aboutsummaryrefslogtreecommitdiff
path: root/kernel/mm/virtual_mm/virtual_mm.cc
blob: 12066f69938bda00d501044f6afaaca832a4d036 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*
 * bubbl
 * Copyright (C) 2025  Raghuram Subramani <raghus2247@gmail.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <kernel/halt.h>
#include <libk/liballoc.h>
#include <libk/stdio.h>
#include <mm/physical_mm.h>
#include <mm/virtual_mm.h>
#include <stdbool.h>
#include <stdint.h>

namespace VirtualMM
{

extern uint32_t kernel_start;
extern uint32_t kernel_end;

uint32_t *l_current_page_directory = 0;

/* Kernel's page directory */
uint32_t l_page_directory[1024] ALIGNED(4096);
/* Page table for the first 4 MiB */
uint32_t l_fourMiB_page_table[1024] ALIGNED(4096);
/* Page table for the next 4 MiB */
uint32_t l_eightMiB_page_table[1024] ALIGNED(4096);

ALWAYS_INLINE void
load_page_directory(uint32_t *page_directory)
{
  __asm__("movl %0, %%cr3" ::"r"(page_directory));
}

bool
switch_page_directory(uint32_t *page_directory)
{
  if (!page_directory)
    return false;
  l_current_page_directory = page_directory;
  load_page_directory(page_directory);

  return true;
}

ALWAYS_INLINE static void
enable_paging(void)
{
  __asm__("movl %%cr0, %%eax;"
          "orl $0x80000000, %%eax;"
          "movl %%eax, %%cr0" ::
              : "eax");
}

void
initialize(void)
{
  /* Zero out the page tables and directories */
  for (uint32_t i = 0; i < 1024; i++) {
    l_fourMiB_page_table[i] = 0;
    l_eightMiB_page_table[i] = 0;
    l_page_directory[i] = 0;
  }

  /* Identity map the first 4MiB, excluding the 4th MiB
   * (maps 4KiB 1024 times) */
  for (uint32_t i = 0; i < 1024; i++)
    l_fourMiB_page_table[i]
        = PTE_FRAME(i << 12) | PTE_PRESENT(1) | PTE_WRITABLE(1);

  /* Identity map the next 4MiB */
  for (uint32_t i = 0; i < 1024; i++)
    l_eightMiB_page_table[i]
        = PTE_FRAME((i + 1024) << 12) | PTE_PRESENT(1) | PTE_WRITABLE(1);

  /* Set up the page directory entries */
  uint32_t *fourMiB_pd_entry = &l_page_directory[0];
  *fourMiB_pd_entry = PDE_FRAME((uint32_t) l_fourMiB_page_table)
                      | PDE_PRESENT(1) | PDE_WRITABLE(1);

  uint32_t *eightMiB_pd_entry = &l_page_directory[1];
  *eightMiB_pd_entry = PDE_FRAME((uint32_t) l_eightMiB_page_table)
                       | PDE_PRESENT(1) | PDE_WRITABLE(1);

  switch_page_directory(l_page_directory);
  enable_paging();
}

uint32_t *
make_table(uint32_t *pd_entry)
{
  uint32_t *table = 0;
  if (!LibAlloc::initialized()) {
    /* If we don't have a dynamic memory allocator yet (this will happen only
     * once, when we initialize the dynamic allocator), then we hard code the
     * next page table to be at 7MiB */
    table = (uint32_t *) (7 * MiB);
    printk("virtual_mm",
           "Using our hard coded table; this should happen only once.");
  } else
    /* TODO: Uncomment this */
    // table = (uint32_t *) LibAlloc::kmalloc(sizeof(uint32_t) * 1024);
    ;

  for (uint32_t i = 0; i < 1024; i++)
    table[i] = 0x0;

  *pd_entry = PDE_FRAME((uint32_t) table) | PDE_PRESENT(1) | PDE_WRITABLE(1);
  return table;
}

ALWAYS_INLINE static uint32_t *
get_or_make_table(uint32_t *pd_entry)
{
  uint32_t *table = 0;

  if (!PDE_IS_PRESENT(pd_entry))
    table = make_table(pd_entry);
  else
    table = (uint32_t *) PDE_GET_TABLE(pd_entry);

  return table;
}

void
map_page(void *physical_address, void *virtual_address)
{
  uint32_t *pd_entry
      = &l_current_page_directory[GET_PD_INDEX(virtual_address)];
  uint32_t *table = get_or_make_table(pd_entry);

  uint32_t *pt_entry = &table[GET_PT_INDEX(virtual_address)];
  if (PTE_IS_PRESENT(pt_entry))
    /* Mapping previously mapped memory */
    ASSERT_NOT_REACHED();

  *pt_entry = PTE_FRAME((uint32_t) physical_address) | PTE_PRESENT(1)
              | PTE_WRITABLE(1);
}

void
unmap_page(void *virtual_address)
{
  uint32_t *pd_entry
      = &l_current_page_directory[GET_PD_INDEX(virtual_address)];

  uint32_t *table = 0;
  /* If the pd_entry isn't present, return */
  if (!PDE_IS_PRESENT(pd_entry))
    return;

  table = (uint32_t *) PDE_GET_TABLE(pd_entry);

  uint32_t *pt_entry = &table[GET_PT_INDEX(virtual_address)];
  printk("debug", "Freeing: 0x%x", pt_entry);
  *pt_entry = 0;
}

void *
find_free_addresses(uint32_t n)
{
  /* Skip the first two page directory entries; we don't wanna touch the first
   * 8MiB. */
  for (uint32_t pd_index = 2; pd_index < PAGE_DIRECTORY_SIZE; pd_index++) {
    uint32_t starting_pd_index = pd_index;
    uint32_t *pd_entry = &l_current_page_directory[pd_index];
    uint32_t *table = 0;

    bool table_is_present = PDE_IS_PRESENT(pd_entry);
    if (table_is_present)
      table = (uint32_t *) PDE_GET_TABLE(pd_entry);

    for (uint32_t starting_pt_index = 0; starting_pt_index < PAGE_TABLE_SIZE;
         starting_pt_index++) {
      uint32_t count = 0;
      if (table_is_present)
        if (PTE_IS_PRESENT(&table[starting_pt_index]))
          continue;

      /* We found our starting pt_entry */
      for (uint32_t pt_index = starting_pt_index; pt_index <= PAGE_TABLE_SIZE;
           pt_index++) {
        /* If we overflow, switch to the consecutive page directory entry */
        if (pt_index == PAGE_TABLE_SIZE) {
          pd_index++;
          if (pd_index == PAGE_DIRECTORY_SIZE)
            return 0; /* Ran out of pd_entries */

          pd_entry = &l_current_page_directory[pd_index];
          table_is_present = PDE_IS_PRESENT(pd_entry);
          pt_index = 0;
        }

        /* If the table is present, and if the PTE is present, then break */
        if (table_is_present)
          if (PTE_IS_PRESENT(&table[pt_index])) {
            /* Since we have some used address at some point between j and
             * count, we can't find n consecutive free addresses in between j
             * and the used block (j + count + 1) */
            starting_pt_index += count;
            break;
          }

        /* TODO: This can be easily optimized if the table is not present.
         * (count += 4096, since we know that the table is not present) */
        count++;

        if (count == n)
          return (void *) VIRTUAL_ADDRESS(starting_pd_index,
                                          starting_pt_index);
      }
    }
  }

  ASSERT_NOT_REACHED();
  return 0;
}

}