since the following call to:
+ * update_cpu_capacity
+ * is already adding the RT and DL utilizations let's remove
+ * these contributions from the WALT signal.
+ */
+ if (capacity > rtdl)
+ capacity -= rtdl;
+ else
+ capacity = 0;
+ }
+#endif
+ if (scr->cfs != capacity) {
+ scr->cfs = capacity;
+ update_cpu_capacity_request(cpu, request);
+ }
+}
+
+static inline void set_rt_cpu_capacity(int cpu, bool request,
+ unsigned long capacity)
+{
+ if (per_cpu(cpu_sched_capacity_reqs, cpu).rt != capacity) {
+ per_cpu(cpu_sched_capacity_reqs, cpu).rt = capacity;
+ update_cpu_capacity_request(cpu, request);
+ }
+}
+
+static inline void set_dl_cpu_capacity(int cpu, bool request,
+ unsigned long capacity)
+{
+ if (per_cpu(cpu_sched_capacity_reqs, cpu).dl != capacity) {
+ per_cpu(cpu_sched_capacity_reqs, cpu).dl = capacity;
+ update_cpu_capacity_request(cpu, request);
+ }
+}
+#else
+static inline bool sched_freq(void) { return false; }
+static inline void set_cfs_cpu_capacity(int cpu, bool request,
+ unsigned long capacity)
+{ }
+static inline void set_rt_cpu_capacity(int cpu, bool request,
+ unsigned long capacity)
+{ }
+static inline void set_dl_cpu_capacity(int cpu, bool request,
+ unsigned long capacity)
+{ }
+#endif
+
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
- sched_avg_update(rq);
}
#else
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
@@ -1507,6 +1757,9 @@ task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
}
+extern struct rq *lock_rq_of(struct task_struct *p, unsigned long *flags);
+extern void unlock_rq_of(struct rq *rq, struct task_struct *p, unsigned long *flags);
+
#ifdef CONFIG_SMP
#ifdef CONFIG_PREEMPT
@@ -1579,7 +1832,8 @@ static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
__releases(busiest->lock)
{
- raw_spin_unlock(&busiest->lock);
+ if (this_rq != busiest)
+ raw_spin_unlock(&busiest->lock);
lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c
index cbc67da10954..61f852d46858 100644
--- a/kernel/sched/stop_task.c
+++ b/kernel/sched/stop_task.c
@@ -1,4 +1,5 @@
#include "sched.h"
+#include "walt.h"
/*
* stop-task scheduling class.
@@ -42,12 +43,14 @@ static void
enqueue_task_stop(struct rq *rq, struct task_struct *p, int flags)
{
add_nr_running(rq, 1);
+ walt_inc_cumulative_runnable_avg(rq, p);
}
static void
dequeue_task_stop(struct rq *rq, struct task_struct *p, int flags)
{
sub_nr_running(rq, 1);
+ walt_dec_cumulative_runnable_avg(rq, p);
}
static void yield_task_stop(struct rq *rq)
diff --git a/kernel/sched/tune.c b/kernel/sched/tune.c
new file mode 100644
index 000000000000..bd7f319ce53e
--- /dev/null
+++ b/kernel/sched/tune.c
@@ -0,0 +1,949 @@
+#include <linux/cgroup.h>
+#include <linux/err.h>
+#include <linux/kernel.h>
+#include <linux/percpu.h>
+#include <linux/printk.h>
+#include <linux/rcupdate.h>
+#include <linux/slab.h>
+
+#include <trace/events/sched.h>
+
+#include "sched.h"
+#include "tune.h"
+
+#ifdef CONFIG_CGROUP_SCHEDTUNE
+static bool schedtune_initialized = false;
+#endif
+
+unsigned int sysctl_sched_cfs_boost __read_mostly;
+
+extern struct target_nrg schedtune_target_nrg;
+
+/* Performance Boost region (B) threshold params */
+static int perf_boost_idx;
+
+/* Performance Constraint region (C) threshold params */
+static int perf_constrain_idx;
+
+/**
+ * Performance-Energy (P-E) Space thresholds constants
+ */
+struct threshold_params {
+ int nrg_gain;
+ int cap_gain;
+};
+
+/*
+ * System specific P-E space thresholds constants
+ */
+static struct threshold_params
+threshold_gains[] = {
+ { 0, 5 }, /* < 10% */
+ { 1, 5 }, /* < 20% */
+ { 2, 5 }, /* < 30% */
+ { 3, 5 }, /* < 40% */
+ { 4, 5 }, /* < 50% */
+ { 5, 4 }, /* < 60% */
+ { 5, 3 }, /* < 70% */
+ { 5, 2 }, /* < 80% */
+ { 5, 1 }, /* < 90% */
+ { 5, 0 } /* <= 100% */
+};
+
+static int
+__schedtune_accept_deltas(int nrg_delta, int cap_delta,
+ int perf_boost_idx, int perf_constrain_idx)
+{
+ int payoff = -INT_MAX;
+ int gain_idx = -1;
+
+ /* Performance Boost (B) region */
+ if (nrg_delta >= 0 && cap_delta > 0)
+ gain_idx = perf_boost_idx;
+ /* Performance Constraint (C) region */
+ else if (nrg_delta < 0 && cap_delta <= 0)
+ gain_idx = perf_constrain_idx;
+
+ /* Default: reject schedule candidate */
+ if (gain_idx == -1)
+ return payoff;
+
+ /*
+ * Evaluate "Performance Boost" vs "Energy Increase"
+ *
+ * - Performance Boost (B) region
+ *
+ * Condition: nrg_delta > 0 && cap_delta > 0
+ * Payoff criteria:
+ * cap_gain / nrg_gain < cap_delta / nrg_delta =
+ * cap_gain * nrg_delta < cap_delta * nrg_gain
+ * Note that since both nrg_gain and nrg_delta are positive, the
+ * inequality does not change. Thus:
+ *
+ * payoff = (cap_delta * nrg_gain) - (cap_gain * nrg_delta)
+ *
+ * - Performance Constraint (C) region
+ *
+ * Condition: nrg_delta < 0 && cap_delta < 0
+ * payoff criteria:
+ * cap_gain / nrg_gain > cap_delta / nrg_delta =
+ * cap_gain * nrg_delta < cap_delta * nrg_gain
+ * Note that since nrg_gain > 0 while nrg_delta < 0, the
+ * inequality change. Thus:
+ *
+ * payoff = (cap_delta * nrg_gain) - (cap_gain * nrg_delta)
+ *
+ * This means that, in case of same positive defined {cap,nrg}_gain
+ * for both the B and C regions, we can use the same payoff formula
+ * where a positive value represents the accept condition.
+ */
+ payoff = cap_delta * threshold_gains[gain_idx].nrg_gain;
+ payoff -= nrg_delta * threshold_gains[gain_idx].cap_gain;
+
+ return payoff;
+}
+
+#ifdef CONFIG_CGROUP_SCHEDTUNE
+
+/*
+ * EAS scheduler tunables for task groups.
+ */
+
+/* SchdTune tunables for a group of tasks */
+struct schedtune {
+ /* SchedTune CGroup subsystem */
+ struct cgroup_subsys_state css;
+
+ /* Boost group allocated ID */
+ int idx;
+
+ /* Boost value for tasks on that SchedTune CGroup */
+ int boost;
+
+ /* Performance Boost (B) region threshold params */
+ int perf_boost_idx;
+
+ /* Performance Constraint (C) region threshold params */
+ int perf_constrain_idx;
+
+ /* Hint to bias scheduling of tasks on that SchedTune CGroup
+ * towards idle CPUs */
+ int prefer_idle;
+};
+
+static inline struct schedtune *css_st(struct cgroup_subsys_state *css)
+{
+ return css ? container_of(css, struct schedtune, css) : NULL;
+}
+
+static inline struct schedtune *task_schedtune(struct task_struct *tsk)
+{
+ return css_st(task_css(tsk, schedtune_cgrp_id));
+}
+
+static inline struct schedtune *parent_st(struct schedtune *st)
+{
+ return css_st(st->css.parent);
+}
+
+/*
+ * SchedTune root control group
+ * The root control group is used to defined a system-wide boosting tuning,
+ * which is applied to all tasks in the system.
+ * Task specific boost tuning could be specified by creating and
+ * configuring a child control group under the root one.
+ * By default, system-wide boosting is disabled, i.e. no boosting is applied
+ * to tasks which are not into a child control group.
+ */
+static struct schedtune
+root_schedtune = {
+ .boost = 0,
+ .perf_boost_idx = 0,
+ .perf_constrain_idx = 0,
+ .prefer_idle = 0,
+};
+
+int
+schedtune_accept_deltas(int nrg_delta, int cap_delta,
+ struct task_struct *task)
+{
+ struct schedtune *ct;
+ int perf_boost_idx;
+ int perf_constrain_idx;
+
+ /* Optimal (O) region */
+ if (nrg_delta < 0 && cap_delta > 0) {
+ trace_sched_tune_filter(nrg_delta, cap_delta, 0, 0, 1, 0);
+ return INT_MAX;
+ }
+
+ /* Suboptimal (S) region */
+ if (nrg_delta > 0 && cap_delta < 0) {
+ trace_sched_tune_filter(nrg_delta, cap_delta, 0, 0, -1, 5);
+ return -INT_MAX;
+ }
+
+ /* Get task specific perf Boost/Constraints indexes */
+ rcu_read_lock();
+ ct = task_schedtune(task);
+ perf_boost_idx = ct->perf_boost_idx;
+ perf_constrain_idx = ct->perf_constrain_idx;
+ rcu_read_unlock();
+
+ return __schedtune_accept_deltas(nrg_delta, cap_delta,
+ perf_boost_idx, perf_constrain_idx);
+}
+
+/*
+ * Maximum number of boost groups to support
+ * When per-task boosting is used we still allow only limited number of
+ * boost groups for two main reasons:
+ * 1. on a real system we usually have only few classes of workloads which
+ * make sense to boost with different values (e.g. background vs foreground
+ * tasks, interactive vs low-priority tasks)
+ * 2. a limited number allows for a simpler and more memory/time efficient
+ * implementation especially for the computation of the per-CPU boost
+ * value
+ */
+#define BOOSTGROUPS_COUNT 4
+
+/* Array of configured boostgroups */
+static struct schedtune *allocated_group[BOOSTGROUPS_COUNT] = {
+ &root_schedtune,
+ NULL,
+};
+
+/* SchedTune boost groups
+ * Keep track of all the boost groups which impact on CPU, for example when a
+ * CPU has two RUNNABLE tasks belonging to two different boost groups and thus
+ * likely with different boost values.
+ * Since on each system we expect only a limited number of boost groups, here
+ * we use a simple array to keep track of the metrics required to compute the
+ * maximum per-CPU boosting value.
+ */
+struct boost_groups {
+ /* Maximum boost value for all RUNNABLE tasks on a CPU */
+ bool idle;
+ int boost_max;
+ struct {
+ /* The boost for tasks on that boost group */
+ int boost;
+ /* Count of RUNNABLE tasks on that boost group */
+ unsigned tasks;
+ } group[BOOSTGROUPS_COUNT];
+ /* CPU's boost group locking */
+ raw_spinlock_t lock;
+};
+
+/* Boost groups affecting each CPU in the system */
+DEFINE_PER_CPU(struct boost_groups, cpu_boost_groups);
+
+static void
+schedtune_cpu_update(int cpu)
+{
+ struct boost_groups *bg;
+ int boost_max;
+ int idx;
+
+ bg = &per_cpu(cpu_boost_groups, cpu);
+
+ /* The root boost group is always active */
+ boost_max = bg->group[0].boost;
+ for (idx = 1; idx < BOOSTGROUPS_COUNT; ++idx) {
+ /*
+ * A boost group affects a CPU only if it has
+ * RUNNABLE tasks on that CPU
+ */
+ if (bg->group[idx].tasks == 0)
+ continue;
+
+ boost_max = max(boost_max, bg->group[idx].boost);
+ }
+ /* Ensures boost_max is non-negative when all cgroup boost values
+ * are neagtive. Avoids under-accounting of cpu capacity which may cause
+ * task stacking and frequency spikes.*/
+ boost_max = max(boost_max, 0);
+ bg->boost_max = boost_max;
+}
+
+static int
+schedtune_boostgroup_update(int idx, int boost)
+{
+ struct boost_groups *bg;
+ int cur_boost_max;
+ int old_boost;
+ int cpu;
+
+ /* Update per CPU boost groups */
+ for_each_possible_cpu(cpu) {
+ bg = &per_cpu(cpu_boost_groups, cpu);
+
+ /*
+ * Keep track of current boost values to compute the per CPU
+ * maximum only when it has been affected by the new value of
+ * the updated boost group
+ */
+ cur_boost_max = bg->boost_max;
+ old_boost = bg->group[idx].boost;
+
+ /* Update the boost value of this boost group */
+ bg->group[idx].boost = boost;
+
+ /* Check if this update increase current max */
+ if (boost > cur_boost_max && bg->group[idx].tasks) {
+ bg->boost_max = boost;
+ trace_sched_tune_boostgroup_update(cpu, 1, bg->boost_max);
+ continue;
+ }
+
+ /* Check if this update has decreased current max */
+ if (cur_boost_max == old_boost && old_boost > boost) {
+ schedtune_cpu_update(cpu);
+ trace_sched_tune_boostgroup_update(cpu, -1, bg->boost_max);
+ continue;
+ }
+
+ trace_sched_tune_boostgroup_update(cpu, 0, bg->boost_max);
+ }
+
+ return 0;
+}
+
+#define ENQUEUE_TASK 1
+#define DEQUEUE_TASK -1
+
+static inline void
+schedtune_tasks_update(struct task_struct *p, int cpu, int idx, int task_count)
+{
+ struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
+ int tasks = bg->group[idx].tasks + task_count;
+
+ /* Update boosted tasks count while avoiding to make it negative */
+ bg->group[idx].tasks = max(0, tasks);
+
+ trace_sched_tune_tasks_update(p, cpu, tasks, idx,
+ bg->group[idx].boost, bg->boost_max);
+
+ /* Boost group activation or deactivation on that RQ */
+ if (tasks == 1 || tasks == 0)
+ schedtune_cpu_update(cpu);
+}
+
+/*
+ * NOTE: This function must be called while holding the lock on the CPU RQ
+ */
+void schedtune_enqueue_task(struct task_struct *p, int cpu)
+{
+ struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
+ unsigned long irq_flags;
+ struct schedtune *st;
+ int idx;
+
+ if (!unlikely(schedtune_initialized))
+ return;
+
+ /*
+ * When a task is marked PF_EXITING by do_exit() it's going to be
+ * dequeued and enqueued multiple times in the exit path.
+ * Thus we avoid any further update, since we do not want to change
+ * CPU boosting while the task is exiting.
+ */
+ if (p->flags & PF_EXITING)
+ return;
+
+ /*
+ * Boost group accouting is protected by a per-cpu lock and requires
+ * interrupt to be disabled to avoid race conditions for example on
+ * do_exit()::cgroup_exit() and task migration.
+ */
+ raw_spin_lock_irqsave(&bg->lock, irq_flags);
+ rcu_read_lock();
+
+ st = task_schedtune(p);
+ idx = st->idx;
+
+ schedtune_tasks_update(p, cpu, idx, ENQUEUE_TASK);
+
+ rcu_read_unlock();
+ raw_spin_unlock_irqrestore(&bg->lock, irq_flags);
+}
+
+int schedtune_allow_attach(struct cgroup_taskset *tset)
+{
+ /* We always allows tasks to be moved between existing CGroups */
+ return 0;
+}
+
+int schedtune_can_attach(struct cgroup_taskset *tset)
+{
+ struct task_struct *task;
+ struct cgroup_subsys_state *css;
+ struct boost_groups *bg;
+ unsigned long irq_flags;
+ unsigned int cpu;
+ struct rq *rq;
+ int src_bg; /* Source boost group index */
+ int dst_bg; /* Destination boost group index */
+ int tasks;
+
+ if (!unlikely(schedtune_initialized))
+ return 0;
+
+
+ cgroup_taskset_for_each(task, css, tset) {
+
+ /*
+ * Lock the CPU's RQ the task is enqueued to avoid race
+ * conditions with migration code while the task is being
+ * accounted
+ */
+ rq = lock_rq_of(task, &irq_flags);
+
+ if (!task->on_rq) {
+ unlock_rq_of(rq, task, &irq_flags);
+ continue;
+ }
+
+ /*
+ * Boost group accouting is protected by a per-cpu lock and requires
+ * interrupt to be disabled to avoid race conditions on...
+ */
+ cpu = cpu_of(rq);
+ bg = &per_cpu(cpu_boost_groups, cpu);
+ raw_spin_lock(&bg->lock);
+
+ dst_bg = css_st(css)->idx;
+ src_bg = task_schedtune(task)->idx;
+
+ /*
+ * Current task is not changing boostgroup, which can
+ * happen when the new hierarchy is in use.
+ */
+ if (unlikely(dst_bg == src_bg)) {
+ raw_spin_unlock(&bg->lock);
+ unlock_rq_of(rq, task, &irq_flags);
+ continue;
+ }
+
+ /*
+ * This is the case of a RUNNABLE task which is switching its
+ * current boost group.
+ */
+
+ /* Move task from src to dst boost group */
+ tasks = bg->group[src_bg].tasks - 1;
+ bg->group[src_bg].tasks = max(0, tasks);
+ bg->group[dst_bg].tasks += 1;
+
+ raw_spin_unlock(&bg->lock);
+ unlock_rq_of(rq, task, &irq_flags);
+
+ /* Update CPU boost group */
+ if (bg->group[src_bg].tasks == 0 || bg->group[dst_bg].tasks == 1)
+ schedtune_cpu_update(task_cpu(task));
+
+ }
+
+ return 0;
+}
+
+void schedtune_cancel_attach(struct cgroup_taskset *tset)
+{
+ /* This can happen only if SchedTune controller is mounted with
+ * other hierarchies ane one of them fails. Since usually SchedTune is
+ * mouted on its own hierarcy, for the time being we do not implement
+ * a proper rollback mechanism */
+ WARN(1, "SchedTune cancel attach not implemented");
+}
+
+/*
+ * NOTE: This function must be called while holding the lock on the CPU RQ
+ */
+void schedtune_dequeue_task(struct task_struct *p, int cpu)
+{
+ struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
+ unsigned long irq_flags;
+ struct schedtune *st;
+ int idx;
+
+ if (!unlikely(schedtune_initialized))
+ return;
+
+ /*
+ * When a task is marked PF_EXITING by do_exit() it's going to be
+ * dequeued and enqueued multiple times in the exit path.
+ * Thus we avoid any further update, since we do not want to change
+ * CPU boosting while the task is exiting.
+ * The last dequeue is already enforce by the do_exit() code path
+ * via schedtune_exit_task().
+ */
+ if (p->flags & PF_EXITING)
+ return;
+
+ /*
+ * Boost group accouting is protected by a per-cpu lock and requires
+ * interrupt to be disabled to avoid race conditions on...
+ */
+ raw_spin_lock_irqsave(&bg->lock, irq_flags);
+ rcu_read_lock();
+
+ st = task_schedtune(p);
+ idx = st->idx;
+
+ schedtune_tasks_update(p, cpu, idx, DEQUEUE_TASK);
+
+ rcu_read_unlock();
+ raw_spin_unlock_irqrestore(&bg->lock, irq_flags);
+}
+
+void schedtune_exit_task(struct task_struct *tsk)
+{
+ struct schedtune *st;
+ unsigned long irq_flags;
+ unsigned int cpu;
+ struct rq *rq;
+ int idx;
+
+ if (!unlikely(schedtune_initialized))
+ return;
+
+ rq = lock_rq_of(tsk, &irq_flags);
+ rcu_read_lock();
+
+ cpu = cpu_of(rq);
+ st = task_schedtune(tsk);
+ idx = st->idx;
+ schedtune_tasks_update(tsk, cpu, idx, DEQUEUE_TASK);
+
+ rcu_read_unlock();
+ unlock_rq_of(rq, tsk, &irq_flags);
+}
+
+int schedtune_cpu_boost(int cpu)
+{
+ struct boost_groups *bg;
+
+ bg = &per_cpu(cpu_boost_groups, cpu);
+ return bg->boost_max;
+}
+
+int schedtune_task_boost(struct task_struct *p)
+{
+ struct schedtune *st;
+ int task_boost;
+
+ /* Get task boost value */
+ rcu_read_lock();
+ st = task_schedtune(p);
+ task_boost = st->boost;
+ rcu_read_unlock();
+
+ return task_boost;
+}
+
+int schedtune_prefer_idle(struct task_struct *p)
+{
+ struct schedtune *st;
+ int prefer_idle;
+
+ /* Get prefer_idle value */
+ rcu_read_lock();
+ st = task_schedtune(p);
+ prefer_idle = st->prefer_idle;
+ rcu_read_unlock();
+
+ return prefer_idle;
+}
+
+static u64
+prefer_idle_read(struct cgroup_subsys_state *css, struct cftype *cft)
+{
+ struct schedtune *st = css_st(css);
+
+ return st->prefer_idle;
+}
+
+static int
+prefer_idle_write(struct cgroup_subsys_state *css, struct cftype *cft,
+ u64 prefer_idle)
+{
+ struct schedtune *st = css_st(css);
+ st->prefer_idle = prefer_idle;
+
+ return 0;
+}
+
+static s64
+boost_read(struct cgroup_subsys_state *css, struct cftype *cft)
+{
+ struct schedtune *st = css_st(css);
+
+ return st->boost;
+}
+
+static int
+boost_write(struct cgroup_subsys_state *css, struct cftype *cft,
+ s64 boost)
+{
+ struct schedtune *st = css_st(css);
+ unsigned threshold_idx;
+ int boost_pct;
+
+ if (boost < -100 || boost > 100)
+ return -EINVAL;
+ boost_pct = boost;
+
+ /*
+ * Update threshold params for Performance Boost (B)
+ * and Performance Constraint (C) regions.
+ * The current implementatio uses the same cuts for both
+ * B and C regions.
+ */
+ threshold_idx = clamp(boost_pct, 0, 99) / 10;
+ st->perf_boost_idx = threshold_idx;
+ st->perf_constrain_idx = threshold_idx;
+
+ st->boost = boost;
+ if (css == &root_schedtune.css) {
+ sysctl_sched_cfs_boost = boost;
+ perf_boost_idx = threshold_idx;
+ perf_constrain_idx = threshold_idx;
+ }
+
+ /* Update CPU boost */
+ schedtune_boostgroup_update(st->idx, st->boost);
+
+ trace_sched_tune_config(st->boost);
+
+ return 0;
+}
+
+static struct cftype files[] = {
+ {
+ .name = "boost",
+ .read_s64 = boost_read,
+ .write_s64 = boost_write,
+ },
+ {
+ .name = "prefer_idle",
+ .read_u64 = prefer_idle_read,
+ .write_u64 = prefer_idle_write,
+ },
+ { } /* terminate */
+};
+
+static int
+schedtune_boostgroup_init(struct schedtune *st)
+{
+ struct boost_groups *bg;
+ int cpu;
+
+ /* Keep track of allocated boost groups */
+ allocated_group[st->idx] = st;
+
+ /* Initialize the per CPU boost groups */
+ for_each_possible_cpu(cpu) {
+ bg = &per_cpu(cpu_boost_groups, cpu);
+ bg->group[st->idx].boost = 0;
+ bg->group[st->idx].tasks = 0;
+ }
+
+ return 0;
+}
+
+static struct cgroup_subsys_state *
+schedtune_css_alloc(struct cgroup_subsys_state *parent_css)
+{
+ struct schedtune *st;
+ int idx;
+
+ if (!parent_css)
+ return &root_schedtune.css;
+
+ /* Allow only single level hierachies */
+ if (parent_css != &root_schedtune.css) {
+ pr_err("Nested SchedTune boosting groups not allowed\n");
+ return ERR_PTR(-ENOMEM);
+ }
+
+ /* Allow only a limited number of boosting groups */
+ for (idx = 1; idx < BOOSTGROUPS_COUNT; ++idx)
+ if (!allocated_group[idx])
+ break;
+ if (idx == BOOSTGROUPS_COUNT) {
+ pr_err("Trying to create more than %d SchedTune boosting groups\n",
+ BOOSTGROUPS_COUNT);
+ return ERR_PTR(-ENOSPC);
+ }
+
+ st = kzalloc(sizeof(*st), GFP_KERNEL);
+ if (!st)
+ goto out;
+
+ /* Initialize per CPUs boost group support */
+ st->idx = idx;
+ if (schedtune_boostgroup_init(st))
+ goto release;
+
+ return &st->css;
+
+release:
+ kfree(st);
+out:
+ return ERR_PTR(-ENOMEM);
+}
+
+static void
+schedtune_boostgroup_release(struct schedtune *st)
+{
+ /* Reset this boost group */
+ schedtune_boostgroup_update(st->idx, 0);
+
+ /* Keep track of allocated boost groups */
+ allocated_group[st->idx] = NULL;
+}
+
+static void
+schedtune_css_free(struct cgroup_subsys_state *css)
+{
+ struct schedtune *st = css_st(css);
+
+ schedtune_boostgroup_release(st);
+ kfree(st);
+}
+
+struct cgroup_subsys schedtune_cgrp_subsys = {
+ .css_alloc = schedtune_css_alloc,
+ .css_free = schedtune_css_free,
+// .allow_attach = schedtune_allow_attach,
+ .can_attach = schedtune_can_attach,
+ .cancel_attach = schedtune_cancel_attach,
+ .legacy_cftypes = files,
+ .early_init = 1,
+};
+
+static inline void
+schedtune_init_cgroups(void)
+{
+ struct boost_groups *bg;
+ int cpu;
+
+ /* Initialize the per CPU boost groups */
+ for_each_possible_cpu(cpu) {
+ bg = &per_cpu(cpu_boost_groups, cpu);
+ memset(bg, 0, sizeof(struct boost_groups));
+ }
+
+ pr_info("schedtune: configured to support %d boost groups\n",
+ BOOSTGROUPS_COUNT);
+}
+
+#else /* CONFIG_CGROUP_SCHEDTUNE */
+
+int
+schedtune_accept_deltas(int nrg_delta, int cap_delta,
+ struct task_struct *task)
+{
+ /* Optimal (O) region */
+ if (nrg_delta < 0 && cap_delta > 0) {
+ trace_sched_tune_filter(nrg_delta, cap_delta, 0, 0, 1, 0);
+ return INT_MAX;
+ }
+
+ /* Suboptimal (S) region */
+ if (nrg_delta > 0 && cap_delta < 0) {
+ trace_sched_tune_filter(nrg_delta, cap_delta, 0, 0, -1, 5);
+ return -INT_MAX;
+ }
+
+ return __schedtune_accept_deltas(nrg_delta, cap_delta,
+ perf_boost_idx, perf_constrain_idx);
+}
+
+#endif /* CONFIG_CGROUP_SCHEDTUNE */
+
+int
+sysctl_sched_cfs_boost_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *lenp,
+ loff_t *ppos)
+{
+ int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
+ unsigned threshold_idx;
+ int boost_pct;
+
+ if (ret || !write)
+ return ret;
+
+ if (sysctl_sched_cfs_boost < -100 || sysctl_sched_cfs_boost > 100)
+ return -EINVAL;
+ boost_pct = sysctl_sched_cfs_boost;
+
+ /*
+ * Update threshold params for Performance Boost (B)
+ * and Performance Constraint (C) regions.
+ * The current implementatio uses the same cuts for both
+ * B and C regions.
+ */
+ threshold_idx = clamp(boost_pct, 0, 99) / 10;
+ perf_boost_idx = threshold_idx;
+ perf_constrain_idx = threshold_idx;
+
+ return 0;
+}
+
+#ifdef CONFIG_SCHED_DEBUG
+static void
+schedtune_test_nrg(unsigned long delta_pwr)
+{
+ unsigned long test_delta_pwr;
+ unsigned long test_norm_pwr;
+ int idx;
+
+ /*
+ * Check normalization constants using some constant system
+ * energy values
+ */
+ pr_info("schedtune: verify normalization constants...\n");
+ for (idx = 0; idx < 6; ++idx) {
+ test_delta_pwr = delta_pwr >> idx;
+
+ /* Normalize on max energy for target platform */
+ test_norm_pwr = reciprocal_divide(
+ test_delta_pwr << SCHED_LOAD_SHIFT,
+ schedtune_target_nrg.rdiv);
+
+ pr_info("schedtune: max_pwr/2^%d: %4lu => norm_pwr: %5lu\n",
+ idx, test_delta_pwr, test_norm_pwr);
+ }
+}
+#else
+#define schedtune_test_nrg(delta_pwr)
+#endif
+
+/*
+ * Compute the min/max power consumption of a cluster and all its CPUs
+ */
+static void
+schedtune_add_cluster_nrg(
+ struct sched_domain *sd,
+ struct sched_group *sg,
+ struct target_nrg *ste)
+{
+ struct sched_domain *sd2;
+ struct sched_group *sg2;
+
+ struct cpumask *cluster_cpus;
+ char str[32];
+
+ unsigned long min_pwr;
+ unsigned long max_pwr;
+ int cpu;
+
+ /* Get Cluster energy using EM data for the first CPU */
+ cluster_cpus = sched_group_cpus(sg);
+ snprintf(str, 32, "CLUSTER[%*pbl]",
+ cpumask_pr_args(cluster_cpus));
+
+ min_pwr = sg->sge->idle_states[sg->sge->nr_idle_states - 1].power;
+ max_pwr = sg->sge->cap_states[sg->sge->nr_cap_states - 1].power;
+ pr_info("schedtune: %-17s min_pwr: %5lu max_pwr: %5lu\n",
+ str, min_pwr, max_pwr);
+
+ /*
+ * Keep track of this cluster's energy in the computation of the
+ * overall system energy
+ */
+ ste->min_power += min_pwr;
+ ste->max_power += max_pwr;
+
+ /* Get CPU energy using EM data for each CPU in the group */
+ for_each_cpu(cpu, cluster_cpus) {
+ /* Get a SD view for the specific CPU */
+ for_each_domain(cpu, sd2) {
+ /* Get the CPU group */
+ sg2 = sd2->groups;
+ min_pwr = sg2->sge->idle_states[sg2->sge->nr_idle_states - 1].power;
+ max_pwr = sg2->sge->cap_states[sg2->sge->nr_cap_states - 1].power;
+
+ ste->min_power += min_pwr;
+ ste->max_power += max_pwr;
+
+ snprintf(str, 32, "CPU[%d]", cpu);
+ pr_info("schedtune: %-17s min_pwr: %5lu max_pwr: %5lu\n",
+ str, min_pwr, max_pwr);
+
+ /*
+ * Assume we have EM data only at the CPU and
+ * the upper CLUSTER level
+ */
+ BUG_ON(!cpumask_equal(
+ sched_group_cpus(sg),
+ sched_group_cpus(sd2->parent->groups)
+ ));
+ break;
+ }
+ }
+}
+
+/*
+ * Initialize the constants required to compute normalized energy.
+ * The values of these constants depends on the EM data for the specific
+ * target system and topology.
+ * Thus, this function is expected to be called by the code
+ * that bind the EM to the topology information.
+ */
+static int
+schedtune_init(void)
+{
+ struct target_nrg *ste = &schedtune_target_nrg;
+ unsigned long delta_pwr = 0;
+ struct sched_domain *sd;
+ struct sched_group *sg;
+
+ pr_info("schedtune: init normalization constants...\n");
+ ste->max_power = 0;
+ ste->min_power = 0;
+
+ rcu_read_lock();
+
+ /*
+ * When EAS is in use, we always have a pointer to the highest SD
+ * which provides EM data.
+ */
+ sd = rcu_dereference(per_cpu(sd_ea, cpumask_first(cpu_online_mask)));
+ if (!sd) {
+ pr_info("schedtune: no energy model data\n");
+ goto nodata;
+ }
+
+ sg = sd->groups;
+ do {
+ schedtune_add_cluster_nrg(sd, sg, ste);
+ } while (sg = sg->next, sg != sd->groups);
+
+ rcu_read_unlock();
+
+ pr_info("schedtune: %-17s min_pwr: %5lu max_pwr: %5lu\n",
+ "SYSTEM", ste->min_power, ste->max_power);
+
+ /* Compute normalization constants */
+ delta_pwr = ste->max_power - ste->min_power;
+ ste->rdiv = reciprocal_value(delta_pwr);
+ pr_info("schedtune: using normalization constants mul: %u sh1: %u sh2: %u\n",
+ ste->rdiv.m, ste->rdiv.sh1, ste->rdiv.sh2);
+
+ schedtune_test_nrg(delta_pwr);
+
+#ifdef CONFIG_CGROUP_SCHEDTUNE
+ schedtune_init_cgroups();
+#else
+ pr_info("schedtune: configured to support global boosting only\n");
+#endif
+
+ return 0;
+
+nodata:
+ rcu_read_unlock();
+ return -EINVAL;
+}
+postcore_initcall(schedtune_init);
diff --git a/kernel/sched/tune.h b/kernel/sched/tune.h
new file mode 100644
index 000000000000..4f6441771e4c
--- /dev/null
+++ b/kernel/sched/tune.h
@@ -0,0 +1,55 @@
+
+#ifdef CONFIG_SCHED_TUNE
+
+#include <linux/reciprocal_div.h>
+
+/*
+ * System energy normalization constants
+ */
+struct target_nrg {
+ unsigned long min_power;
+ unsigned long max_power;
+ struct reciprocal_value rdiv;
+};
+
+#ifdef CONFIG_CGROUP_SCHEDTUNE
+
+int schedtune_cpu_boost(int cpu);
+int schedtune_task_boost(struct task_struct *tsk);
+
+int schedtune_prefer_idle(struct task_struct *tsk);
+
+void schedtune_exit_task(struct task_struct *tsk);
+
+void schedtune_enqueue_task(struct task_struct *p, int cpu);
+void schedtune_dequeue_task(struct task_struct *p, int cpu);
+
+#else /* CONFIG_CGROUP_SCHEDTUNE */
+
+#define schedtune_cpu_boost(cpu) get_sysctl_sched_cfs_boost()
+#define schedtune_task_boost(tsk) get_sysctl_sched_cfs_boost()
+
+#define schedtune_exit_task(task) do { } while (0)
+
+#define schedtune_enqueue_task(task, cpu) do { } while (0)
+#define schedtune_dequeue_task(task, cpu) do { } while (0)
+
+#endif /* CONFIG_CGROUP_SCHEDTUNE */
+
+int schedtune_normalize_energy(int energy);
+int schedtune_accept_deltas(int nrg_delta, int cap_delta,
+ struct task_struct *task);
+
+#else /* CONFIG_SCHED_TUNE */
+
+#define schedtune_cpu_boost(cpu) 0
+#define schedtune_task_boost(tsk) 0
+
+#define schedtune_exit_task(task) do { } while (0)
+
+#define schedtune_enqueue_task(task, cpu) do { } while (0)
+#define schedtune_dequeue_task(task, cpu) do { } while (0)
+
+#define schedtune_accept_deltas(nrg_delta, cap_delta, task) nrg_delta
+
+#endif /* CONFIG_SCHED_TUNE */
diff --git a/kernel/sched/walt.c b/kernel/sched/walt.c
new file mode 100644
index 000000000000..d9d09914ce30
--- /dev/null
+++ b/kernel/sched/walt.c
@@ -0,0 +1,1170 @@
+/*
+ * Copyright (c) 2016, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ *
+ * Window Assisted Load Tracking (WALT) implementation credits:
+ * Srivatsa Vaddagiri, Steve Muckle, Syed Rameez Mustafa, Joonwoo Park,
+ * Pavan Kumar Kondeti, Olav Haugan
+ *
+ * 2016-03-06: Integration with EAS/refactoring by Vikram Mulukutla
+ * and Todd Kjos
+ */
+
+#include <linux/syscore_ops.h>
+#include <linux/cpufreq.h>
+#include <trace/events/sched.h>
+#include "sched.h"
+#include "walt.h"
+
+#define WINDOW_STATS_RECENT 0
+#define WINDOW_STATS_MAX 1
+#define WINDOW_STATS_MAX_RECENT_AVG 2
+#define WINDOW_STATS_AVG 3
+#define WINDOW_STATS_INVALID_POLICY 4
+
+#define EXITING_TASK_MARKER 0xdeaddead
+
+static __read_mostly unsigned int walt_ravg_hist_size = 5;
+static __read_mostly unsigned int walt_window_stats_policy =
+ WINDOW_STATS_MAX_RECENT_AVG;
+static __read_mostly unsigned int walt_account_wait_time = 1;
+static __read_mostly unsigned int walt_freq_account_wait_time = 0;
+static __read_mostly unsigned int walt_io_is_busy = 0;
+
+unsigned int sysctl_sched_walt_init_task_load_pct = 15;
+
+/* 1 -> use PELT based load stats, 0 -> use window-based load stats */
+unsigned int __read_mostly walt_disabled = 0;
+
+static unsigned int max_possible_efficiency = 1024;
+static unsigned int min_possible_efficiency = 1024;
+
+/*
+ * Maximum possible frequency across all cpus. Task demand and cpu
+ * capacity (cpu_power) metrics are scaled in reference to it.
+ */
+static unsigned int max_possible_freq = 1;
+
+/*
+ * Minimum possible max_freq across all cpus. This will be same as
+ * max_possible_freq on homogeneous systems and could be different from
+ * max_possible_freq on heterogenous systems. min_max_freq is used to derive
+ * capacity (cpu_power) of cpus.
+ */
+static unsigned int min_max_freq = 1;
+
+static unsigned int max_capacity = 1024;
+static unsigned int min_capacity = 1024;
+static unsigned int max_load_scale_factor = 1024;
+static unsigned int max_possible_capacity = 1024;
+
+/* Mask of all CPUs that have max_possible_capacity */
+static cpumask_t mpc_mask = CPU_MASK_ALL;
+
+/* Window size (in ns) */
+__read_mostly unsigned int walt_ravg_window = 20000000;
+
+/* Min window size (in ns) = 10ms */
+#define MIN_SCHED_RAVG_WINDOW 10000000
+
+/* Max window size (in ns) = 1s */
+#define MAX_SCHED_RAVG_WINDOW 1000000000
+
+static unsigned int sync_cpu;
+static ktime_t ktime_last;
+static bool walt_ktime_suspended;
+
+static unsigned int task_load(struct task_struct *p)
+{
+ return p->ravg.demand;
+}
+
+void
+walt_inc_cumulative_runnable_avg(struct rq *rq,
+ struct task_struct *p)
+{
+ rq->cumulative_runnable_avg += p->ravg.demand;
+}
+
+void
+walt_dec_cumulative_runnable_avg(struct rq *rq,
+ struct task_struct *p)
+{
+ rq->cumulative_runnable_avg -= p->ravg.demand;
+ BUG_ON((s64)rq->cumulative_runnable_avg < 0);
+}
+
+static void
+fixup_cumulative_runnable_avg(struct rq *rq,
+ struct task_struct *p, s64 task_load_delta)
+{
+ rq->cumulative_runnable_avg += task_load_delta;
+ if ((s64)rq->cumulative_runnable_avg < 0)
+ panic("cra less than zero: tld: %lld, task_load(p) = %u\n",
+ task_load_delta, task_load(p));
+}
+
+u64 walt_ktime_clock(void)
+{
+ if (unlikely(walt_ktime_suspended))
+ return ktime_to_ns(ktime_last);
+ return ktime_get_ns();
+}
+
+static void walt_resume(void)
+{
+ walt_ktime_suspended = false;
+}
+
+static int walt_suspend(void)
+{
+ ktime_last = ktime_get();
+ walt_ktime_suspended = true;
+ return 0;
+}
+
+static struct syscore_ops walt_syscore_ops = {
+ .resume = walt_resume,
+ .suspend = walt_suspend
+};
+
+static int __init walt_init_ops(void)
+{
+ register_syscore_ops(&walt_syscore_ops);
+ return 0;
+}
+late_initcall(walt_init_ops);
+
+void walt_inc_cfs_cumulative_runnable_avg(struct cfs_rq *cfs_rq,
+ struct task_struct *p)
+{
+ cfs_rq->cumulative_runnable_avg += p->ravg.demand;
+}
+
+void walt_dec_cfs_cumulative_runnable_avg(struct cfs_rq *cfs_rq,
+ struct task_struct *p)
+{
+ cfs_rq->cumulative_runnable_avg -= p->ravg.demand;
+}
+
+static int exiting_task(struct task_struct *p)
+{
+ if (p->flags & PF_EXITING) {
+ if (p->ravg.sum_history[0] != EXITING_TASK_MARKER) {
+ p->ravg.sum_history[0] = EXITING_TASK_MARKER;
+ }
+ return 1;
+ }
+ return 0;
+}
+
+static int __init set_walt_ravg_window(char *str)
+{
+ get_option(&str, &walt_ravg_window);
+
+ walt_disabled = (walt_ravg_window < MIN_SCHED_RAVG_WINDOW ||
+ walt_ravg_window > MAX_SCHED_RAVG_WINDOW);
+ return 0;
+}
+
+early_param("walt_ravg_window", set_walt_ravg_window);
+
+static void
+update_window_start(struct rq *rq, u64 wallclock)
+{
+ s64 delta;
+ int nr_windows;
+
+ delta = wallclock - rq->window_start;
+ /* If the MPM global timer is cleared, set delta as 0 to avoid kernel BUG happening */
+ if (delta < 0) {
+ if (arch_timer_read_counter() == 0)
+ delta = 0;
+ else
+ BUG_ON(1);
+ }
+
+ if (delta < walt_ravg_window)
+ return;
+
+ nr_windows = div64_u64(delta, walt_ravg_window);
+ rq->window_start += (u64)nr_windows * (u64)walt_ravg_window;
+}
+
+static u64 scale_exec_time(u64 delta, struct rq *rq)
+{
+ unsigned int cur_freq = rq->cur_freq;
+ int sf;
+
+ if (unlikely(cur_freq > max_possible_freq))
+ cur_freq = rq->max_possible_freq;
+
+ /* round up div64 */
+ delta = div64_u64(delta * cur_freq + max_possible_freq - 1,
+ max_possible_freq);
+
+ sf = DIV_ROUND_UP(rq->efficiency * 1024, max_possible_efficiency);
+
+ delta *= sf;
+ delta >>= 10;
+
+ return delta;
+}
+
+static int cpu_is_waiting_on_io(struct rq *rq)
+{
+ if (!walt_io_is_busy)
+ return 0;
+
+ return atomic_read(&rq->nr_iowait);
+}
+
+void walt_account_irqtime(int cpu, struct task_struct *curr,
+ u64 delta, u64 wallclock)
+{
+ struct rq *rq = cpu_rq(cpu);
+ unsigned long flags, nr_windows;
+ u64 cur_jiffies_ts;
+
+ raw_spin_lock_irqsave(&rq->lock, flags);
+
+ /*
+ * cputime (wallclock) uses sched_clock so use the same here for
+ * consistency.
+ */
+ delta += sched_clock() - wallclock;
+ cur_jiffies_ts = get_jiffies_64();
+
+ if (is_idle_task(curr))
+ walt_update_task_ravg(curr, rq, IRQ_UPDATE, walt_ktime_clock(),
+ delta);
+
+ nr_windows = cur_jiffies_ts - rq->irqload_ts;
+
+ if (nr_windows) {
+ if (nr_windows < 10) {
+ /* Decay CPU's irqload by 3/4 for each window. */
+ rq->avg_irqload *= (3 * nr_windows);
+ rq->avg_irqload = div64_u64(rq->avg_irqload,
+ 4 * nr_windows);
+ } else {
+ rq->avg_irqload = 0;
+ }
+ rq->avg_irqload += rq->cur_irqload;
+ rq->cur_irqload = 0;
+ }
+
+ rq->cur_irqload += delta;
+ rq->irqload_ts = cur_jiffies_ts;
+ raw_spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+
+#define WALT_HIGH_IRQ_TIMEOUT 3
+
+u64 walt_irqload(int cpu) {
+ struct rq *rq = cpu_rq(cpu);
+ s64 delta;
+ delta = get_jiffies_64() - rq->irqload_ts;
+
+ /*
+ * Current context can be preempted by irq and rq->irqload_ts can be
+ * updated by irq context so that delta can be negative.
+ * But this is okay and we can safely return as this means there
+ * was recent irq occurrence.
+ */
+
+ if (delta < WALT_HIGH_IRQ_TIMEOUT)
+ return rq->avg_irqload;
+ else
+ return 0;
+}
+
+int walt_cpu_high_irqload(int cpu) {
+ return walt_irqload(cpu) >= sysctl_sched_walt_cpu_high_irqload;
+}
+
+static int account_busy_for_cpu_time(struct rq *rq, struct task_struct *p,
+ u64 irqtime, int event)
+{
+ if (is_idle_task(p)) {
+ /* TASK_WAKE && TASK_MIGRATE is not possible on idle task! */
+ if (event == PICK_NEXT_TASK)
+ return 0;
+
+ /* PUT_PREV_TASK, TASK_UPDATE && IRQ_UPDATE are left */
+ return irqtime || cpu_is_waiting_on_io(rq);
+ }
+
+ if (event == TASK_WAKE)
+ return 0;
+
+ if (event == PUT_PREV_TASK || event == IRQ_UPDATE ||
+ event == TASK_UPDATE)
+ return 1;
+
+ /* Only TASK_MIGRATE && PICK_NEXT_TASK left */
+ return walt_freq_account_wait_time;
+}
+
+/*
+ * Account cpu activity in its busy time counters (rq->curr/prev_runnable_sum)
+ */
+static void update_cpu_busy_time(struct task_struct *p, struct rq *rq,
+ int event, u64 wallclock, u64 irqtime)
+{
+ int new_window, nr_full_windows = 0;
+ int p_is_curr_task = (p == rq->curr);
+ u64 mark_start = p->ravg.mark_start;
+ u64 window_start = rq->window_start;
+ u32 window_size = walt_ravg_window;
+ u64 delta;
+
+ new_window = mark_start < window_start;
+ if (new_window) {
+ nr_full_windows = div64_u64((window_start - mark_start),
+ window_size);
+ if (p->ravg.active_windows < USHRT_MAX)
+ p->ravg.active_windows++;
+ }
+
+ /* Handle per-task window rollover. We don't care about the idle
+ * task or exiting tasks. */
+ if (new_window && !is_idle_task(p) && !exiting_task(p)) {
+ u32 curr_window = 0;
+
+ if (!nr_full_windows)
+ curr_window = p->ravg.curr_window;
+
+ p->ravg.prev_window = curr_window;
+ p->ravg.curr_window = 0;
+ }
+
+ if (!account_busy_for_cpu_time(rq, p, irqtime, event)) {
+ /* account_busy_for_cpu_time() = 0, so no update to the
+ * task's current window needs to be made. This could be
+ * for example
+ *
+ * - a wakeup event on a task within the current
+ * window (!new_window below, no action required),
+ * - switching to a new task from idle (PICK_NEXT_TASK)
+ * in a new window where irqtime is 0 and we aren't
+ * waiting on IO */
+
+ if (!new_window)
+ return;
+
+ /* A new window has started. The RQ demand must be rolled
+ * over if p is the current task. */
+ if (p_is_curr_task) {
+ u64 prev_sum = 0;
+
+ /* p is either idle task or an exiting task */
+ if (!nr_full_windows) {
+ prev_sum = rq->curr_runnable_sum;
+ }
+
+ rq->prev_runnable_sum = prev_sum;
+ rq->curr_runnable_sum = 0;
+ }
+
+ return;
+ }
+
+ if (!new_window) {
+ /* account_busy_for_cpu_time() = 1 so busy time needs
+ * to be accounted to the current window. No rollover
+ * since we didn't start a new window. An example of this is
+ * when a task starts execution and then sleeps within the
+ * same window. */
+
+ if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq))
+ delta = wallclock - mark_start;
+ else
+ delta = irqtime;
+ delta = scale_exec_time(delta, rq);
+ rq->curr_runnable_sum += delta;
+ if (!is_idle_task(p) && !exiting_task(p))
+ p->ravg.curr_window += delta;
+
+ return;
+ }
+
+ if (!p_is_curr_task) {
+ /* account_busy_for_cpu_time() = 1 so busy time needs
+ * to be accounted to the current window. A new window
+ * has also started, but p is not the current task, so the
+ * window is not rolled over - just split up and account
+ * as necessary into curr and prev. The window is only
+ * rolled over when a new window is processed for the current
+ * task.
+ *
+ * Irqtime can't be accounted by a task that isn't the
+ * currently running task. */
+
+ if (!nr_full_windows) {
+ /* A full window hasn't elapsed, account partial
+ * contribution to previous completed window. */
+ delta = scale_exec_time(window_start - mark_start, rq);
+ if (!exiting_task(p))
+ p->ravg.prev_window += delta;
+ } else {
+ /* Since at least one full window has elapsed,
+ * the contribution to the previous window is the
+ * full window (window_size). */
+ delta = scale_exec_time(window_size, rq);
+ if (!exiting_task(p))
+ p->ravg.prev_window = delta;
+ }
+ rq->prev_runnable_sum += delta;
+
+ /* Account piece of busy time in the current window. */
+ delta = scale_exec_time(wallclock - window_start, rq);
+ rq->curr_runnable_sum += delta;
+ if (!exiting_task(p))
+ p->ravg.curr_window = delta;
+
+ return;
+ }
+
+ if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq)) {
+ /* account_busy_for_cpu_time() = 1 so busy time needs
+ * to be accounted to the current window. A new window
+ * has started and p is the current task so rollover is
+ * needed. If any of these three above conditions are true
+ * then this busy time can't be accounted as irqtime.
+ *
+ * Busy time for the idle task or exiting tasks need not
+ * be accounted.
+ *
+ * An example of this would be a task that starts execution
+ * and then sleeps once a new window has begun. */
+
+ if (!nr_full_windows) {
+ /* A full window hasn't elapsed, account partial
+ * contribution to previous completed window. */
+ delta = scale_exec_time(window_start - mark_start, rq);
+ if (!is_idle_task(p) && !exiting_task(p))
+ p->ravg.prev_window += delta;
+
+ delta += rq->curr_runnable_sum;
+ } else {
+ /* Since at least one full window has elapsed,
+ * the contribution to the previous window is the
+ * full window (window_size). */
+ delta = scale_exec_time(window_size, rq);
+ if (!is_idle_task(p) && !exiting_task(p))
+ p->ravg.prev_window = delta;
+
+ }
+ /*
+ * Rollover for normal runnable sum is done here by overwriting
+ * the values in prev_runnable_sum and curr_runnable_sum.
+ * Rollover for new task runnable sum has completed by previous
+ * if-else statement.
+ */
+ rq->prev_runnable_sum = delta;
+
+ /* Account piece of busy time in the current window. */
+ delta = scale_exec_time(wallclock - window_start, rq);
+ rq->curr_runnable_sum = delta;
+ if (!is_idle_task(p) && !exiting_task(p))
+ p->ravg.curr_window = delta;
+
+ return;
+ }
+
+ if (irqtime) {
+ /* account_busy_for_cpu_time() = 1 so busy time needs
+ * to be accounted to the current window. A new window
+ * has started and p is the current task so rollover is
+ * needed. The current task must be the idle task because
+ * irqtime is not accounted for any other task.
+ *
+ * Irqtime will be accounted each time we process IRQ activity
+ * after a period of idleness, so we know the IRQ busy time
+ * started at wallclock - irqtime. */
+
+ BUG_ON(!is_idle_task(p));
+ mark_start = wallclock - irqtime;
+
+ /* Roll window over. If IRQ busy time was just in the current
+ * window then that is all that need be accounted. */
+ rq->prev_runnable_sum = rq->curr_runnable_sum;
+ if (mark_start > window_start) {
+ rq->curr_runnable_sum = scale_exec_time(irqtime, rq);
+ return;
+ }
+
+ /* The IRQ busy time spanned multiple windows. Process the
+ * busy time preceding the current window start first. */
+ delta = window_start - mark_start;
+ if (delta > window_size)
+ delta = window_size;
+ delta = scale_exec_time(delta, rq);
+ rq->prev_runnable_sum += delta;
+
+ /* Process the remaining IRQ busy time in the current window. */
+ delta = wallclock - window_start;
+ rq->curr_runnable_sum = scale_exec_time(delta, rq);
+
+ return;
+ }
+
+ BUG();
+}
+
+static int account_busy_for_task_demand(struct task_struct *p, int event)
+{
+ /* No need to bother updating task demand for exiting tasks
+ * or the idle task. */
+ if (exiting_task(p) || is_idle_task(p))
+ return 0;
+
+ /* When a task is waking up it is completing a segment of non-busy
+ * time. Likewise, if wait time is not treated as busy time, then
+ * when a task begins to run or is migrated, it is not running and
+ * is completing a segment of non-busy time. */
+ if (event == TASK_WAKE || (!walt_account_wait_time &&
+ (event == PICK_NEXT_TASK || event == TASK_MIGRATE)))
+ return 0;
+
+ return 1;
+}
+
+/*
+ * Called when new window is starting for a task, to record cpu usage over
+ * recently concluded window(s). Normally 'samples' should be 1. It can be > 1
+ * when, say, a real-time task runs without preemption for several windows at a
+ * stretch.
+ */
+static void update_history(struct rq *rq, struct task_struct *p,
+ u32 runtime, int samples, int event)
+{
+ u32 *hist = &p->ravg.sum_history[0];
+ int ridx, widx;
+ u32 max = 0, avg, demand;
+ u64 sum = 0;
+
+ /* Ignore windows where task had no activity */
+ if (!runtime || is_idle_task(p) || exiting_task(p) || !samples)
+ goto done;
+
+ /* Push new 'runtime' value onto stack */
+ widx = walt_ravg_hist_size - 1;
+ ridx = widx - samples;
+ for (; ridx >= 0; --widx, --ridx) {
+ hist[widx] = hist[ridx];
+ sum += hist[widx];
+ if (hist[widx] > max)
+ max = hist[widx];
+ }
+
+ for (widx = 0; widx < samples && widx < walt_ravg_hist_size; widx++) {
+ hist[widx] = runtime;
+ sum += hist[widx];
+ if (hist[widx] > max)
+ max = hist[widx];
+ }
+
+ p->ravg.sum = 0;
+
+ if (walt_window_stats_policy == WINDOW_STATS_RECENT) {
+ demand = runtime;
+ } else if (walt_window_stats_policy == WINDOW_STATS_MAX) {
+ demand = max;
+ } else {
+ avg = div64_u64(sum, walt_ravg_hist_size);
+ if (walt_window_stats_policy == WINDOW_STATS_AVG)
+ demand = avg;
+ else
+ demand = max(avg, runtime);
+ }
+
+ /*
+ * A throttled deadline sched class task gets dequeued without
+ * changing p->on_rq. Since the dequeue decrements hmp stats
+ * avoid decrementing it here again.
+ */
+ if (task_on_rq_queued(p) && (!task_has_dl_policy(p) ||
+ !p->dl.dl_throttled))
+ fixup_cumulative_runnable_avg(rq, p, demand);
+
+ p->ravg.demand = demand;
+
+done:
+ trace_walt_update_history(rq, p, runtime, samples, event);
+ return;
+}
+
+static void add_to_task_demand(struct rq *rq, struct task_struct *p,
+ u64 delta)
+{
+ delta = scale_exec_time(delta, rq);
+ p->ravg.sum += delta;
+ if (unlikely(p->ravg.sum > walt_ravg_window))
+ p->ravg.sum = walt_ravg_window;
+}
+
+/*
+ * Account cpu demand of task and/or update task's cpu demand history
+ *
+ * ms = p->ravg.mark_start;
+ * wc = wallclock
+ * ws = rq->window_start
+ *
+ * Three possibilities:
+ *
+ * a) Task event is contained within one window.
+ * window_start < mark_start < wallclock
+ *
+ * ws ms wc
+ * | | |
+ * V V V
+ * |---------------|
+ *
+ * In this case, p->ravg.sum is updated *iff* event is appropriate
+ * (ex: event == PUT_PREV_TASK)
+ *
+ * b) Task event spans two windows.
+ * mark_start < window_start < wallclock
+ *
+ * ms ws wc
+ * | | |
+ * V V V
+ * -----|-------------------
+ *
+ * In this case, p->ravg.sum is updated with (ws - ms) *iff* event
+ * is appropriate, then a new window sample is recorded followed
+ * by p->ravg.sum being set to (wc - ws) *iff* event is appropriate.
+ *
+ * c) Task event spans more than two windows.
+ *
+ * ms ws_tmp ws wc
+ * | | | |
+ * V V V V
+ * ---|-------|-------|-------|-------|------
+ * | |
+ * |<------ nr_full_windows ------>|
+ *
+ * In this case, p->ravg.sum is updated with (ws_tmp - ms) first *iff*
+ * event is appropriate, window sample of p->ravg.sum is recorded,
+ * 'nr_full_window' samples of window_size is also recorded *iff*
+ * event is appropriate and finally p->ravg.sum is set to (wc - ws)
+ * *iff* event is appropriate.
+ *
+ * IMPORTANT : Leave p->ravg.mark_start unchanged, as update_cpu_busy_time()
+ * depends on it!
+ */
+static void update_task_demand(struct task_struct *p, struct rq *rq,
+ int event, u64 wallclock)
+{
+ u64 mark_start = p->ravg.mark_start;
+ u64 delta, window_start = rq->window_start;
+ int new_window, nr_full_windows;
+ u32 window_size = walt_ravg_window;
+
+ new_window = mark_start < window_start;
+ if (!account_busy_for_task_demand(p, event)) {
+ if (new_window)
+ /* If the time accounted isn't being accounted as
+ * busy time, and a new window started, only the
+ * previous window need be closed out with the
+ * pre-existing demand. Multiple windows may have
+ * elapsed, but since empty windows are dropped,
+ * it is not necessary to account those. */
+ update_history(rq, p, p->ravg.sum, 1, event);
+ return;
+ }
+
+ if (!new_window) {
+ /* The simple case - busy time contained within the existing
+ * window. */
+ add_to_task_demand(rq, p, wallclock - mark_start);
+ return;
+ }
+
+ /* Busy time spans at least two windows. Temporarily rewind
+ * window_start to first window boundary after mark_start. */
+ delta = window_start - mark_start;
+ nr_full_windows = div64_u64(delta, window_size);
+ window_start -= (u64)nr_full_windows * (u64)window_size;
+
+ /* Process (window_start - mark_start) first */
+ add_to_task_demand(rq, p, window_start - mark_start);
+
+ /* Push new sample(s) into task's demand history */
+ update_history(rq, p, p->ravg.sum, 1, event);
+ if (nr_full_windows)
+ update_history(rq, p, scale_exec_time(window_size, rq),
+ nr_full_windows, event);
+
+ /* Roll window_start back to current to process any remainder
+ * in current window. */
+ window_start += (u64)nr_full_windows * (u64)window_size;
+
+ /* Process (wallclock - window_start) next */
+ mark_start = window_start;
+ add_to_task_demand(rq, p, wallclock - mark_start);
+}
+
+/* Reflect task activity on its demand and cpu's busy time statistics */
+void walt_update_task_ravg(struct task_struct *p, struct rq *rq,
+ int event, u64 wallclock, u64 irqtime)
+{
+ if (walt_disabled || !rq->window_start)
+ return;
+
+ lockdep_assert_held(&rq->lock);
+
+ update_window_start(rq, wallclock);
+
+ if (!p->ravg.mark_start)
+ goto done;
+
+ update_task_demand(p, rq, event, wallclock);
+ update_cpu_busy_time(p, rq, event, wallclock, irqtime);
+
+done:
+ trace_walt_update_task_ravg(p, rq, event, wallclock, irqtime);
+
+ p->ravg.mark_start = wallclock;
+}
+
+unsigned long __weak arch_get_cpu_efficiency(int cpu)
+{
+ return SCHED_LOAD_SCALE;
+}
+
+void walt_init_cpu_efficiency(void)
+{
+ int i, efficiency;
+ unsigned int max = 0, min = UINT_MAX;
+
+ for_each_possible_cpu(i) {
+ efficiency = arch_get_cpu_efficiency(i);
+ cpu_rq(i)->efficiency = efficiency;
+
+ if (efficiency > max)
+ max = efficiency;
+ if (efficiency < min)
+ min = efficiency;
+ }
+
+ if (max)
+ max_possible_efficiency = max;
+
+ if (min)
+ min_possible_efficiency = min;
+}
+
+static void reset_task_stats(struct task_struct *p)
+{
+ u32 sum = 0;
+
+ if (exiting_task(p))
+ sum = EXITING_TASK_MARKER;
+
+ memset(&p->ravg, 0, sizeof(struct ravg));
+ /* Retain EXITING_TASK marker */
+ p->ravg.sum_history[0] = sum;
+}
+
+void walt_mark_task_starting(struct task_struct *p)
+{
+ u64 wallclock;
+ struct rq *rq = task_rq(p);
+
+ if (!rq->window_start) {
+ reset_task_stats(p);
+ return;
+ }
+
+ wallclock = walt_ktime_clock();
+ p->ravg.mark_start = wallclock;
+}
+
+void walt_set_window_start(struct rq *rq)
+{
+ int cpu = cpu_of(rq);
+ struct rq *sync_rq = cpu_rq(sync_cpu);
+
+ if (rq->window_start)
+ return;
+
+ if (cpu == sync_cpu) {
+ rq->window_start = walt_ktime_clock();
+ } else {
+ raw_spin_unlock(&rq->lock);
+ double_rq_lock(rq, sync_rq);
+ rq->window_start = cpu_rq(sync_cpu)->window_start;
+ rq->curr_runnable_sum = rq->prev_runnable_sum = 0;
+ raw_spin_unlock(&sync_rq->lock);
+ }
+
+ rq->curr->ravg.mark_start = rq->window_start;
+}
+
+void walt_migrate_sync_cpu(int cpu)
+{
+ if (cpu == sync_cpu)
+ sync_cpu = smp_processor_id();
+}
+
+void walt_fixup_busy_time(struct task_struct *p, int new_cpu)
+{
+ struct rq *src_rq = task_rq(p);
+ struct rq *dest_rq = cpu_rq(new_cpu);
+ u64 wallclock;
+
+ if (!p->on_rq && p->state != TASK_WAKING)
+ return;
+
+ if (exiting_task(p)) {
+ return;
+ }
+
+ if (p->state == TASK_WAKING)
+ double_rq_lock(src_rq, dest_rq);
+
+ wallclock = walt_ktime_clock();
+
+ walt_update_task_ravg(task_rq(p)->curr, task_rq(p),
+ TASK_UPDATE, wallclock, 0);
+ walt_update_task_ravg(dest_rq->curr, dest_rq,
+ TASK_UPDATE, wallclock, 0);
+
+ walt_update_task_ravg(p, task_rq(p), TASK_MIGRATE, wallclock, 0);
+
+ if (p->ravg.curr_window) {
+ src_rq->curr_runnable_sum -= p->ravg.curr_window;
+ dest_rq->curr_runnable_sum += p->ravg.curr_window;
+ }
+
+ if (p->ravg.prev_window) {
+ src_rq->prev_runnable_sum -= p->ravg.prev_window;
+ dest_rq->prev_runnable_sum += p->ravg.prev_window;
+ }
+
+ if ((s64)src_rq->prev_runnable_sum < 0) {
+ src_rq->prev_runnable_sum = 0;
+ WARN_ON(1);
+ }
+ if ((s64)src_rq->curr_runnable_sum < 0) {
+ src_rq->curr_runnable_sum = 0;
+ WARN_ON(1);
+ }
+
+ trace_walt_migration_update_sum(src_rq, p);
+ trace_walt_migration_update_sum(dest_rq, p);
+
+ if (p->state == TASK_WAKING)
+ double_rq_unlock(src_rq, dest_rq);
+}
+
+/* Keep track of max/min capacity possible across CPUs "currently" */
+static void __update_min_max_capacity(void)
+{
+ int i;
+ int max = 0, min = INT_MAX;
+
+ for_each_online_cpu(i) {
+ if (cpu_rq(i)->capacity > max)
+ max = cpu_rq(i)->capacity;
+ if (cpu_rq(i)->capacity < min)
+ min = cpu_rq(i)->capacity;
+ }
+
+ max_capacity = max;
+ min_capacity = min;
+}
+
+static void update_min_max_capacity(void)
+{
+ unsigned long flags;
+ int i;
+
+ local_irq_save(flags);
+ for_each_possible_cpu(i)
+ raw_spin_lock(&cpu_rq(i)->lock);
+
+ __update_min_max_capacity();
+
+ for_each_possible_cpu(i)
+ raw_spin_unlock(&cpu_rq(i)->lock);
+ local_irq_restore(flags);
+}
+
+/*
+ * Return 'capacity' of a cpu in reference to "least" efficient cpu, such that
+ * least efficient cpu gets capacity of 1024
+ */
+static unsigned long capacity_scale_cpu_efficiency(int cpu)
+{
+ return (1024 * cpu_rq(cpu)->efficiency) / min_possible_efficiency;
+}
+
+/*
+ * Return 'capacity' of a cpu in reference to cpu with lowest max_freq
+ * (min_max_freq), such that one with lowest max_freq gets capacity of 1024.
+ */
+static unsigned long capacity_scale_cpu_freq(int cpu)
+{
+ return (1024 * cpu_rq(cpu)->max_freq) / min_max_freq;
+}
+
+/*
+ * Return load_scale_factor of a cpu in reference to "most" efficient cpu, so
+ * that "most" efficient cpu gets a load_scale_factor of 1
+ */
+static unsigned long load_scale_cpu_efficiency(int cpu)
+{
+ return DIV_ROUND_UP(1024 * max_possible_efficiency,
+ cpu_rq(cpu)->efficiency);
+}
+
+/*
+ * Return load_scale_factor of a cpu in reference to cpu with best max_freq
+ * (max_possible_freq), so that one with best max_freq gets a load_scale_factor
+ * of 1.
+ */
+static unsigned long load_scale_cpu_freq(int cpu)
+{
+ return DIV_ROUND_UP(1024 * max_possible_freq, cpu_rq(cpu)->max_freq);
+}
+
+static int compute_capacity(int cpu)
+{
+ int capacity = 1024;
+
+ capacity *= capacity_scale_cpu_efficiency(cpu);
+ capacity >>= 10;
+
+ capacity *= capacity_scale_cpu_freq(cpu);
+ capacity >>= 10;
+
+ return capacity;
+}
+
+static int compute_load_scale_factor(int cpu)
+{
+ int load_scale = 1024;
+
+ /*
+ * load_scale_factor accounts for the fact that task load
+ * is in reference to "best" performing cpu. Task's load will need to be
+ * scaled (up) by a factor to determine suitability to be placed on a
+ * (little) cpu.
+ */
+ load_scale *= load_scale_cpu_efficiency(cpu);
+ load_scale >>= 10;
+
+ load_scale *= load_scale_cpu_freq(cpu);
+ load_scale >>= 10;
+
+ return load_scale;
+}
+
+static int cpufreq_notifier_policy(struct notifier_block *nb,
+ unsigned long val, void *data)
+{
+ struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
+ int i, update_max = 0;
+ u64 highest_mpc = 0, highest_mplsf = 0;
+ const struct cpumask *cpus = policy->related_cpus;
+ unsigned int orig_min_max_freq = min_max_freq;
+ unsigned int orig_max_possible_freq = max_possible_freq;
+ /* Initialized to policy->max in case policy->related_cpus is empty! */
+ unsigned int orig_max_freq = policy->max;
+
+ if (val != CPUFREQ_NOTIFY && val != CPUFREQ_REMOVE_POLICY &&
+ val != CPUFREQ_CREATE_POLICY)
+ return 0;
+
+ if (val == CPUFREQ_REMOVE_POLICY || val == CPUFREQ_CREATE_POLICY) {
+ update_min_max_capacity();
+ return 0;
+ }
+
+ for_each_cpu(i, policy->related_cpus) {
+ cpumask_copy(&cpu_rq(i)->freq_domain_cpumask,
+ policy->related_cpus);
+ orig_max_freq = cpu_rq(i)->max_freq;
+ cpu_rq(i)->min_freq = policy->min;
+ cpu_rq(i)->max_freq = policy->max;
+ cpu_rq(i)->cur_freq = policy->cur;
+ cpu_rq(i)->max_possible_freq = policy->cpuinfo.max_freq;
+ }
+
+ max_possible_freq = max(max_possible_freq, policy->cpuinfo.max_freq);
+ if (min_max_freq == 1)
+ min_max_freq = UINT_MAX;
+ min_max_freq = min(min_max_freq, policy->cpuinfo.max_freq);
+ BUG_ON(!min_max_freq);
+ BUG_ON(!policy->max);
+
+ /* Changes to policy other than max_freq don't require any updates */
+ if (orig_max_freq == policy->max)
+ return 0;
+
+ /*
+ * A changed min_max_freq or max_possible_freq (possible during bootup)
+ * needs to trigger re-computation of load_scale_factor and capacity for
+ * all possible cpus (even those offline). It also needs to trigger
+ * re-computation of nr_big_task count on all online cpus.
+ *
+ * A changed rq->max_freq otoh needs to trigger re-computation of
+ * load_scale_factor and capacity for just the cluster of cpus involved.
+ * Since small task definition depends on max_load_scale_factor, a
+ * changed load_scale_factor of one cluster could influence
+ * classification of tasks in another cluster. Hence a changed
+ * rq->max_freq will need to trigger re-computation of nr_big_task
+ * count on all online cpus.
+ *
+ * While it should be sufficient for nr_big_tasks to be
+ * re-computed for only online cpus, we have inadequate context
+ * information here (in policy notifier) with regard to hotplug-safety
+ * context in which notification is issued. As a result, we can't use
+ * get_online_cpus() here, as it can lead to deadlock. Until cpufreq is
+ * fixed up to issue notification always in hotplug-safe context,
+ * re-compute nr_big_task for all possible cpus.
+ */
+
+ if (orig_min_max_freq != min_max_freq ||
+ orig_max_possible_freq != max_possible_freq) {
+ cpus = cpu_possible_mask;
+ update_max = 1;
+ }
+
+ /*
+ * Changed load_scale_factor can trigger reclassification of tasks as
+ * big or small. Make this change "atomic" so that tasks are accounted
+ * properly due to changed load_scale_factor
+ */
+ for_each_cpu(i, cpus) {
+ struct rq *rq = cpu_rq(i);
+
+ rq->capacity = compute_capacity(i);
+ rq->load_scale_factor = compute_load_scale_factor(i);
+
+ if (update_max) {
+ u64 mpc, mplsf;
+
+ mpc = div_u64(((u64) rq->capacity) *
+ rq->max_possible_freq, rq->max_freq);
+ rq->max_possible_capacity = (int) mpc;
+
+ mplsf = div_u64(((u64) rq->load_scale_factor) *
+ rq->max_possible_freq, rq->max_freq);
+
+ if (mpc > highest_mpc) {
+ highest_mpc = mpc;
+ cpumask_clear(&mpc_mask);
+ cpumask_set_cpu(i, &mpc_mask);
+ } else if (mpc == highest_mpc) {
+ cpumask_set_cpu(i, &mpc_mask);
+ }
+
+ if (mplsf > highest_mplsf)
+ highest_mplsf = mplsf;
+ }
+ }
+
+ if (update_max) {
+ max_possible_capacity = highest_mpc;
+ max_load_scale_factor = highest_mplsf;
+ }
+
+ __update_min_max_capacity();
+
+ return 0;
+}
+
+static int cpufreq_notifier_trans(struct notifier_block *nb,
+ unsigned long val, void *data)
+{
+ struct cpufreq_freqs *freq = (struct cpufreq_freqs *)data;
+ unsigned int cpu = freq->cpu, new_freq = freq->new;
+ unsigned long flags;
+ int i;
+
+ if (val != CPUFREQ_POSTCHANGE)
+ return 0;
+
+ BUG_ON(!new_freq);
+
+ if (cpu_rq(cpu)->cur_freq == new_freq)
+ return 0;
+
+ for_each_cpu(i, &cpu_rq(cpu)->freq_domain_cpumask) {
+ struct rq *rq = cpu_rq(i);
+
+ raw_spin_lock_irqsave(&rq->lock, flags);
+ walt_update_task_ravg(rq->curr, rq, TASK_UPDATE,
+ walt_ktime_clock(), 0);
+ rq->cur_freq = new_freq;
+ raw_spin_unlock_irqrestore(&rq->lock, flags);
+ }
+
+ return 0;
+}
+
+static struct notifier_block notifier_policy_block = {
+ .notifier_call = cpufreq_notifier_policy
+};
+
+static struct notifier_block notifier_trans_block = {
+ .notifier_call = cpufreq_notifier_trans
+};
+
+static int register_sched_callback(void)
+{
+ int ret;
+
+ ret = cpufreq_register_notifier(&notifier_policy_block,
+ CPUFREQ_POLICY_NOTIFIER);
+
+ if (!ret)
+ ret = cpufreq_register_notifier(&notifier_trans_block,
+ CPUFREQ_TRANSITION_NOTIFIER);
+
+ return 0;
+}
+
+/*
+ * cpufreq callbacks can be registered at core_initcall or later time.
+ * Any registration done prior to that is "forgotten" by cpufreq. See
+ * initialization of variable init_cpufreq_transition_notifier_list_called
+ * for further information.
+ */
+core_initcall(register_sched_callback);
+
+void walt_init_new_task_load(struct task_struct *p)
+{
+ int i;
+ u32 init_load_windows =
+ div64_u64((u64)sysctl_sched_walt_init_task_load_pct *
+ (u64)walt_ravg_window, 100);
+ u32 init_load_pct = current->init_load_pct;
+
+ p->init_load_pct = 0;
+ memset(&p->ravg, 0, sizeof(struct ravg));
+
+ if (init_load_pct) {
+ init_load_windows = div64_u64((u64)init_load_pct *
+ (u64)walt_ravg_window, 100);
+ }
+
+ p->ravg.demand = init_load_windows;
+ for (i = 0; i < RAVG_HIST_SIZE_MAX; ++i)
+ p->ravg.sum_history[i] = init_load_windows;
+}
diff --git a/kernel/sched/walt.h b/kernel/sched/walt.h
new file mode 100644
index 000000000000..e181c87a928d
--- /dev/null
+++ b/kernel/sched/walt.h
@@ -0,0 +1,62 @@
+/*
+ * Copyright (c) 2016, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#ifndef __WALT_H
+#define __WALT_H
+
+#ifdef CONFIG_SCHED_WALT
+
+void walt_update_task_ravg(struct task_struct *p, struct rq *rq, int event,
+ u64 wallclock, u64 irqtime);
+void walt_inc_cumulative_runnable_avg(struct rq *rq, struct task_struct *p);
+void walt_dec_cumulative_runnable_avg(struct rq *rq, struct task_struct *p);
+void walt_inc_cfs_cumulative_runnable_avg(struct cfs_rq *rq,
+ struct task_struct *p);
+void walt_dec_cfs_cumulative_runnable_avg(struct cfs_rq *rq,
+ struct task_struct *p);
+void walt_fixup_busy_time(struct task_struct *p, int new_cpu);
+void walt_init_new_task_load(struct task_struct *p);
+void walt_mark_task_starting(struct task_struct *p);
+void walt_set_window_start(struct rq *rq);
+void walt_migrate_sync_cpu(int cpu);
+void walt_init_cpu_efficiency(void);
+u64 walt_ktime_clock(void);
+void walt_account_irqtime(int cpu, struct task_struct *curr, u64 delta,
+ u64 wallclock);
+
+u64 walt_irqload(int cpu);
+int walt_cpu_high_irqload(int cpu);
+
+#else /* CONFIG_SCHED_WALT */
+
+static inline void walt_update_task_ravg(struct task_struct *p, struct rq *rq,
+ int event, u64 wallclock, u64 irqtime) { }
+static inline void walt_inc_cumulative_runnable_avg(struct rq *rq, struct task_struct *p) { }
+static inline void walt_dec_cumulative_runnable_avg(struct rq *rq, struct task_struct *p) { }
+static inline void walt_inc_cfs_cumulative_runnable_avg(struct cfs_rq *rq,
+ struct task_struct *p) { }
+static inline void walt_dec_cfs_cumulative_runnable_avg(struct cfs_rq *rq,
+ struct task_struct *p) { }
+static inline void walt_fixup_busy_time(struct task_struct *p, int new_cpu) { }
+static inline void walt_init_new_task_load(struct task_struct *p) { }
+static inline void walt_mark_task_starting(struct task_struct *p) { }
+static inline void walt_set_window_start(struct rq *rq) { }
+static inline void walt_migrate_sync_cpu(int cpu) { }
+static inline void walt_init_cpu_efficiency(void) { }
+static inline u64 walt_ktime_clock(void) { return 0; }
+
+#endif /* CONFIG_SCHED_WALT */
+
+extern unsigned int walt_disabled;
+
+#endif
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 35bfe0c1360b..f3300de62fe4 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -305,6 +305,64 @@ static struct ctl_table kern_table[] = {
.extra2 = &max_sched_granularity_ns,
},
{
+ .procname = "sched_is_big_little",
+ .data = &sysctl_sched_is_big_little,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ },
+#ifdef CONFIG_SCHED_WALT
+ {
+ .procname = "sched_use_walt_cpu_util",
+ .data = &sysctl_sched_use_walt_cpu_util,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ },
+ {
+ .procname = "sched_use_walt_task_util",
+ .data = &sysctl_sched_use_walt_task_util,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ },
+ {
+ .procname = "sched_walt_init_task_load_pct",
+ .data = &sysctl_sched_walt_init_task_load_pct,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ },
+ {
+ .procname = "sched_walt_cpu_high_irqload",
+ .data = &sysctl_sched_walt_cpu_high_irqload,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ },
+#endif
+ {
+ .procname = "sched_sync_hint_enable",
+ .data = &sysctl_sched_sync_hint_enable,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ },
+ {
+ .procname = "sched_initial_task_util",
+ .data = &sysctl_sched_initial_task_util,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ },
+ {
+ .procname = "sched_cstate_aware",
+ .data = &sysctl_sched_cstate_aware,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ },
+ {
.procname = "sched_wakeup_granularity_ns",
.data = &sysctl_sched_wakeup_granularity,
.maxlen = sizeof(unsigned int),
@@ -435,6 +493,21 @@ static struct ctl_table kern_table[] = {
.extra1 = &one,
},
#endif
+#ifdef CONFIG_SCHED_TUNE
+ {
+ .procname = "sched_cfs_boost",
+ .data = &sysctl_sched_cfs_boost,
+ .maxlen = sizeof(sysctl_sched_cfs_boost),
+#ifdef CONFIG_CGROUP_SCHEDTUNE
+ .mode = 0444,
+#else
+ .mode = 0644,
+#endif
+ .proc_handler = &sysctl_sched_cfs_boost_handler,
+ .extra1 = &zero,
+ .extra2 = &one_hundred,
+ },
+#endif
#ifdef CONFIG_PROVE_LOCKING
{
.procname = "prove_locking",
diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug
index fc9f2adc0c9b..63d14d9b51d8 100644
--- a/lib/Kconfig.debug
+++ b/lib/Kconfig.debug
@@ -867,6 +867,15 @@ config SCHED_INFO
bool
default n
+config PANIC_ON_RT_THROTTLING
+ bool "Panic on RT throttling"
+ help
+ Say Y here to enable the kernel to panic when a realtime
+ runqueue is throttled. This may be useful for detecting
+ and debugging RT throttling issues.
+
+ Say N if unsure.
+
config SCHEDSTATS
bool "Collect scheduler statistics"
depends on DEBUG_KERNEL && PROC_FS
diff --git a/mm/vmstat.c b/mm/vmstat.c
index c54fd2924f25..83a003bc3cae 100644
--- a/mm/vmstat.c
+++ b/mm/vmstat.c
@@ -460,7 +460,7 @@ static int fold_diff(int *diff)
*
* The function returns the number of global counters updated.
*/
-static int refresh_cpu_vm_stats(void)
+static int refresh_cpu_vm_stats(bool do_pagesets)
{
struct zone *zone;
int i;
@@ -484,33 +484,35 @@ static int refresh_cpu_vm_stats(void)
#endif
}
}
- cond_resched();
#ifdef CONFIG_NUMA
- /*
- * Deal with draining the remote pageset of this
- * processor
- *
- * Check if there are pages remaining in this pageset
- * if not then there is nothing to expire.
- */
- if (!__this_cpu_read(p->expire) ||
+ if (do_pagesets) {
+ cond_resched();
+ /*
+ * Deal with draining the remote pageset of this
+ * processor
+ *
+ * Check if there are pages remaining in this pageset
+ * if not then there is nothing to expire.
+ */
+ if (!__this_cpu_read(p->expire) ||
!__this_cpu_read(p->pcp.count))
- continue;
+ continue;
- /*
- * We never drain zones local to this processor.
- */
- if (zone_to_nid(zone) == numa_node_id()) {
- __this_cpu_write(p->expire, 0);
- continue;
- }
+ /*
+ * We never drain zones local to this processor.
+ */
+ if (zone_to_nid(zone) == numa_node_id()) {
+ __this_cpu_write(p->expire, 0);
+ continue;
+ }
- if (__this_cpu_dec_return(p->expire))
- continue;
+ if (__this_cpu_dec_return(p->expire))
+ continue;
- if (__this_cpu_read(p->pcp.count)) {
- drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
- changes++;
+ if (__this_cpu_read(p->pcp.count)) {
+ drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
+ changes++;
+ }
}
#endif
}
@@ -1386,7 +1388,7 @@ static cpumask_var_t cpu_stat_off;
static void vmstat_update(struct work_struct *w)
{
- if (refresh_cpu_vm_stats()) {
+ if (refresh_cpu_vm_stats(true)) {
/*
* Counters were updated so we expect more updates
* to occur in the future. Keep on running the
@@ -1418,6 +1420,23 @@ static void vmstat_update(struct work_struct *w)
}
/*
+ * Switch off vmstat processing and then fold all the remaining differentials
+ * until the diffs stay at zero. The function is used by NOHZ and can only be
+ * invoked when tick processing is not active.
+ */
+void quiet_vmstat(void)
+{
+ if (system_state != SYSTEM_RUNNING)
+ return;
+
+ do {
+ if (!cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
+ cancel_delayed_work(this_cpu_ptr(&vmstat_work));
+
+ } while (refresh_cpu_vm_stats(false));
+}
+
+/*
* Check if the diffs for a certain cpu indicate that
* an update is needed.
*/
@@ -1449,7 +1468,7 @@ static bool need_update(int cpu)
*/
static void vmstat_shepherd(struct work_struct *w);
-static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
+static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
static void vmstat_shepherd(struct work_struct *w)
{