{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2021-01-12T16:11:12.111639Z", "start_time": "2021-01-12T16:11:11.914041Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Notebook magic" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2022-01-07T19:20:19.755153Z", "start_time": "2022-01-07T19:20:19.745524Z" } }, "outputs": [], "source": [ "from IPython.core.magic import Magics, magics_class, line_cell_magic\n", "from IPython.core.magic import cell_magic, register_cell_magic, register_line_magic\n", "from IPython.core.magic_arguments import argument, magic_arguments, parse_argstring\n", "import subprocess\n", "import os" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2022-01-07T19:20:27.595871Z", "start_time": "2022-01-07T19:20:27.565514Z" } }, "outputs": [], "source": [ "@magics_class\n", "class PyboardMagic(Magics):\n", " @cell_magic\n", " @magic_arguments()\n", " @argument('-skip')\n", " @argument('-unix')\n", " @argument('-pyboard')\n", " @argument('-file')\n", " @argument('-data')\n", " @argument('-time')\n", " @argument('-memory')\n", " def micropython(self, line='', cell=None):\n", " args = parse_argstring(self.micropython, line)\n", " if args.skip: # doesn't care about the cell's content\n", " print('skipped execution')\n", " return None # do not parse the rest\n", " if args.unix: # tests the code on the unix port. Note that this works on unix only\n", " with open('/dev/shm/micropython.py', 'w') as fout:\n", " fout.write(cell)\n", " proc = subprocess.Popen([\"../micropython/ports/unix/micropython-2\", \"/dev/shm/micropython.py\"], \n", " stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n", " print(proc.stdout.read().decode(\"utf-8\"))\n", " print(proc.stderr.read().decode(\"utf-8\"))\n", " return None\n", " if args.file: # can be used to copy the cell content onto the pyboard's flash\n", " spaces = \" \"\n", " try:\n", " with open(args.file, 'w') as fout:\n", " fout.write(cell.replace('\\t', spaces))\n", " printf('written cell to {}'.format(args.file))\n", " except:\n", " print('Failed to write to disc!')\n", " return None # do not parse the rest\n", " if args.data: # can be used to load data from the pyboard directly into kernel space\n", " message = pyb.exec(cell)\n", " if len(message) == 0:\n", " print('pyboard >>>')\n", " else:\n", " print(message.decode('utf-8'))\n", " # register new variable in user namespace\n", " self.shell.user_ns[args.data] = string_to_matrix(message.decode(\"utf-8\"))\n", " \n", " if args.time: # measures the time of executions\n", " pyb.exec('import utime')\n", " message = pyb.exec('t = utime.ticks_us()\\n' + cell + '\\ndelta = utime.ticks_diff(utime.ticks_us(), t)' + \n", " \"\\nprint('execution time: {:d} us'.format(delta))\")\n", " print(message.decode('utf-8'))\n", " \n", " if args.memory: # prints out memory information \n", " message = pyb.exec('from micropython import mem_info\\nprint(mem_info())\\n')\n", " print(\"memory before execution:\\n========================\\n\", message.decode('utf-8'))\n", " message = pyb.exec(cell)\n", " print(\">>> \", message.decode('utf-8'))\n", " message = pyb.exec('print(mem_info())')\n", " print(\"memory after execution:\\n========================\\n\", message.decode('utf-8'))\n", "\n", " if args.pyboard:\n", " message = pyb.exec(cell)\n", " print(message.decode('utf-8'))\n", "\n", "ip = get_ipython()\n", "ip.register_magics(PyboardMagic)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## pyboard" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "ExecuteTime": { "end_time": "2020-05-07T07:35:35.126401Z", "start_time": "2020-05-07T07:35:35.105824Z" } }, "outputs": [], "source": [ "import pyboard\n", "pyb = pyboard.Pyboard('/dev/ttyACM0')\n", "pyb.enter_raw_repl()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2020-05-19T19:11:18.145548Z", "start_time": "2020-05-19T19:11:18.137468Z" } }, "outputs": [], "source": [ "pyb.exit_raw_repl()\n", "pyb.close()" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "ExecuteTime": { "end_time": "2020-05-07T07:35:38.725924Z", "start_time": "2020-05-07T07:35:38.645488Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "%%micropython -pyboard 1\n", "\n", "import utime\n", "import ulab as np\n", "\n", "def timeit(n=1000):\n", " def wrapper(f, *args, **kwargs):\n", " func_name = str(f).split(' ')[1]\n", " def new_func(*args, **kwargs):\n", " run_times = np.zeros(n, dtype=np.uint16)\n", " for i in range(n):\n", " t = utime.ticks_us()\n", " result = f(*args, **kwargs)\n", " run_times[i] = utime.ticks_diff(utime.ticks_us(), t)\n", " print('{}() execution times based on {} cycles'.format(func_name, n, (delta2-delta1)/n))\n", " print('\\tbest: %d us'%np.min(run_times))\n", " print('\\tworst: %d us'%np.max(run_times))\n", " print('\\taverage: %d us'%np.mean(run_times))\n", " print('\\tdeviation: +/-%.3f us'%np.std(run_times)) \n", " return result\n", " return new_func\n", " return wrapper\n", "\n", "def timeit(f, *args, **kwargs):\n", " func_name = str(f).split(' ')[1]\n", " def new_func(*args, **kwargs):\n", " t = utime.ticks_us()\n", " result = f(*args, **kwargs)\n", " print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')\n", " return result\n", " return new_func" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__END_OF_DEFS__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# scipy.signal\n", "\n", "Functions in the `signal` module can be called by prepending them by `scipy.signal.`. The module defines the following two functions:\n", "\n", "1. [scipy.signal.sosfilt](#sosfilt)\n", "1. [scipy.signal.spectrogram](#spectrogram)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## sosfilt\n", "\n", "`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt.html \n", "\n", "Filter data along one dimension using cascaded second-order sections.\n", "\n", "The function takes two positional arguments, `sos`, the filter segments of length 6, and the one-dimensional, uniformly sampled data set to be filtered. Returns the filtered data, or the filtered data and the final filter delays, if the `zi` keyword arguments is supplied. The keyword argument must be a float `ndarray` of shape `(n_sections, 2)`. If `zi` is not passed to the function, the initial values are assumed to be 0." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2020-06-19T20:24:10.529668Z", "start_time": "2020-06-19T20:24:10.520389Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "y: array([0.0, 1.0, -4.0, 24.0, -104.0, 440.0, -1728.0, 6532.000000000001, -23848.0, 84864.0], dtype=float)\n", "\n", "\n" ] } ], "source": [ "%%micropython -unix 1\n", "\n", "from ulab import numpy as np\n", "from ulab import scipy as spy\n", "\n", "x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n", "sos = [[1, 2, 3, 1, 5, 6], [1, 2, 3, 1, 5, 6]]\n", "y = spy.signal.sosfilt(sos, x)\n", "print('y: ', y)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2020-06-19T20:27:39.508508Z", "start_time": "2020-06-19T20:27:39.498256Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "y: array([4.0, -16.0, 63.00000000000001, -227.0, 802.9999999999999, -2751.0, 9271.000000000001, -30775.0, 101067.0, -328991.0000000001], dtype=float)\n", "\n", "========================================\n", "zf: array([[37242.0, 74835.0],\n", "\t [1026187.0, 1936542.0]], dtype=float)\n", "\n", "\n" ] } ], "source": [ "%%micropython -unix 1\n", "\n", "from ulab import numpy as np\n", "from ulab import scipy as spy\n", "\n", "x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n", "sos = [[1, 2, 3, 1, 5, 6], [1, 2, 3, 1, 5, 6]]\n", "# initial conditions of the filter\n", "zi = np.array([[1, 2], [3, 4]])\n", "\n", "y, zf = spy.signal.sosfilt(sos, x, zi=zi)\n", "print('y: ', y)\n", "print('\\n' + '='*40 + '\\nzf: ', zf)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## spectrogram\n", "\n", "In addition to the Fourier transform and its inverse, `ulab` also sports a function called `spectrogram`, which returns the absolute value of the Fourier transform. This could be used to find the dominant spectral component in a time series. The arguments are treated in the same way as in `fft`, and `ifft`. This means that, if the firmware was compiled with complex support, the input can also be a complex array." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2021-01-12T16:12:06.573408Z", "start_time": "2021-01-12T16:12:06.560558Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "original vector:\t array([0.0, 0.009775015390171337, 0.01954909674625918, ..., -0.5275140569487312, -0.5357931822978732, -0.5440211108893639], dtype=float64)\n", "\n", "spectrum:\t array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)\n", "\n", "\n" ] } ], "source": [ "%%micropython -unix 1\n", "\n", "from ulab import numpy as np\n", "from ulab import scipy as spy\n", "\n", "x = np.linspace(0, 10, num=1024)\n", "y = np.sin(x)\n", "\n", "a = spy.signal.spectrogram(y)\n", "\n", "print('original vector:\\t', y)\n", "print('\\nspectrum:\\t', a)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As such, `spectrogram` is really just a shorthand for `np.sqrt(a*a + b*b)`:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2021-01-12T16:13:36.726662Z", "start_time": "2021-01-12T16:13:36.705036Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "spectrum calculated the hard way:\t array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)\n", "\n", "spectrum calculated the lazy way:\t array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)\n", "\n", "\n" ] } ], "source": [ "%%micropython -unix 1\n", "\n", "from ulab import numpy as np\n", "from ulab import scipy as spy\n", "\n", "x = np.linspace(0, 10, num=1024)\n", "y = np.sin(x)\n", "\n", "a, b = np.fft.fft(y)\n", "\n", "print('\\nspectrum calculated the hard way:\\t', np.sqrt(a*a + b*b))\n", "\n", "a = spy.signal.spectrogram(y)\n", "\n", "print('\\nspectrum calculated the lazy way:\\t', a)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": { "height": "calc(100% - 180px)", "left": "10px", "top": "150px", "width": "382.797px" }, "toc_section_display": true, "toc_window_display": true }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }