/* * This file is part of the micropython-ulab project, * * https://github.com/v923z/micropython-ulab * * The MIT License (MIT) * * Copyright (c) 2020 Jeff Epler for Adafruit Industries * 2020 Scott Shawcroft for Adafruit Industries * 2020-2021 Zoltán Vörös * 2020 Taku Fukada */ #include #include #include "py/runtime.h" #include "../../ulab.h" #include "../../ndarray.h" #include "../../numpy/carray/carray_tools.h" #include "../../numpy/fft/fft_tools.h" #if ULAB_SCIPY_SIGNAL_HAS_SPECTROGRAM //| import ulab.numpy //| //| def spectrogram(r: ulab.numpy.ndarray) -> ulab.numpy.ndarray: //| """ //| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2 //| //| Computes the spectrum of the input signal. This is the absolute value of the (complex-valued) fft of the signal. //| This function is similar to scipy's ``scipy.signal.spectrogram``.""" //| ... //| mp_obj_t signal_spectrogram(size_t n_args, const mp_obj_t *args) { #if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE return fft_fft_ifft_spectrogram(args[0], FFT_SPECTROGRAM); #else if(n_args == 2) { return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_SPECTROGRAM); } else { return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_SPECTROGRAM); } #endif } #if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(signal_spectrogram_obj, 1, 1, signal_spectrogram); #else MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(signal_spectrogram_obj, 1, 2, signal_spectrogram); #endif #endif /* ULAB_SCIPY_SIGNAL_HAS_SPECTROGRAM */ #if ULAB_SCIPY_SIGNAL_HAS_SOSFILT static void signal_sosfilt_array(mp_float_t *x, const mp_float_t *coeffs, mp_float_t *zf, const size_t len) { for(size_t i=0; i < len; i++) { mp_float_t xn = *x; *x = coeffs[0] * xn + zf[0]; zf[0] = zf[1] + coeffs[1] * xn - coeffs[4] * *x; zf[1] = coeffs[2] * xn - coeffs[5] * *x; x++; } x -= len; } mp_obj_t signal_sosfilt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_sos, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, { MP_QSTR_x, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, { MP_QSTR_zi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!ndarray_object_is_array_like(args[0].u_obj) || !ndarray_object_is_array_like(args[1].u_obj)) { mp_raise_TypeError(translate("sosfilt requires iterable arguments")); } #if ULAB_SUPPORTS_COMPLEX if(mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) { ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[1].u_obj); COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype) } #endif size_t lenx = (size_t)mp_obj_get_int(mp_obj_len_maybe(args[1].u_obj)); ndarray_obj_t *y = ndarray_new_linear_array(lenx, NDARRAY_FLOAT); mp_float_t *yarray = (mp_float_t *)y->array; mp_float_t coeffs[6]; if(mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) { ndarray_obj_t *inarray = MP_OBJ_TO_PTR(args[1].u_obj); #if ULAB_MAX_DIMS > 1 if(inarray->ndim > 1) { mp_raise_ValueError(translate("input must be one-dimensional")); } #endif uint8_t *iarray = (uint8_t *)inarray->array; for(size_t i=0; i < lenx; i++) { *yarray++ = ndarray_get_float_value(iarray, inarray->dtype); iarray += inarray->strides[ULAB_MAX_DIMS - 1]; } yarray -= lenx; } else { fill_array_iterable(yarray, args[1].u_obj); } mp_obj_iter_buf_t iter_buf; mp_obj_t item, iterable = mp_getiter(args[0].u_obj, &iter_buf); size_t lensos = (size_t)mp_obj_get_int(mp_obj_len_maybe(args[0].u_obj)); size_t *shape = ndarray_shape_vector(0, 0, lensos, 2); ndarray_obj_t *zf = ndarray_new_dense_ndarray(2, shape, NDARRAY_FLOAT); mp_float_t *zf_array = (mp_float_t *)zf->array; if(args[2].u_obj != mp_const_none) { if(!mp_obj_is_type(args[2].u_obj, &ulab_ndarray_type)) { mp_raise_TypeError(translate("zi must be an ndarray")); } else { ndarray_obj_t *zi = MP_OBJ_TO_PTR(args[2].u_obj); if((zi->shape[ULAB_MAX_DIMS - 1] != lensos) || (zi->shape[ULAB_MAX_DIMS - 1] != 2)) { mp_raise_ValueError(translate("zi must be of shape (n_section, 2)")); } if(zi->dtype != NDARRAY_FLOAT) { mp_raise_ValueError(translate("zi must be of float type")); } // TODO: this won't work with sparse arrays memcpy(zf_array, zi->array, 2*lensos*sizeof(mp_float_t)); } } while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { if(mp_obj_get_int(mp_obj_len_maybe(item)) != 6) { mp_raise_ValueError(translate("sos array must be of shape (n_section, 6)")); } else { fill_array_iterable(coeffs, item); if(coeffs[3] != MICROPY_FLOAT_CONST(1.0)) { mp_raise_ValueError(translate("sos[:, 3] should be all ones")); } signal_sosfilt_array(yarray, coeffs, zf_array, lenx); zf_array += 2; } } if(args[2].u_obj == mp_const_none) { return MP_OBJ_FROM_PTR(y); } else { mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL)); tuple->items[0] = MP_OBJ_FROM_PTR(y); tuple->items[1] = MP_OBJ_FROM_PTR(zf); return tuple; } } MP_DEFINE_CONST_FUN_OBJ_KW(signal_sosfilt_obj, 2, signal_sosfilt); #endif /* ULAB_SCIPY_SIGNAL_HAS_SOSFILT */ static const mp_rom_map_elem_t ulab_scipy_signal_globals_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_signal) }, #if ULAB_SCIPY_SIGNAL_HAS_SPECTROGRAM { MP_OBJ_NEW_QSTR(MP_QSTR_spectrogram), (mp_obj_t)&signal_spectrogram_obj }, #endif #if ULAB_SCIPY_SIGNAL_HAS_SOSFILT { MP_OBJ_NEW_QSTR(MP_QSTR_sosfilt), (mp_obj_t)&signal_sosfilt_obj }, #endif }; static MP_DEFINE_CONST_DICT(mp_module_ulab_scipy_signal_globals, ulab_scipy_signal_globals_table); const mp_obj_module_t ulab_scipy_signal_module = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_signal_globals, }; MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_signal, ulab_scipy_signal_module, MODULE_ULAB_ENABLED && CIRCUITPY_ULAB);