{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2021-01-08T13:02:42.934528Z", "start_time": "2021-01-08T13:02:42.720862Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Notebook magic" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2021-01-08T13:02:44.890094Z", "start_time": "2021-01-08T13:02:44.878787Z" } }, "outputs": [], "source": [ "from IPython.core.magic import Magics, magics_class, line_cell_magic\n", "from IPython.core.magic import cell_magic, register_cell_magic, register_line_magic\n", "from IPython.core.magic_arguments import argument, magic_arguments, parse_argstring\n", "import subprocess\n", "import os" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2021-01-08T13:06:20.583308Z", "start_time": "2021-01-08T13:06:20.525830Z" } }, "outputs": [], "source": [ "@magics_class\n", "class PyboardMagic(Magics):\n", " @cell_magic\n", " @magic_arguments()\n", " @argument('-skip')\n", " @argument('-unix')\n", " @argument('-pyboard')\n", " @argument('-file')\n", " @argument('-data')\n", " @argument('-time')\n", " @argument('-memory')\n", " def micropython(self, line='', cell=None):\n", " args = parse_argstring(self.micropython, line)\n", " if args.skip: # doesn't care about the cell's content\n", " print('skipped execution')\n", " return None # do not parse the rest\n", " if args.unix: # tests the code on the unix port. Note that this works on unix only\n", " with open('/dev/shm/micropython.py', 'w') as fout:\n", " fout.write(cell)\n", " proc = subprocess.Popen([\"../../micropython/ports/unix/micropython\", \"/dev/shm/micropython.py\"], \n", " stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n", " print(proc.stdout.read().decode(\"utf-8\"))\n", " print(proc.stderr.read().decode(\"utf-8\"))\n", " return None\n", " if args.file: # can be used to copy the cell content onto the pyboard's flash\n", " spaces = \" \"\n", " try:\n", " with open(args.file, 'w') as fout:\n", " fout.write(cell.replace('\\t', spaces))\n", " printf('written cell to {}'.format(args.file))\n", " except:\n", " print('Failed to write to disc!')\n", " return None # do not parse the rest\n", " if args.data: # can be used to load data from the pyboard directly into kernel space\n", " message = pyb.exec(cell)\n", " if len(message) == 0:\n", " print('pyboard >>>')\n", " else:\n", " print(message.decode('utf-8'))\n", " # register new variable in user namespace\n", " self.shell.user_ns[args.data] = string_to_matrix(message.decode(\"utf-8\"))\n", " \n", " if args.time: # measures the time of executions\n", " pyb.exec('import utime')\n", " message = pyb.exec('t = utime.ticks_us()\\n' + cell + '\\ndelta = utime.ticks_diff(utime.ticks_us(), t)' + \n", " \"\\nprint('execution time: {:d} us'.format(delta))\")\n", " print(message.decode('utf-8'))\n", " \n", " if args.memory: # prints out memory information \n", " message = pyb.exec('from micropython import mem_info\\nprint(mem_info())\\n')\n", " print(\"memory before execution:\\n========================\\n\", message.decode('utf-8'))\n", " message = pyb.exec(cell)\n", " print(\">>> \", message.decode('utf-8'))\n", " message = pyb.exec('print(mem_info())')\n", " print(\"memory after execution:\\n========================\\n\", message.decode('utf-8'))\n", "\n", " if args.pyboard:\n", " message = pyb.exec(cell)\n", " print(message.decode('utf-8'))\n", "\n", "ip = get_ipython()\n", "ip.register_magics(PyboardMagic)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## pyboard" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "ExecuteTime": { "end_time": "2020-05-07T07:35:35.126401Z", "start_time": "2020-05-07T07:35:35.105824Z" } }, "outputs": [], "source": [ "import pyboard\n", "pyb = pyboard.Pyboard('/dev/ttyACM0')\n", "pyb.enter_raw_repl()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2020-05-19T19:11:18.145548Z", "start_time": "2020-05-19T19:11:18.137468Z" } }, "outputs": [], "source": [ "pyb.exit_raw_repl()\n", "pyb.close()" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "ExecuteTime": { "end_time": "2020-05-07T07:35:38.725924Z", "start_time": "2020-05-07T07:35:38.645488Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "%%micropython -pyboard 1\n", "\n", "import utime\n", "import ulab as np\n", "\n", "def timeit(n=1000):\n", " def wrapper(f, *args, **kwargs):\n", " func_name = str(f).split(' ')[1]\n", " def new_func(*args, **kwargs):\n", " run_times = np.zeros(n, dtype=np.uint16)\n", " for i in range(n):\n", " t = utime.ticks_us()\n", " result = f(*args, **kwargs)\n", " run_times[i] = utime.ticks_diff(utime.ticks_us(), t)\n", " print('{}() execution times based on {} cycles'.format(func_name, n, (delta2-delta1)/n))\n", " print('\\tbest: %d us'%np.min(run_times))\n", " print('\\tworst: %d us'%np.max(run_times))\n", " print('\\taverage: %d us'%np.mean(run_times))\n", " print('\\tdeviation: +/-%.3f us'%np.std(run_times)) \n", " return result\n", " return new_func\n", " return wrapper\n", "\n", "def timeit(f, *args, **kwargs):\n", " func_name = str(f).split(' ')[1]\n", " def new_func(*args, **kwargs):\n", " t = utime.ticks_us()\n", " result = f(*args, **kwargs)\n", " print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')\n", " return result\n", " return new_func" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__END_OF_DEFS__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Comparison of arrays" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## equal, not_equal\n", "\n", "`numpy`: https://numpy.org/doc/stable/reference/generated/numpy.equal.html\n", "\n", "`numpy`: https://numpy.org/doc/stable/reference/generated/numpy.not_equal.html\n", "\n", "In `micropython`, equality of arrays or scalars can be established by utilising the `==`, `!=`, `<`, `>`, `<=`, or `=>` binary operators. In `circuitpython`, `==` and `!=` will produce unexpected results. In order to avoid this discrepancy, and to maintain compatibility with `numpy`, `ulab` implements the `equal` and `not_equal` operators that return the same results, irrespective of the `python` implementation.\n", "\n", "These two functions take two `ndarray`s, or scalars as their arguments. No keyword arguments are implemented." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2021-01-08T14:22:13.990898Z", "start_time": "2021-01-08T14:22:13.941896Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64)\n", "b: array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], dtype=float64)\n", "\n", "a == b: array([True, False, False, False, False, False, False, False, False], dtype=bool)\n", "a != b: array([False, True, True, True, True, True, True, True, True], dtype=bool)\n", "a == 2: array([False, False, True, False, False, False, False, False, False], dtype=bool)\n", "\n", "\n" ] } ], "source": [ "%%micropython -unix 1\n", "\n", "from ulab import numpy as np\n", "\n", "a = np.array(range(9))\n", "b = np.zeros(9)\n", "\n", "print('a: ', a)\n", "print('b: ', b)\n", "print('\\na == b: ', np.equal(a, b))\n", "print('a != b: ', np.not_equal(a, b))\n", "\n", "# comparison with scalars\n", "print('a == 2: ', np.equal(a, 2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## minimum\n", "\n", "`numpy`: https://docs.scipy.org/doc/numpy/reference/generated/numpy.minimum.html\n", "\n", "Returns the minimum of two arrays, or two scalars, or an array, and a scalar. If the arrays are of different `dtype`, the output is upcast as in [Binary operators](#Binary-operators). If both inputs are scalars, a scalar is returned. Only positional arguments are implemented.\n", "\n", "## maximum\n", "\n", "`numpy`: https://docs.scipy.org/doc/numpy/reference/generated/numpy.maximum.html\n", "\n", "Returns the maximum of two arrays, or two scalars, or an array, and a scalar. If the arrays are of different `dtype`, the output is upcast as in [Binary operators](#Binary-operators). If both inputs are scalars, a scalar is returned. Only positional arguments are implemented." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2021-01-08T13:21:17.151280Z", "start_time": "2021-01-08T13:21:17.123768Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "minimum of a, and b:\n", "array([1.0, 2.0, 3.0, 2.0, 1.0], dtype=float64)\n", "\n", "maximum of a, and b:\n", "array([5.0, 4.0, 3.0, 4.0, 5.0], dtype=float64)\n", "\n", "maximum of 1, and 5.5:\n", "5.5\n", "\n", "\n" ] } ], "source": [ "%%micropython -unix 1\n", "\n", "from ulab import numpy as np\n", "\n", "a = np.array([1, 2, 3, 4, 5], dtype=np.uint8)\n", "b = np.array([5, 4, 3, 2, 1], dtype=np.float)\n", "print('minimum of a, and b:')\n", "print(np.minimum(a, b))\n", "\n", "print('\\nmaximum of a, and b:')\n", "print(np.maximum(a, b))\n", "\n", "print('\\nmaximum of 1, and 5.5:')\n", "print(np.maximum(1, 5.5))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## clip\n", "\n", "`numpy`: https://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html\n", "\n", "Clips an array, i.e., values that are outside of an interval are clipped to the interval edges. The function is equivalent to `maximum(a_min, minimum(a, a_max))` broadcasting takes place exactly as in [minimum](#minimum). If the arrays are of different `dtype`, the output is upcast as in [Binary operators](#Binary-operators)." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2021-01-08T13:22:14.147310Z", "start_time": "2021-01-08T13:22:14.123961Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a:\t\t array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)\n", "clipped:\t array([3, 3, 3, 3, 4, 5, 6, 7, 7], dtype=uint8)\n", "\n", "a:\t\t array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)\n", "b:\t\t array([3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0], dtype=float64)\n", "clipped:\t array([3.0, 3.0, 3.0, 3.0, 4.0, 5.0, 6.0, 7.0, 7.0], dtype=float64)\n", "\n", "\n" ] } ], "source": [ "%%micropython -unix 1\n", "\n", "from ulab import numpy as np\n", "\n", "a = np.array(range(9), dtype=np.uint8)\n", "print('a:\\t\\t', a)\n", "print('clipped:\\t', np.clip(a, 3, 7))\n", "\n", "b = 3 * np.ones(len(a), dtype=np.float)\n", "print('\\na:\\t\\t', a)\n", "print('b:\\t\\t', b)\n", "print('clipped:\\t', np.clip(a, b, 7))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": { "height": "calc(100% - 180px)", "left": "10px", "top": "150px", "width": "382.797px" }, "toc_section_display": true, "toc_window_display": true }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }