/* * This file is part of the micropython-ulab project, * * https://github.com/v923z/micropython-ulab * * The MIT License (MIT) * * Copyright (c) 2020-2022 Zoltán Vörös */ #include #include "py/runtime.h" #include "ulab.h" #include "ndarray.h" #include "ulab_tools.h" // The following five functions return a float from a void type // The value in question is supposed to be located at the head of the pointer mp_float_t ndarray_get_float_uint8(void *data) { // Returns a float value from an uint8_t type return (mp_float_t)(*(uint8_t *)data); } mp_float_t ndarray_get_float_int8(void *data) { // Returns a float value from an int8_t type return (mp_float_t)(*(int8_t *)data); } mp_float_t ndarray_get_float_uint16(void *data) { // Returns a float value from an uint16_t type return (mp_float_t)(*(uint16_t *)data); } mp_float_t ndarray_get_float_int16(void *data) { // Returns a float value from an int16_t type return (mp_float_t)(*(int16_t *)data); } mp_float_t ndarray_get_float_float(void *data) { // Returns a float value from an mp_float_t type return *((mp_float_t *)data); } // returns a single function pointer, depending on the dtype void *ndarray_get_float_function(uint8_t dtype) { if(dtype == NDARRAY_UINT8) { return ndarray_get_float_uint8; } else if(dtype == NDARRAY_INT8) { return ndarray_get_float_int8; } else if(dtype == NDARRAY_UINT16) { return ndarray_get_float_uint16; } else if(dtype == NDARRAY_INT16) { return ndarray_get_float_int16; } else { return ndarray_get_float_float; } } mp_float_t ndarray_get_float_index(void *data, uint8_t dtype, size_t index) { // returns a single float value from an array located at index if(dtype == NDARRAY_UINT8) { return (mp_float_t)((uint8_t *)data)[index]; } else if(dtype == NDARRAY_INT8) { return (mp_float_t)((int8_t *)data)[index]; } else if(dtype == NDARRAY_UINT16) { return (mp_float_t)((uint16_t *)data)[index]; } else if(dtype == NDARRAY_INT16) { return (mp_float_t)((int16_t *)data)[index]; } else { return (mp_float_t)((mp_float_t *)data)[index]; } } mp_float_t ndarray_get_float_value(void *data, uint8_t dtype) { // Returns a float value from an arbitrary data type // The value in question is supposed to be located at the head of the pointer if(dtype == NDARRAY_UINT8) { return (mp_float_t)(*(uint8_t *)data); } else if(dtype == NDARRAY_INT8) { return (mp_float_t)(*(int8_t *)data); } else if(dtype == NDARRAY_UINT16) { return (mp_float_t)(*(uint16_t *)data); } else if(dtype == NDARRAY_INT16) { return (mp_float_t)(*(int16_t *)data); } else { return *((mp_float_t *)data); } } #if NDARRAY_BINARY_USES_FUN_POINTER | ULAB_NUMPY_HAS_WHERE uint8_t ndarray_upcast_dtype(uint8_t ldtype, uint8_t rdtype) { // returns a single character that corresponds to the broadcasting rules // - if one of the operarands is a float, the result is always float // - operation on identical types preserves type // // uint8 + int8 => int16 // uint8 + int16 => int16 // uint8 + uint16 => uint16 // int8 + int16 => int16 // int8 + uint16 => uint16 // uint16 + int16 => float if(ldtype == rdtype) { // if the two dtypes are equal, the result is also of that type return ldtype; } else if(((ldtype == NDARRAY_UINT8) && (rdtype == NDARRAY_INT8)) || ((ldtype == NDARRAY_INT8) && (rdtype == NDARRAY_UINT8)) || ((ldtype == NDARRAY_UINT8) && (rdtype == NDARRAY_INT16)) || ((ldtype == NDARRAY_INT16) && (rdtype == NDARRAY_UINT8)) || ((ldtype == NDARRAY_INT8) && (rdtype == NDARRAY_INT16)) || ((ldtype == NDARRAY_INT16) && (rdtype == NDARRAY_INT8))) { return NDARRAY_INT16; } else if(((ldtype == NDARRAY_UINT8) && (rdtype == NDARRAY_UINT16)) || ((ldtype == NDARRAY_UINT16) && (rdtype == NDARRAY_UINT8)) || ((ldtype == NDARRAY_INT8) && (rdtype == NDARRAY_UINT16)) || ((ldtype == NDARRAY_UINT16) && (rdtype == NDARRAY_INT8))) { return NDARRAY_UINT16; } return NDARRAY_FLOAT; } // The following five functions are the inverse of the ndarray_get_... functions, // and write a floating point datum into a void pointer void ndarray_set_float_uint8(void *data, mp_float_t datum) { *((uint8_t *)data) = (uint8_t)datum; } void ndarray_set_float_int8(void *data, mp_float_t datum) { *((int8_t *)data) = (int8_t)datum; } void ndarray_set_float_uint16(void *data, mp_float_t datum) { *((uint16_t *)data) = (uint16_t)datum; } void ndarray_set_float_int16(void *data, mp_float_t datum) { *((int16_t *)data) = (int16_t)datum; } void ndarray_set_float_float(void *data, mp_float_t datum) { *((mp_float_t *)data) = datum; } // returns a single function pointer, depending on the dtype void *ndarray_set_float_function(uint8_t dtype) { if(dtype == NDARRAY_UINT8) { return ndarray_set_float_uint8; } else if(dtype == NDARRAY_INT8) { return ndarray_set_float_int8; } else if(dtype == NDARRAY_UINT16) { return ndarray_set_float_uint16; } else if(dtype == NDARRAY_INT16) { return ndarray_set_float_int16; } else { return ndarray_set_float_float; } } #endif /* NDARRAY_BINARY_USES_FUN_POINTER */ shape_strides tools_reduce_axes(ndarray_obj_t *ndarray, mp_obj_t axis) { // TODO: replace numerical_reduce_axes with this function, wherever applicable // This function should be used, whenever a tensor is contracted; // The shape and strides at `axis` are moved to the zeroth position, // everything else is aligned to the right if(!mp_obj_is_int(axis) & (axis != mp_const_none)) { mp_raise_TypeError(translate("axis must be None, or an integer")); } shape_strides _shape_strides; size_t *shape = m_new(size_t, ULAB_MAX_DIMS + 1); _shape_strides.shape = shape; int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS + 1); _shape_strides.strides = strides; _shape_strides.increment = 0; // this is the contracted dimension (won't be overwritten for axis == None) _shape_strides.ndim = 0; memcpy(_shape_strides.shape, ndarray->shape, sizeof(size_t) * ULAB_MAX_DIMS); memcpy(_shape_strides.strides, ndarray->strides, sizeof(int32_t) * ULAB_MAX_DIMS); if(axis == mp_const_none) { return _shape_strides; } uint8_t index = ULAB_MAX_DIMS - 1; // value of index for axis == mp_const_none (won't be overwritten) if(axis != mp_const_none) { // i.e., axis is an integer int8_t ax = mp_obj_get_int(axis); if(ax < 0) ax += ndarray->ndim; if((ax < 0) || (ax > ndarray->ndim - 1)) { mp_raise_ValueError(translate("index out of range")); } index = ULAB_MAX_DIMS - ndarray->ndim + ax; _shape_strides.ndim = ndarray->ndim - 1; } // move the value stored at index to the leftmost position, and align everything else to the right _shape_strides.shape[0] = ndarray->shape[index]; _shape_strides.strides[0] = ndarray->strides[index]; for(uint8_t i = 0; i < index; i++) { // entries to the right of index must be shifted by one position to the left _shape_strides.shape[i + 1] = ndarray->shape[i]; _shape_strides.strides[i + 1] = ndarray->strides[i]; } if(_shape_strides.ndim != 0) { _shape_strides.increment = 1; } return _shape_strides; } int8_t tools_get_axis(mp_obj_t axis, uint8_t ndim) { int8_t ax = mp_obj_get_int(axis); if(ax < 0) ax += ndim; if((ax < 0) || (ax > ndim - 1)) { mp_raise_ValueError(translate("axis is out of bounds")); } return ax; } #if ULAB_MAX_DIMS > 1 ndarray_obj_t *tools_object_is_square(mp_obj_t obj) { // Returns an ndarray, if the object is a square ndarray, // raises the appropriate exception otherwise if(!mp_obj_is_type(obj, &ulab_ndarray_type)) { mp_raise_TypeError(translate("size is defined for ndarrays only")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(obj); if((ndarray->shape[ULAB_MAX_DIMS - 1] != ndarray->shape[ULAB_MAX_DIMS - 2]) || (ndarray->ndim != 2)) { mp_raise_ValueError(translate("input must be square matrix")); } return ndarray; } #endif uint8_t ulab_binary_get_size(uint8_t dtype) { #if ULAB_SUPPORTS_COMPLEX if(dtype == NDARRAY_COMPLEX) { return 2 * (uint8_t)sizeof(mp_float_t); } #endif return dtype == NDARRAY_BOOL ? 1 : mp_binary_get_size('@', dtype, NULL); } #if ULAB_SUPPORTS_COMPLEX void ulab_rescale_float_strides(int32_t *strides) { // re-scale the strides, so that we can work with floats, when iterating uint8_t sz = sizeof(mp_float_t); for(uint8_t i = 0; i < ULAB_MAX_DIMS; i++) { strides[i] /= sz; } } #endif