{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2021-01-13T18:54:58.722373Z", "start_time": "2021-01-13T18:54:57.178438Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Notebook magic" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2021-05-09T05:37:22.600510Z", "start_time": "2021-05-09T05:37:22.595924Z" } }, "outputs": [], "source": [ "from IPython.core.magic import Magics, magics_class, line_cell_magic\n", "from IPython.core.magic import cell_magic, register_cell_magic, register_line_magic\n", "from IPython.core.magic_arguments import argument, magic_arguments, parse_argstring\n", "import subprocess\n", "import os" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2021-05-09T05:37:26.429136Z", "start_time": "2021-05-09T05:37:26.403191Z" } }, "outputs": [], "source": [ "@magics_class\n", "class PyboardMagic(Magics):\n", " @cell_magic\n", " @magic_arguments()\n", " @argument('-skip')\n", " @argument('-unix')\n", " @argument('-pyboard')\n", " @argument('-file')\n", " @argument('-data')\n", " @argument('-time')\n", " @argument('-memory')\n", " def micropython(self, line='', cell=None):\n", " args = parse_argstring(self.micropython, line)\n", " if args.skip: # doesn't care about the cell's content\n", " print('skipped execution')\n", " return None # do not parse the rest\n", " if args.unix: # tests the code on the unix port. Note that this works on unix only\n", " with open('/dev/shm/micropython.py', 'w') as fout:\n", " fout.write(cell)\n", " proc = subprocess.Popen([\"../../micropython/ports/unix/micropython\", \"/dev/shm/micropython.py\"], \n", " stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n", " print(proc.stdout.read().decode(\"utf-8\"))\n", " print(proc.stderr.read().decode(\"utf-8\"))\n", " return None\n", " if args.file: # can be used to copy the cell content onto the pyboard's flash\n", " spaces = \" \"\n", " try:\n", " with open(args.file, 'w') as fout:\n", " fout.write(cell.replace('\\t', spaces))\n", " printf('written cell to {}'.format(args.file))\n", " except:\n", " print('Failed to write to disc!')\n", " return None # do not parse the rest\n", " if args.data: # can be used to load data from the pyboard directly into kernel space\n", " message = pyb.exec(cell)\n", " if len(message) == 0:\n", " print('pyboard >>>')\n", " else:\n", " print(message.decode('utf-8'))\n", " # register new variable in user namespace\n", " self.shell.user_ns[args.data] = string_to_matrix(message.decode(\"utf-8\"))\n", " \n", " if args.time: # measures the time of executions\n", " pyb.exec('import utime')\n", " message = pyb.exec('t = utime.ticks_us()\\n' + cell + '\\ndelta = utime.ticks_diff(utime.ticks_us(), t)' + \n", " \"\\nprint('execution time: {:d} us'.format(delta))\")\n", " print(message.decode('utf-8'))\n", " \n", " if args.memory: # prints out memory information \n", " message = pyb.exec('from micropython import mem_info\\nprint(mem_info())\\n')\n", " print(\"memory before execution:\\n========================\\n\", message.decode('utf-8'))\n", " message = pyb.exec(cell)\n", " print(\">>> \", message.decode('utf-8'))\n", " message = pyb.exec('print(mem_info())')\n", " print(\"memory after execution:\\n========================\\n\", message.decode('utf-8'))\n", "\n", " if args.pyboard:\n", " message = pyb.exec(cell)\n", " print(message.decode('utf-8'))\n", "\n", "ip = get_ipython()\n", "ip.register_magics(PyboardMagic)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## pyboard" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "ExecuteTime": { "end_time": "2020-05-07T07:35:35.126401Z", "start_time": "2020-05-07T07:35:35.105824Z" } }, "outputs": [], "source": [ "import pyboard\n", "pyb = pyboard.Pyboard('/dev/ttyACM0')\n", "pyb.enter_raw_repl()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2020-05-19T19:11:18.145548Z", "start_time": "2020-05-19T19:11:18.137468Z" } }, "outputs": [], "source": [ "pyb.exit_raw_repl()\n", "pyb.close()" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "ExecuteTime": { "end_time": "2020-05-07T07:35:38.725924Z", "start_time": "2020-05-07T07:35:38.645488Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "%%micropython -pyboard 1\n", "\n", "import utime\n", "import ulab as np\n", "\n", "def timeit(n=1000):\n", " def wrapper(f, *args, **kwargs):\n", " func_name = str(f).split(' ')[1]\n", " def new_func(*args, **kwargs):\n", " run_times = np.zeros(n, dtype=np.uint16)\n", " for i in range(n):\n", " t = utime.ticks_us()\n", " result = f(*args, **kwargs)\n", " run_times[i] = utime.ticks_diff(utime.ticks_us(), t)\n", " print('{}() execution times based on {} cycles'.format(func_name, n, (delta2-delta1)/n))\n", " print('\\tbest: %d us'%np.min(run_times))\n", " print('\\tworst: %d us'%np.max(run_times))\n", " print('\\taverage: %d us'%np.mean(run_times))\n", " print('\\tdeviation: +/-%.3f us'%np.std(run_times)) \n", " return result\n", " return new_func\n", " return wrapper\n", "\n", "def timeit(f, *args, **kwargs):\n", " func_name = str(f).split(' ')[1]\n", " def new_func(*args, **kwargs):\n", " t = utime.ticks_us()\n", " result = f(*args, **kwargs)\n", " print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')\n", " return result\n", " return new_func" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__END_OF_DEFS__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# scipy.linalg\n", "\n", "`scipy`'s `linalg` module contains two functions, `solve_triangular`, and `cho_solve`. The functions can be called by prepending them by `scipy.linalg.`.\n", "\n", "1. [scipy.linalg.solve_cho](#cho_solve)\n", "2. [scipy.linalg.solve_triangular](#solve_triangular)" ] }, { "source": [ "## cho_solve\n", "\n", "`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_solve.html\n", "\n", "Solve the linear equations \n", "\n", "\n", "\\begin{equation}\n", "\\mathbf{A}\\cdot\\mathbf{x} = \\mathbf{b}\n", "\\end{equation}\n", "\n", "given the Cholesky factorization of $\\mathbf{A}$. As opposed to `scipy`, the function simply takes the Cholesky-factorised matrix, $\\mathbf{A}$, and $\\mathbf{b}$ as inputs." ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "array([-0.01388888888888906, -0.6458333333333331, 2.677083333333333, -0.01041666666666667], dtype=float64)\n\n\n" ] } ], "source": [ "%%micropython -unix 1\n", "\n", "from ulab import numpy as np\n", "from ulab import scipy as spy\n", "\n", "A = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 2, 1, 8]])\n", "b = np.array([4, 2, 4, 2])\n", "\n", "print(spy.linalg.cho_solve(A, b))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## solve_triangular\n", "\n", "`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_triangular.html \n", "\n", "Solve the linear equation \n", "\n", "\\begin{equation}\n", "\\mathbf{a}\\cdot\\mathbf{x} = \\mathbf{b}\n", "\\end{equation}\n", "\n", "with the assumption that $\\mathbf{a}$ is a triangular matrix. The two position arguments are $\\mathbf{a}$, and $\\mathbf{b}$, and the optional keyword argument is `lower` with a default value of `False`. `lower` determines, whether data are taken from the lower, or upper triangle of $\\mathbf{a}$. \n", "\n", "Note that $\\mathbf{a}$ itself does not have to be a triangular matrix: if it is not, then the values are simply taken to be 0 in the upper or lower triangle, as dictated by `lower`. However, $\\mathbf{a}\\cdot\\mathbf{x}$ will yield $\\mathbf{b}$ only, when $\\mathbf{a}$ is triangular. You should keep this in mind, when trying to establish the validity of the solution by back substitution." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "ExecuteTime": { "end_time": "2021-05-09T05:56:57.449996Z", "start_time": "2021-05-09T05:56:57.422515Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a:\n", "\n", "array([[3.0, 0.0, 0.0, 0.0],\n", " [2.0, 1.0, 0.0, 0.0],\n", " [1.0, 0.0, 1.0, 0.0],\n", " [1.0, 2.0, 1.0, 8.0]], dtype=float64)\n", "\n", "b: array([4.0, 2.0, 4.0, 2.0], dtype=float64)\n", "====================\n", "x: array([1.333333333333333, -0.6666666666666665, 2.666666666666667, -0.08333333333333337], dtype=float64)\n", "\n", "dot(a, x): array([4.0, 2.0, 4.0, 2.0], dtype=float64)\n", "\n", "\n" ] } ], "source": [ "%%micropython -unix 1\n", "\n", "from ulab import numpy as np\n", "from ulab import scipy as spy\n", "\n", "a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 2, 1, 8]])\n", "b = np.array([4, 2, 4, 2])\n", "\n", "print('a:\\n')\n", "print(a)\n", "print('\\nb: ', b)\n", "\n", "x = spy.linalg.solve_triangular(a, b, lower=True)\n", "\n", "print('='*20)\n", "print('x: ', x)\n", "print('\\ndot(a, x): ', np.dot(a, x))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With get the same solution, $\\mathbf{x}$, with the following matrix, but the dot product of $\\mathbf{a}$, and $\\mathbf{x}$ is no longer $\\mathbf{b}$:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "ExecuteTime": { "end_time": "2021-05-09T06:03:30.853054Z", "start_time": "2021-05-09T06:03:30.841500Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a:\n", "\n", "array([[3.0, 2.0, 1.0, 0.0],\n", " [2.0, 1.0, 0.0, 1.0],\n", " [1.0, 0.0, 1.0, 4.0],\n", " [1.0, 2.0, 1.0, 8.0]], dtype=float64)\n", "\n", "b: array([4.0, 2.0, 4.0, 2.0], dtype=float64)\n", "====================\n", "x: array([1.333333333333333, -0.6666666666666665, 2.666666666666667, -0.08333333333333337], dtype=float64)\n", "\n", "dot(a, x): array([5.333333333333334, 1.916666666666666, 3.666666666666667, 2.0], dtype=float64)\n", "\n", "\n" ] } ], "source": [ "%%micropython -unix 1\n", "\n", "from ulab import numpy as np\n", "from ulab import scipy as spy\n", "\n", "a = np.array([[3, 2, 1, 0], [2, 1, 0, 1], [1, 0, 1, 4], [1, 2, 1, 8]])\n", "b = np.array([4, 2, 4, 2])\n", "\n", "print('a:\\n')\n", "print(a)\n", "print('\\nb: ', b)\n", "\n", "x = spy.linalg.solve_triangular(a, b, lower=True)\n", "\n", "print('='*20)\n", "print('x: ', x)\n", "print('\\ndot(a, x): ', np.dot(a, x))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": { "height": "calc(100% - 180px)", "left": "10px", "top": "150px", "width": "382.797px" }, "toc_section_display": true, "toc_window_display": true }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }