/* * This file is part of the micropython-ulab project, * * https://github.com/v923z/micropython-ulab * * The MIT License (MIT) * * Copyright (c) 2019-2021 Zoltán Vörös * 2020 Scott Shawcroft for Adafruit Industries * 2020 Taku Fukada */ #include #include #include #include "py/obj.h" #include "py/objint.h" #include "py/runtime.h" #include "py/builtin.h" #include "py/misc.h" #include "../ulab.h" #include "../ulab_tools.h" #include "./carray/carray_tools.h" #include "numerical.h" enum NUMERICAL_FUNCTION_TYPE { NUMERICAL_ALL, NUMERICAL_ANY, NUMERICAL_ARGMAX, NUMERICAL_ARGMIN, NUMERICAL_MAX, NUMERICAL_MEAN, NUMERICAL_MIN, NUMERICAL_STD, NUMERICAL_SUM, }; //| """Numerical and Statistical functions //| //| Most of these functions take an "axis" argument, which indicates whether to //| operate over the flattened array (None), or a particular axis (integer).""" //| //| from typing import Dict //| //| _ArrayLike = Union[ndarray, List[_float], Tuple[_float], range] //| //| _DType = int //| """`ulab.numpy.int8`, `ulab.numpy.uint8`, `ulab.numpy.int16`, `ulab.numpy.uint16`, `ulab.numpy.float` or `ulab.numpy.bool`""" //| //| from builtins import float as _float //| from builtins import bool as _bool //| //| int8: _DType //| """Type code for signed integers in the range -128 .. 127 inclusive, like the 'b' typecode of `array.array`""" //| //| int16: _DType //| """Type code for signed integers in the range -32768 .. 32767 inclusive, like the 'h' typecode of `array.array`""" //| //| float: _DType //| """Type code for floating point values, like the 'f' typecode of `array.array`""" //| //| uint8: _DType //| """Type code for unsigned integers in the range 0 .. 255 inclusive, like the 'H' typecode of `array.array`""" //| //| uint16: _DType //| """Type code for unsigned integers in the range 0 .. 65535 inclusive, like the 'h' typecode of `array.array`""" //| //| bool: _DType //| """Type code for boolean values""" //| static void numerical_reduce_axes(ndarray_obj_t *ndarray, int8_t axis, size_t *shape, int32_t *strides) { // removes the values corresponding to a single axis from the shape and strides array uint8_t index = ULAB_MAX_DIMS - ndarray->ndim + axis; if((ndarray->ndim == 1) && (axis == 0)) { index = 0; shape[ULAB_MAX_DIMS - 1] = 1; return; } for(uint8_t i = ULAB_MAX_DIMS - 1; i > 0; i--) { if(i > index) { shape[i] = ndarray->shape[i]; strides[i] = ndarray->strides[i]; } else { shape[i] = ndarray->shape[i-1]; strides[i] = ndarray->strides[i-1]; } } } #if ULAB_NUMPY_HAS_ALL | ULAB_NUMPY_HAS_ANY static mp_obj_t numerical_all_any(mp_obj_t oin, mp_obj_t axis, uint8_t optype) { bool anytype = optype == NUMERICAL_ALL ? 1 : 0; if(mp_obj_is_type(oin, &ulab_ndarray_type)) { ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin); uint8_t *array = (uint8_t *)ndarray->array; if(ndarray->len == 0) { // return immediately with empty arrays if(optype == NUMERICAL_ALL) { return mp_const_true; } else { return mp_const_false; } } // always get a float, so that we don't have to resolve the dtype later mp_float_t (*func)(void *) = ndarray_get_float_function(ndarray->dtype); ndarray_obj_t *results = NULL; uint8_t *rarray = NULL; shape_strides _shape_strides = tools_reduce_axes(ndarray, axis); if(axis != mp_const_none) { results = ndarray_new_dense_ndarray(_shape_strides.ndim, _shape_strides.shape, NDARRAY_BOOL); rarray = results->array; if(optype == NUMERICAL_ALL) { memset(rarray, 1, results->len); } } #if ULAB_MAX_DIMS > 3 size_t i = 0; do { #endif #if ULAB_MAX_DIMS > 2 size_t j = 0; do { #endif #if ULAB_MAX_DIMS > 1 size_t k = 0; do { #endif size_t l = 0; if(axis == mp_const_none) { do { #if ULAB_SUPPORTS_COMPLEX if(ndarray->dtype == NDARRAY_COMPLEX) { mp_float_t real = *((mp_float_t *)array); mp_float_t imag = *((mp_float_t *)(array + sizeof(mp_float_t))); if(((real != MICROPY_FLOAT_CONST(0.0)) | (imag != MICROPY_FLOAT_CONST(0.0))) & !anytype) { // optype = NUMERICAL_ANY return mp_const_true; } else if(((real == MICROPY_FLOAT_CONST(0.0)) & (imag == MICROPY_FLOAT_CONST(0.0))) & anytype) { // optype == NUMERICAL_ALL return mp_const_false; } } else { #endif mp_float_t value = func(array); if((value != MICROPY_FLOAT_CONST(0.0)) & !anytype) { // optype = NUMERICAL_ANY return mp_const_true; } else if((value == MICROPY_FLOAT_CONST(0.0)) & anytype) { // optype == NUMERICAL_ALL return mp_const_false; } #if ULAB_SUPPORTS_COMPLEX } #endif array += _shape_strides.strides[0]; l++; } while(l < _shape_strides.shape[0]); } else { // a scalar axis keyword was supplied do { #if ULAB_SUPPORTS_COMPLEX if(ndarray->dtype == NDARRAY_COMPLEX) { mp_float_t real = *((mp_float_t *)array); mp_float_t imag = *((mp_float_t *)(array + sizeof(mp_float_t))); if(((real != MICROPY_FLOAT_CONST(0.0)) | (imag != MICROPY_FLOAT_CONST(0.0))) & !anytype) { // optype = NUMERICAL_ANY *rarray = 1; // since we are breaking out of the loop, move the pointer forward array += _shape_strides.strides[0] * (_shape_strides.shape[0] - l); break; } else if(((real == MICROPY_FLOAT_CONST(0.0)) & (imag == MICROPY_FLOAT_CONST(0.0))) & anytype) { // optype == NUMERICAL_ALL *rarray = 0; // since we are breaking out of the loop, move the pointer forward array += _shape_strides.strides[0] * (_shape_strides.shape[0] - l); break; } } else { #endif mp_float_t value = func(array); if((value != MICROPY_FLOAT_CONST(0.0)) & !anytype) { // optype == NUMERICAL_ANY *rarray = 1; // since we are breaking out of the loop, move the pointer forward array += _shape_strides.strides[0] * (_shape_strides.shape[0] - l); break; } else if((value == MICROPY_FLOAT_CONST(0.0)) & anytype) { // optype == NUMERICAL_ALL *rarray = 0; // since we are breaking out of the loop, move the pointer forward array += _shape_strides.strides[0] * (_shape_strides.shape[0] - l); break; } #if ULAB_SUPPORTS_COMPLEX } #endif array += _shape_strides.strides[0]; l++; } while(l < _shape_strides.shape[0]); } #if ULAB_MAX_DIMS > 1 rarray += _shape_strides.increment; array -= _shape_strides.strides[0] * _shape_strides.shape[0]; array += _shape_strides.strides[ULAB_MAX_DIMS - 1]; k++; } while(k < _shape_strides.shape[ULAB_MAX_DIMS - 1]); #endif #if ULAB_MAX_DIMS > 2 array -= _shape_strides.strides[ULAB_MAX_DIMS - 1] * _shape_strides.shape[ULAB_MAX_DIMS - 1]; array += _shape_strides.strides[ULAB_MAX_DIMS - 2]; j++; } while(j < _shape_strides.shape[ULAB_MAX_DIMS - 2]); #endif #if ULAB_MAX_DIMS > 3 array -= _shape_strides.strides[ULAB_MAX_DIMS - 2] * _shape_strides.shape[ULAB_MAX_DIMS - 2]; array += _shape_strides.strides[ULAB_MAX_DIMS - 3]; i++; } while(i < _shape_strides.shape[ULAB_MAX_DIMS - 3]); #endif if(axis == mp_const_none) { // the innermost loop fell through, so return the result here if(!anytype) { return mp_const_false; } else { return mp_const_true; } } return results; } else if(mp_obj_is_int(oin) || mp_obj_is_float(oin)) { return mp_obj_is_true(oin) ? mp_const_true : mp_const_false; } else { mp_obj_iter_buf_t iter_buf; mp_obj_t item, iterable = mp_getiter(oin, &iter_buf); while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { if(!mp_obj_is_true(item) & !anytype) { return mp_const_false; } else if(mp_obj_is_true(item) & anytype) { return mp_const_true; } } } return anytype ? mp_const_true : mp_const_false; } #endif #if ULAB_NUMPY_HAS_SUM | ULAB_NUMPY_HAS_MEAN | ULAB_NUMPY_HAS_STD static mp_obj_t numerical_sum_mean_std_iterable(mp_obj_t oin, uint8_t optype, size_t ddof) { mp_float_t value = MICROPY_FLOAT_CONST(0.0); mp_float_t M = MICROPY_FLOAT_CONST(0.0); mp_float_t m = MICROPY_FLOAT_CONST(0.0); mp_float_t S = MICROPY_FLOAT_CONST(0.0); mp_float_t s = MICROPY_FLOAT_CONST(0.0); size_t count = 0; mp_obj_iter_buf_t iter_buf; mp_obj_t item, iterable = mp_getiter(oin, &iter_buf); while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { value = mp_obj_get_float(item); m = M + (value - M) / (count + 1); s = S + (value - M) * (value - m); M = m; S = s; count++; } if(optype == NUMERICAL_SUM) { return mp_obj_new_float(m * count); } else if(optype == NUMERICAL_MEAN) { return count > 0 ? mp_obj_new_float(m) : mp_obj_new_float(MICROPY_FLOAT_CONST(0.0)); } else { // this should be the case of the standard deviation return count > ddof ? mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(s / (count - ddof))) : mp_obj_new_float(MICROPY_FLOAT_CONST(0.0)); } } static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype, size_t ddof) { COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype) uint8_t *array = (uint8_t *)ndarray->array; shape_strides _shape_strides = tools_reduce_axes(ndarray, axis); if(axis == mp_const_none) { // work with the flattened array if((optype == NUMERICAL_STD) && (ddof > ndarray->len)) { // if there are too many degrees of freedom, there is no point in calculating anything return mp_obj_new_float(MICROPY_FLOAT_CONST(0.0)); } mp_float_t (*func)(void *) = ndarray_get_float_function(ndarray->dtype); mp_float_t M = MICROPY_FLOAT_CONST(0.0); mp_float_t m = MICROPY_FLOAT_CONST(0.0); mp_float_t S = MICROPY_FLOAT_CONST(0.0); mp_float_t s = MICROPY_FLOAT_CONST(0.0); size_t count = 0; #if ULAB_MAX_DIMS > 3 size_t i = 0; do { #endif #if ULAB_MAX_DIMS > 2 size_t j = 0; do { #endif #if ULAB_MAX_DIMS > 1 size_t k = 0; do { #endif size_t l = 0; do { count++; mp_float_t value = func(array); m = M + (value - M) / (mp_float_t)count; if(optype == NUMERICAL_STD) { s = S + (value - M) * (value - m); S = s; } M = m; array += _shape_strides.strides[ULAB_MAX_DIMS - 1]; l++; } while(l < _shape_strides.shape[ULAB_MAX_DIMS - 1]); #if ULAB_MAX_DIMS > 1 array -= _shape_strides.strides[ULAB_MAX_DIMS - 1] * _shape_strides.shape[ULAB_MAX_DIMS - 1]; array += _shape_strides.strides[ULAB_MAX_DIMS - 2]; k++; } while(k < _shape_strides.shape[ULAB_MAX_DIMS - 2]); #endif #if ULAB_MAX_DIMS > 2 array -= _shape_strides.strides[ULAB_MAX_DIMS - 2] * _shape_strides.shape[ULAB_MAX_DIMS - 2]; array += _shape_strides.strides[ULAB_MAX_DIMS - 3]; j++; } while(j < _shape_strides.shape[ULAB_MAX_DIMS - 3]); #endif #if ULAB_MAX_DIMS > 3 array -= _shape_strides.strides[ULAB_MAX_DIMS - 3] * _shape_strides.shape[ULAB_MAX_DIMS - 3]; array += _shape_strides.strides[ULAB_MAX_DIMS - 4]; i++; } while(i < _shape_strides.shape[ULAB_MAX_DIMS - 4]); #endif if(optype == NUMERICAL_SUM) { // numpy returns an integer for integer input types if(ndarray->dtype == NDARRAY_FLOAT) { return mp_obj_new_float(M * ndarray->len); } else { return mp_obj_new_int((int32_t)MICROPY_FLOAT_C_FUN(round)(M * ndarray->len)); } } else if(optype == NUMERICAL_MEAN) { return mp_obj_new_float(M); } else { // this must be the case of the standard deviation // we have already made certain that ddof < ndarray->len holds return mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(S / (ndarray->len - ddof))); } } else { ndarray_obj_t *results = NULL; uint8_t *rarray = NULL; mp_float_t *farray = NULL; if(optype == NUMERICAL_SUM) { results = ndarray_new_dense_ndarray(_shape_strides.ndim, _shape_strides.shape, ndarray->dtype); rarray = (uint8_t *)results->array; // TODO: numpy promotes the output to the highest integer type if(ndarray->dtype == NDARRAY_UINT8) { RUN_SUM(uint8_t, array, results, rarray, _shape_strides); } else if(ndarray->dtype == NDARRAY_INT8) { RUN_SUM(int8_t, array, results, rarray, _shape_strides); } else if(ndarray->dtype == NDARRAY_UINT16) { RUN_SUM(uint16_t, array, results, rarray, _shape_strides); } else if(ndarray->dtype == NDARRAY_INT16) { RUN_SUM(int16_t, array, results, rarray, _shape_strides); } else { // for floats, the sum might be inaccurate with the naive summation // call mean, and multiply with the number of samples farray = (mp_float_t *)results->array; RUN_MEAN_STD(mp_float_t, array, farray, _shape_strides, MICROPY_FLOAT_CONST(0.0), 0); mp_float_t norm = (mp_float_t)_shape_strides.shape[0]; // re-wind the array here farray = (mp_float_t *)results->array; for(size_t i=0; i < results->len; i++) { *farray++ *= norm; } } } else { bool isStd = optype == NUMERICAL_STD ? 1 : 0; results = ndarray_new_dense_ndarray(_shape_strides.ndim, _shape_strides.shape, NDARRAY_FLOAT); farray = (mp_float_t *)results->array; // we can return the 0 array here, if the degrees of freedom is larger than the length of the axis if((optype == NUMERICAL_STD) && (_shape_strides.shape[0] <= ddof)) { return MP_OBJ_FROM_PTR(results); } mp_float_t div = optype == NUMERICAL_STD ? (mp_float_t)(_shape_strides.shape[0] - ddof) : MICROPY_FLOAT_CONST(0.0); if(ndarray->dtype == NDARRAY_UINT8) { RUN_MEAN_STD(uint8_t, array, farray, _shape_strides, div, isStd); } else if(ndarray->dtype == NDARRAY_INT8) { RUN_MEAN_STD(int8_t, array, farray, _shape_strides, div, isStd); } else if(ndarray->dtype == NDARRAY_UINT16) { RUN_MEAN_STD(uint16_t, array, farray, _shape_strides, div, isStd); } else if(ndarray->dtype == NDARRAY_INT16) { RUN_MEAN_STD(int16_t, array, farray, _shape_strides, div, isStd); } else { RUN_MEAN_STD(mp_float_t, array, farray, _shape_strides, div, isStd); } } if(results->ndim == 0) { // return a scalar here return mp_binary_get_val_array(results->dtype, results->array, 0); } return MP_OBJ_FROM_PTR(results); } return mp_const_none; } #endif #if ULAB_NUMPY_HAS_ARGMINMAX static mp_obj_t numerical_argmin_argmax_iterable(mp_obj_t oin, uint8_t optype) { if(MP_OBJ_SMALL_INT_VALUE(mp_obj_len_maybe(oin)) == 0) { mp_raise_ValueError(translate("attempt to get argmin/argmax of an empty sequence")); } size_t idx = 0, best_idx = 0; mp_obj_iter_buf_t iter_buf; mp_obj_t iterable = mp_getiter(oin, &iter_buf); mp_obj_t item; uint8_t op = 0; // argmin, min if((optype == NUMERICAL_ARGMAX) || (optype == NUMERICAL_MAX)) op = 1; item = mp_iternext(iterable); mp_obj_t best_obj = item; mp_float_t value, best_value = mp_obj_get_float(item); value = best_value; while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { idx++; value = mp_obj_get_float(item); if((op == 0) && (value < best_value)) { best_obj = item; best_idx = idx; best_value = value; } else if((op == 1) && (value > best_value)) { best_obj = item; best_idx = idx; best_value = value; } } if((optype == NUMERICAL_ARGMIN) || (optype == NUMERICAL_ARGMAX)) { return MP_OBJ_NEW_SMALL_INT(best_idx); } else { return best_obj; } } static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype) { // TODO: treat the flattened array if(ndarray->len == 0) { mp_raise_ValueError(translate("attempt to get (arg)min/(arg)max of empty sequence")); } if(axis == mp_const_none) { // work with the flattened array mp_float_t (*func)(void *) = ndarray_get_float_function(ndarray->dtype); uint8_t *array = (uint8_t *)ndarray->array; mp_float_t best_value = func(array); mp_float_t value; size_t index = 0, best_index = 0; #if ULAB_MAX_DIMS > 3 size_t i = 0; do { #endif #if ULAB_MAX_DIMS > 2 size_t j = 0; do { #endif #if ULAB_MAX_DIMS > 1 size_t k = 0; do { #endif size_t l = 0; do { value = func(array); if((optype == NUMERICAL_ARGMAX) || (optype == NUMERICAL_MAX)) { if(best_value < value) { best_value = value; best_index = index; } } else { if(best_value > value) { best_value = value; best_index = index; } } array += ndarray->strides[ULAB_MAX_DIMS - 1]; l++; index++; } while(l < ndarray->shape[ULAB_MAX_DIMS - 1]); #if ULAB_MAX_DIMS > 1 array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1]; array += ndarray->strides[ULAB_MAX_DIMS - 2]; k++; } while(k < ndarray->shape[ULAB_MAX_DIMS - 2]); #endif #if ULAB_MAX_DIMS > 2 array -= ndarray->strides[ULAB_MAX_DIMS - 2] * ndarray->shape[ULAB_MAX_DIMS-2]; array += ndarray->strides[ULAB_MAX_DIMS - 3]; j++; } while(j < ndarray->shape[ULAB_MAX_DIMS - 3]); #endif #if ULAB_MAX_DIMS > 3 array -= ndarray->strides[ULAB_MAX_DIMS - 3] * ndarray->shape[ULAB_MAX_DIMS-3]; array += ndarray->strides[ULAB_MAX_DIMS - 4]; i++; } while(i < ndarray->shape[ULAB_MAX_DIMS - 4]); #endif if((optype == NUMERICAL_ARGMIN) || (optype == NUMERICAL_ARGMAX)) { return mp_obj_new_int(best_index); } else { if(ndarray->dtype == NDARRAY_FLOAT) { return mp_obj_new_float(best_value); } else { return MP_OBJ_NEW_SMALL_INT((int32_t)best_value); } } } else { int8_t ax = tools_get_axis(axis, ndarray->ndim); uint8_t *array = (uint8_t *)ndarray->array; size_t *shape = m_new(size_t, ULAB_MAX_DIMS); memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS); int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS); memset(strides, 0, sizeof(uint32_t)*ULAB_MAX_DIMS); numerical_reduce_axes(ndarray, ax, shape, strides); uint8_t index = ULAB_MAX_DIMS - ndarray->ndim + ax; ndarray_obj_t *results = NULL; if((optype == NUMERICAL_ARGMIN) || (optype == NUMERICAL_ARGMAX)) { results = ndarray_new_dense_ndarray(MAX(1, ndarray->ndim-1), shape, NDARRAY_INT16); } else { results = ndarray_new_dense_ndarray(MAX(1, ndarray->ndim-1), shape, ndarray->dtype); } uint8_t *rarray = (uint8_t *)results->array; if(ndarray->dtype == NDARRAY_UINT8) { RUN_ARGMIN(ndarray, uint8_t, array, results, rarray, shape, strides, index, optype); } else if(ndarray->dtype == NDARRAY_INT8) { RUN_ARGMIN(ndarray, int8_t, array, results, rarray, shape, strides, index, optype); } else if(ndarray->dtype == NDARRAY_UINT16) { RUN_ARGMIN(ndarray, uint16_t, array, results, rarray, shape, strides, index, optype); } else if(ndarray->dtype == NDARRAY_INT16) { RUN_ARGMIN(ndarray, int16_t, array, results, rarray, shape, strides, index, optype); } else { RUN_ARGMIN(ndarray, mp_float_t, array, results, rarray, shape, strides, index, optype); } if(results->len == 1) { return mp_binary_get_val_array(results->dtype, results->array, 0); } return MP_OBJ_FROM_PTR(results); } return mp_const_none; } #endif static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, uint8_t optype) { static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none} } , { MP_QSTR_axis, MP_ARG_OBJ, { .u_rom_obj = mp_const_none } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_obj_t oin = args[0].u_obj; mp_obj_t axis = args[1].u_obj; if((axis != mp_const_none) && (!mp_obj_is_int(axis))) { mp_raise_TypeError(translate("axis must be None, or an integer")); } if((optype == NUMERICAL_ALL) || (optype == NUMERICAL_ANY)) { return numerical_all_any(oin, axis, optype); } if(mp_obj_is_type(oin, &mp_type_tuple) || mp_obj_is_type(oin, &mp_type_list) || mp_obj_is_type(oin, &mp_type_range)) { switch(optype) { case NUMERICAL_MIN: case NUMERICAL_ARGMIN: case NUMERICAL_MAX: case NUMERICAL_ARGMAX: return numerical_argmin_argmax_iterable(oin, optype); case NUMERICAL_SUM: case NUMERICAL_MEAN: return numerical_sum_mean_std_iterable(oin, optype, 0); default: // we should never reach this point, but whatever return mp_const_none; } } else if(mp_obj_is_type(oin, &ulab_ndarray_type)) { ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin); switch(optype) { case NUMERICAL_MIN: case NUMERICAL_MAX: case NUMERICAL_ARGMIN: case NUMERICAL_ARGMAX: COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype) return numerical_argmin_argmax_ndarray(ndarray, axis, optype); case NUMERICAL_SUM: case NUMERICAL_MEAN: COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype) return numerical_sum_mean_std_ndarray(ndarray, axis, optype, 0); default: mp_raise_NotImplementedError(translate("operation is not implemented on ndarrays")); } } else { mp_raise_TypeError(translate("input must be tuple, list, range, or ndarray")); } return mp_const_none; } #if ULAB_NUMPY_HAS_SORT | NDARRAY_HAS_SORT static mp_obj_t numerical_sort_helper(mp_obj_t oin, mp_obj_t axis, uint8_t inplace) { if(!mp_obj_is_type(oin, &ulab_ndarray_type)) { mp_raise_TypeError(translate("sort argument must be an ndarray")); } ndarray_obj_t *ndarray; if(inplace == 1) { ndarray = MP_OBJ_TO_PTR(oin); } else { ndarray = ndarray_copy_view(MP_OBJ_TO_PTR(oin)); } COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype) int8_t ax = 0; if(axis == mp_const_none) { // flatten the array #if ULAB_MAX_DIMS > 1 for(uint8_t i=0; i < ULAB_MAX_DIMS - 1; i++) { ndarray->shape[i] = 0; ndarray->strides[i] = 0; } ndarray->shape[ULAB_MAX_DIMS - 1] = ndarray->len; ndarray->strides[ULAB_MAX_DIMS - 1] = ndarray->itemsize; ndarray->ndim = 1; #endif } else { ax = tools_get_axis(axis, ndarray->ndim); } size_t *shape = m_new(size_t, ULAB_MAX_DIMS); memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS); int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS); memset(strides, 0, sizeof(uint32_t)*ULAB_MAX_DIMS); numerical_reduce_axes(ndarray, ax, shape, strides); ax = ULAB_MAX_DIMS - ndarray->ndim + ax; // we work with the typed array, so re-scale the stride int32_t increment = ndarray->strides[ax] / ndarray->itemsize; uint8_t *array = (uint8_t *)ndarray->array; if((ndarray->dtype == NDARRAY_UINT8) || (ndarray->dtype == NDARRAY_INT8)) { HEAPSORT(ndarray, uint8_t, array, shape, strides, ax, increment, ndarray->shape[ax]); } else if((ndarray->dtype == NDARRAY_INT16) || (ndarray->dtype == NDARRAY_INT16)) { HEAPSORT(ndarray, uint16_t, array, shape, strides, ax, increment, ndarray->shape[ax]); } else { HEAPSORT(ndarray, mp_float_t, array, shape, strides, ax, increment, ndarray->shape[ax]); } if(inplace == 1) { return mp_const_none; } else { return MP_OBJ_FROM_PTR(ndarray); } } #endif /* ULAB_NUMERICAL_HAS_SORT | NDARRAY_HAS_SORT */ #if ULAB_NUMPY_HAS_ALL mp_obj_t numerical_all(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { return numerical_function(n_args, pos_args, kw_args, NUMERICAL_ALL); } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_all_obj, 1, numerical_all); #endif #if ULAB_NUMPY_HAS_ANY mp_obj_t numerical_any(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { return numerical_function(n_args, pos_args, kw_args, NUMERICAL_ANY); } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_any_obj, 1, numerical_any); #endif #if ULAB_NUMPY_HAS_ARGMINMAX //| def argmax(array: _ArrayLike, *, axis: Optional[int] = None) -> int: //| """Return the index of the maximum element of the 1D array""" //| ... //| mp_obj_t numerical_argmax(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { return numerical_function(n_args, pos_args, kw_args, NUMERICAL_ARGMAX); } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_argmax_obj, 1, numerical_argmax); //| def argmin(array: _ArrayLike, *, axis: Optional[int] = None) -> int: //| """Return the index of the minimum element of the 1D array""" //| ... //| static mp_obj_t numerical_argmin(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { return numerical_function(n_args, pos_args, kw_args, NUMERICAL_ARGMIN); } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_argmin_obj, 1, numerical_argmin); #endif #if ULAB_NUMPY_HAS_ARGSORT //| def argsort(array: ulab.numpy.ndarray, *, axis: int = -1) -> ulab.numpy.ndarray: //| """Returns an array which gives indices into the input array from least to greatest.""" //| ... //| mp_obj_t numerical_argsort(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } }, { MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { mp_raise_TypeError(translate("argsort argument must be an ndarray")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj); COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype) if(args[1].u_obj == mp_const_none) { // bail out, though dense arrays could still be sorted mp_raise_NotImplementedError(translate("argsort is not implemented for flattened arrays")); } // Since we are returning an NDARRAY_UINT16 array, bail out, // if the axis is longer than what we can hold for(uint8_t i=0; i < ULAB_MAX_DIMS; i++) { if(ndarray->shape[i] > 65535) { mp_raise_ValueError(translate("axis too long")); } } int8_t ax = tools_get_axis(args[1].u_obj, ndarray->ndim); size_t *shape = m_new(size_t, ULAB_MAX_DIMS); memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS); int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS); memset(strides, 0, sizeof(uint32_t)*ULAB_MAX_DIMS); numerical_reduce_axes(ndarray, ax, shape, strides); // We could return an NDARRAY_UINT8 array, if all lengths are shorter than 256 ndarray_obj_t *indices = ndarray_new_ndarray(ndarray->ndim, ndarray->shape, NULL, NDARRAY_UINT16); int32_t *istrides = m_new(int32_t, ULAB_MAX_DIMS); memset(istrides, 0, sizeof(uint32_t)*ULAB_MAX_DIMS); numerical_reduce_axes(indices, ax, shape, istrides); for(uint8_t i=0; i < ULAB_MAX_DIMS; i++) { istrides[i] /= sizeof(uint16_t); } ax = ULAB_MAX_DIMS - ndarray->ndim + ax; // we work with the typed array, so re-scale the stride int32_t increment = ndarray->strides[ax] / ndarray->itemsize; uint16_t iincrement = indices->strides[ax] / sizeof(uint16_t); uint8_t *array = (uint8_t *)ndarray->array; uint16_t *iarray = (uint16_t *)indices->array; // fill in the index values #if ULAB_MAX_DIMS > 3 size_t j = 0; do { #endif #if ULAB_MAX_DIMS > 2 size_t k = 0; do { #endif #if ULAB_MAX_DIMS > 1 size_t l = 0; do { #endif uint16_t m = 0; do { *iarray = m++; iarray += iincrement; } while(m < indices->shape[ax]); #if ULAB_MAX_DIMS > 1 iarray -= iincrement * indices->shape[ax]; iarray += istrides[ULAB_MAX_DIMS - 1]; l++; } while(l < shape[ULAB_MAX_DIMS - 1]); iarray -= istrides[ULAB_MAX_DIMS - 1] * shape[ULAB_MAX_DIMS - 1]; iarray += istrides[ULAB_MAX_DIMS - 2]; #endif #if ULAB_MAX_DIMS > 2 k++; } while(k < shape[ULAB_MAX_DIMS - 2]); iarray -= istrides[ULAB_MAX_DIMS - 2] * shape[ULAB_MAX_DIMS - 2]; iarray += istrides[ULAB_MAX_DIMS - 3]; #endif #if ULAB_MAX_DIMS > 3 j++; } while(j < shape[ULAB_MAX_DIMS - 3]); #endif // reset the array iarray = indices->array; if((ndarray->dtype == NDARRAY_UINT8) || (ndarray->dtype == NDARRAY_INT8)) { HEAP_ARGSORT(ndarray, uint8_t, array, shape, strides, ax, increment, ndarray->shape[ax], iarray, istrides, iincrement); } else if((ndarray->dtype == NDARRAY_UINT16) || (ndarray->dtype == NDARRAY_INT16)) { HEAP_ARGSORT(ndarray, uint16_t, array, shape, strides, ax, increment, ndarray->shape[ax], iarray, istrides, iincrement); } else { HEAP_ARGSORT(ndarray, mp_float_t, array, shape, strides, ax, increment, ndarray->shape[ax], iarray, istrides, iincrement); } return MP_OBJ_FROM_PTR(indices); } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_argsort_obj, 1, numerical_argsort); #endif #if ULAB_NUMPY_HAS_CROSS //| def cross(a: ulab.numpy.ndarray, b: ulab.numpy.ndarray) -> ulab.numpy.ndarray: //| """Return the cross product of two vectors of length 3""" //| ... //| static mp_obj_t numerical_cross(mp_obj_t _a, mp_obj_t _b) { if (!mp_obj_is_type(_a, &ulab_ndarray_type) || !mp_obj_is_type(_b, &ulab_ndarray_type)) { mp_raise_TypeError(translate("arguments must be ndarrays")); } ndarray_obj_t *a = MP_OBJ_TO_PTR(_a); ndarray_obj_t *b = MP_OBJ_TO_PTR(_b); COMPLEX_DTYPE_NOT_IMPLEMENTED(a->dtype) COMPLEX_DTYPE_NOT_IMPLEMENTED(b->dtype) if((a->ndim != 1) || (b->ndim != 1) || (a->len != b->len) || (a->len != 3)) { mp_raise_ValueError(translate("cross is defined for 1D arrays of length 3")); } mp_float_t *results = m_new(mp_float_t, 3); results[0] = ndarray_get_float_index(a->array, a->dtype, 1) * ndarray_get_float_index(b->array, b->dtype, 2); results[0] -= ndarray_get_float_index(a->array, a->dtype, 2) * ndarray_get_float_index(b->array, b->dtype, 1); results[1] = -ndarray_get_float_index(a->array, a->dtype, 0) * ndarray_get_float_index(b->array, b->dtype, 2); results[1] += ndarray_get_float_index(a->array, a->dtype, 2) * ndarray_get_float_index(b->array, b->dtype, 0); results[2] = ndarray_get_float_index(a->array, a->dtype, 0) * ndarray_get_float_index(b->array, b->dtype, 1); results[2] -= ndarray_get_float_index(a->array, a->dtype, 1) * ndarray_get_float_index(b->array, b->dtype, 0); /* The upcasting happens here with the rules - if one of the operarands is a float, the result is always float - operation on identical types preserves type uint8 + int8 => int16 uint8 + int16 => int16 uint8 + uint16 => uint16 int8 + int16 => int16 int8 + uint16 => uint16 uint16 + int16 => float */ uint8_t dtype = NDARRAY_FLOAT; if(a->dtype == b->dtype) { dtype = a->dtype; } else if(((a->dtype == NDARRAY_UINT8) && (b->dtype == NDARRAY_INT8)) || ((a->dtype == NDARRAY_INT8) && (b->dtype == NDARRAY_UINT8))) { dtype = NDARRAY_INT16; } else if(((a->dtype == NDARRAY_UINT8) && (b->dtype == NDARRAY_INT16)) || ((a->dtype == NDARRAY_INT16) && (b->dtype == NDARRAY_UINT8))) { dtype = NDARRAY_INT16; } else if(((a->dtype == NDARRAY_UINT8) && (b->dtype == NDARRAY_UINT16)) || ((a->dtype == NDARRAY_UINT16) && (b->dtype == NDARRAY_UINT8))) { dtype = NDARRAY_UINT16; } else if(((a->dtype == NDARRAY_INT8) && (b->dtype == NDARRAY_INT16)) || ((a->dtype == NDARRAY_INT16) && (b->dtype == NDARRAY_INT8))) { dtype = NDARRAY_INT16; } else if(((a->dtype == NDARRAY_INT8) && (b->dtype == NDARRAY_UINT16)) || ((a->dtype == NDARRAY_UINT16) && (b->dtype == NDARRAY_INT8))) { dtype = NDARRAY_UINT16; } ndarray_obj_t *ndarray = ndarray_new_linear_array(3, dtype); if(dtype == NDARRAY_UINT8) { uint8_t *array = (uint8_t *)ndarray->array; for(uint8_t i=0; i < 3; i++) array[i] = (uint8_t)results[i]; } else if(dtype == NDARRAY_INT8) { int8_t *array = (int8_t *)ndarray->array; for(uint8_t i=0; i < 3; i++) array[i] = (int8_t)results[i]; } else if(dtype == NDARRAY_UINT16) { uint16_t *array = (uint16_t *)ndarray->array; for(uint8_t i=0; i < 3; i++) array[i] = (uint16_t)results[i]; } else if(dtype == NDARRAY_INT16) { int16_t *array = (int16_t *)ndarray->array; for(uint8_t i=0; i < 3; i++) array[i] = (int16_t)results[i]; } else { mp_float_t *array = (mp_float_t *)ndarray->array; for(uint8_t i=0; i < 3; i++) array[i] = results[i]; } m_del(mp_float_t, results, 3); return MP_OBJ_FROM_PTR(ndarray); } MP_DEFINE_CONST_FUN_OBJ_2(numerical_cross_obj, numerical_cross); #endif /* ULAB_NUMERICAL_HAS_CROSS */ #if ULAB_NUMPY_HAS_DIFF //| def diff(array: ulab.numpy.ndarray, *, n: int = 1, axis: int = -1) -> ulab.numpy.ndarray: //| """Return the numerical derivative of successive elements of the array, as //| an array. axis=None is not supported.""" //| ... //| mp_obj_t numerical_diff(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, { MP_QSTR_n, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1 } }, { MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1 } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { mp_raise_TypeError(translate("diff argument must be an ndarray")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj); COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype) int8_t ax = args[2].u_int; if(ax < 0) ax += ndarray->ndim; if((ax < 0) || (ax > ndarray->ndim - 1)) { mp_raise_ValueError(translate("index out of range")); } if((args[1].u_int < 0) || (args[1].u_int > 9)) { mp_raise_ValueError(translate("differentiation order out of range")); } uint8_t N = (uint8_t)args[1].u_int; uint8_t index = ULAB_MAX_DIMS - ndarray->ndim + ax; if(N > ndarray->shape[index]) { mp_raise_ValueError(translate("differentiation order out of range")); } int8_t *stencil = m_new(int8_t, N+1); stencil[0] = 1; for(uint8_t i=1; i < N+1; i++) { stencil[i] = -stencil[i-1]*(N-i+1)/i; } size_t *shape = m_new(size_t, ULAB_MAX_DIMS); memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS); for(uint8_t i=0; i < ULAB_MAX_DIMS; i++) { shape[i] = ndarray->shape[i]; if(i == index) { shape[i] -= N; } } uint8_t *array = (uint8_t *)ndarray->array; ndarray_obj_t *results = ndarray_new_dense_ndarray(ndarray->ndim, shape, ndarray->dtype); uint8_t *rarray = (uint8_t *)results->array; memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS); int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS); memset(strides, 0, sizeof(int32_t)*ULAB_MAX_DIMS); numerical_reduce_axes(ndarray, ax, shape, strides); if(ndarray->dtype == NDARRAY_UINT8) { RUN_DIFF(ndarray, uint8_t, array, results, rarray, shape, strides, index, stencil, N); } else if(ndarray->dtype == NDARRAY_INT8) { RUN_DIFF(ndarray, int8_t, array, results, rarray, shape, strides, index, stencil, N); } else if(ndarray->dtype == NDARRAY_UINT16) { RUN_DIFF(ndarray, uint16_t, array, results, rarray, shape, strides, index, stencil, N); } else if(ndarray->dtype == NDARRAY_INT16) { RUN_DIFF(ndarray, int16_t, array, results, rarray, shape, strides, index, stencil, N); } else { RUN_DIFF(ndarray, mp_float_t, array, results, rarray, shape, strides, index, stencil, N); } m_del(int8_t, stencil, N+1); m_del(size_t, shape, ULAB_MAX_DIMS); m_del(int32_t, strides, ULAB_MAX_DIMS); return MP_OBJ_FROM_PTR(results); } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_diff_obj, 1, numerical_diff); #endif #if ULAB_NUMPY_HAS_FLIP //| def flip(array: ulab.numpy.ndarray, *, axis: Optional[int] = None) -> ulab.numpy.ndarray: //| """Returns a new array that reverses the order of the elements along the //| given axis, or along all axes if axis is None.""" //| ... //| mp_obj_t numerical_flip(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, { MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { mp_raise_TypeError(translate("flip argument must be an ndarray")); } ndarray_obj_t *results = NULL; ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj); if(args[1].u_obj == mp_const_none) { // flip the flattened array results = ndarray_new_linear_array(ndarray->len, ndarray->dtype); ndarray_copy_array(ndarray, results, 0); uint8_t *rarray = (uint8_t *)results->array; rarray += (results->len - 1) * results->itemsize; results->array = rarray; results->strides[ULAB_MAX_DIMS - 1] = -results->strides[ULAB_MAX_DIMS - 1]; } else if(mp_obj_is_int(args[1].u_obj)){ int8_t ax = tools_get_axis(args[1].u_obj, ndarray->ndim); ax = ULAB_MAX_DIMS - ndarray->ndim + ax; int32_t offset = (ndarray->shape[ax] - 1) * ndarray->strides[ax]; results = ndarray_new_view(ndarray, ndarray->ndim, ndarray->shape, ndarray->strides, offset); results->strides[ax] = -results->strides[ax]; } else { mp_raise_TypeError(translate("wrong axis index")); } return results; } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_flip_obj, 1, numerical_flip); #endif #if ULAB_NUMPY_HAS_MINMAX //| def max(array: _ArrayLike, *, axis: Optional[int] = None) -> _float: //| """Return the maximum element of the 1D array""" //| ... //| mp_obj_t numerical_max(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { return numerical_function(n_args, pos_args, kw_args, NUMERICAL_MAX); } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_max_obj, 1, numerical_max); #endif #if ULAB_NUMPY_HAS_MEAN //| def mean(array: _ArrayLike, *, axis: Optional[int] = None) -> _float: //| """Return the mean element of the 1D array, as a number if axis is None, otherwise as an array.""" //| ... //| mp_obj_t numerical_mean(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { return numerical_function(n_args, pos_args, kw_args, NUMERICAL_MEAN); } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_mean_obj, 1, numerical_mean); #endif #if ULAB_NUMPY_HAS_MEDIAN //| def median(array: ulab.numpy.ndarray, *, axis: int = -1) -> ulab.numpy.ndarray: //| """Find the median value in an array along the given axis, or along all axes if axis is None.""" //| ... //| mp_obj_t numerical_median(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, { MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { mp_raise_TypeError(translate("median argument must be an ndarray")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj); if(ndarray->len == 0) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(nan)("")); } ndarray = numerical_sort_helper(args[0].u_obj, args[1].u_obj, 0); if((args[1].u_obj == mp_const_none) || (ndarray->ndim == 1)) { // at this point, the array holding the sorted values should be flat uint8_t *array = (uint8_t *)ndarray->array; size_t len = ndarray->len; array += (len >> 1) * ndarray->itemsize; mp_float_t median = ndarray_get_float_value(array, ndarray->dtype); if(!(len & 0x01)) { // len is an even number array -= ndarray->itemsize; median += ndarray_get_float_value(array, ndarray->dtype); median *= MICROPY_FLOAT_CONST(0.5); } return mp_obj_new_float(median); } else { int8_t ax = tools_get_axis(args[1].u_obj, ndarray->ndim); size_t *shape = m_new(size_t, ULAB_MAX_DIMS); memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS); int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS); memset(strides, 0, sizeof(uint32_t)*ULAB_MAX_DIMS); numerical_reduce_axes(ndarray, ax, shape, strides); ax = ULAB_MAX_DIMS - ndarray->ndim + ax; ndarray_obj_t *results = ndarray_new_dense_ndarray(ndarray->ndim-1, shape, NDARRAY_FLOAT); mp_float_t *rarray = (mp_float_t *)results->array; uint8_t *array = (uint8_t *)ndarray->array; size_t len = ndarray->shape[ax]; #if ULAB_MAX_DIMS > 3 size_t i = 0; do { #endif #if ULAB_MAX_DIMS > 2 size_t j = 0; do { #endif size_t k = 0; do { array += ndarray->strides[ax] * (len >> 1); mp_float_t median = ndarray_get_float_value(array, ndarray->dtype); if(!(len & 0x01)) { // len is an even number array -= ndarray->strides[ax]; median += ndarray_get_float_value(array, ndarray->dtype); median *= MICROPY_FLOAT_CONST(0.5); array += ndarray->strides[ax]; } array -= ndarray->strides[ax] * (len >> 1); array += strides[ULAB_MAX_DIMS - 1]; *rarray = median; rarray++; k++; } while(k < shape[ULAB_MAX_DIMS - 1]); #if ULAB_MAX_DIMS > 2 array -= strides[ULAB_MAX_DIMS - 1] * shape[ULAB_MAX_DIMS - 1]; array += strides[ULAB_MAX_DIMS - 2]; j++; } while(j < shape[ULAB_MAX_DIMS - 2]); #endif #if ULAB_MAX_DIMS > 3 array -= strides[ULAB_MAX_DIMS - 2] * shape[ULAB_MAX_DIMS-2]; array += strides[ULAB_MAX_DIMS - 3]; i++; } while(i < shape[ULAB_MAX_DIMS - 3]); #endif return MP_OBJ_FROM_PTR(results); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_median_obj, 1, numerical_median); #endif #if ULAB_NUMPY_HAS_MINMAX //| def min(array: _ArrayLike, *, axis: Optional[int] = None) -> _float: //| """Return the minimum element of the 1D array""" //| ... //| mp_obj_t numerical_min(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { return numerical_function(n_args, pos_args, kw_args, NUMERICAL_MIN); } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_min_obj, 1, numerical_min); #endif #if ULAB_NUMPY_HAS_ROLL //| def roll(array: ulab.numpy.ndarray, distance: int, *, axis: Optional[int] = None) -> None: //| """Shift the content of a vector by the positions given as the second //| argument. If the ``axis`` keyword is supplied, the shift is applied to //| the given axis. The array is modified in place.""" //| ... //| mp_obj_t numerical_roll(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, { MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { mp_raise_TypeError(translate("roll argument must be an ndarray")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj); uint8_t *array = ndarray->array; ndarray_obj_t *results = ndarray_new_dense_ndarray(ndarray->ndim, ndarray->shape, ndarray->dtype); int32_t shift = mp_obj_get_int(args[1].u_obj); int32_t _shift = shift < 0 ? -shift : shift; size_t counter; uint8_t *rarray = (uint8_t *)results->array; if(args[2].u_obj == mp_const_none) { // roll the flattened array _shift = _shift % results->len; if(shift > 0) { // shift to the right rarray += _shift * results->itemsize; counter = results->len - _shift; } else { // shift to the left rarray += (results->len - _shift) * results->itemsize; counter = _shift; } #if ULAB_MAX_DIMS > 3 size_t i = 0; do { #endif #if ULAB_MAX_DIMS > 2 size_t j = 0; do { #endif #if ULAB_MAX_DIMS > 1 size_t k = 0; do { #endif size_t l = 0; do { memcpy(rarray, array, ndarray->itemsize); rarray += results->itemsize; array += ndarray->strides[ULAB_MAX_DIMS - 1]; l++; if(--counter == 0) { rarray = results->array; } } while(l < ndarray->shape[ULAB_MAX_DIMS - 1]); #if ULAB_MAX_DIMS > 1 array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1]; array += ndarray->strides[ULAB_MAX_DIMS - 2]; k++; } while(k < ndarray->shape[ULAB_MAX_DIMS - 2]); #endif #if ULAB_MAX_DIMS > 2 array -= ndarray->strides[ULAB_MAX_DIMS - 2] * ndarray->shape[ULAB_MAX_DIMS-2]; array += ndarray->strides[ULAB_MAX_DIMS - 3]; j++; } while(j < ndarray->shape[ULAB_MAX_DIMS - 3]); #endif #if ULAB_MAX_DIMS > 3 array -= ndarray->strides[ULAB_MAX_DIMS - 3] * ndarray->shape[ULAB_MAX_DIMS-3]; array += ndarray->strides[ULAB_MAX_DIMS - 4]; i++; } while(i < ndarray->shape[ULAB_MAX_DIMS - 4]); #endif } else if(mp_obj_is_int(args[2].u_obj)){ int8_t ax = tools_get_axis(args[2].u_obj, ndarray->ndim); size_t *shape = m_new(size_t, ULAB_MAX_DIMS); memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS); int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS); memset(strides, 0, sizeof(int32_t)*ULAB_MAX_DIMS); numerical_reduce_axes(ndarray, ax, shape, strides); size_t *rshape = m_new(size_t, ULAB_MAX_DIMS); memset(rshape, 0, sizeof(size_t)*ULAB_MAX_DIMS); int32_t *rstrides = m_new(int32_t, ULAB_MAX_DIMS); memset(rstrides, 0, sizeof(int32_t)*ULAB_MAX_DIMS); numerical_reduce_axes(results, ax, rshape, rstrides); ax = ULAB_MAX_DIMS - ndarray->ndim + ax; uint8_t *_rarray; _shift = _shift % results->shape[ax]; #if ULAB_MAX_DIMS > 3 size_t i = 0; do { #endif #if ULAB_MAX_DIMS > 2 size_t j = 0; do { #endif #if ULAB_MAX_DIMS > 1 size_t k = 0; do { #endif size_t l = 0; _rarray = rarray; if(shift < 0) { rarray += (results->shape[ax] - _shift) * results->strides[ax]; counter = _shift; } else { rarray += _shift * results->strides[ax]; counter = results->shape[ax] - _shift; } do { memcpy(rarray, array, ndarray->itemsize); array += ndarray->strides[ax]; rarray += results->strides[ax]; if(--counter == 0) { rarray = _rarray; } l++; } while(l < ndarray->shape[ax]); #if ULAB_MAX_DIMS > 1 rarray = _rarray; rarray += rstrides[ULAB_MAX_DIMS - 1]; array -= ndarray->strides[ax] * ndarray->shape[ax]; array += strides[ULAB_MAX_DIMS - 1]; k++; } while(k < shape[ULAB_MAX_DIMS - 1]); #endif #if ULAB_MAX_DIMS > 2 rarray -= rstrides[ULAB_MAX_DIMS - 1] * rshape[ULAB_MAX_DIMS-1]; rarray += rstrides[ULAB_MAX_DIMS - 2]; array -= strides[ULAB_MAX_DIMS - 1] * shape[ULAB_MAX_DIMS-1]; array += strides[ULAB_MAX_DIMS - 2]; j++; } while(j < shape[ULAB_MAX_DIMS - 2]); #endif #if ULAB_MAX_DIMS > 3 rarray -= rstrides[ULAB_MAX_DIMS - 2] * rshape[ULAB_MAX_DIMS-2]; rarray += rstrides[ULAB_MAX_DIMS - 3]; array -= strides[ULAB_MAX_DIMS - 2] * shape[ULAB_MAX_DIMS-2]; array += strides[ULAB_MAX_DIMS - 3]; i++; } while(i < shape[ULAB_MAX_DIMS - 3]); #endif } else { mp_raise_TypeError(translate("wrong axis index")); } return results; } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_roll_obj, 2, numerical_roll); #endif #if ULAB_NUMPY_HAS_SORT //| def sort(array: ulab.numpy.ndarray, *, axis: int = -1) -> ulab.numpy.ndarray: //| """Sort the array along the given axis, or along all axes if axis is None. //| The array is modified in place.""" //| ... //| mp_obj_t numerical_sort(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } }, { MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); return numerical_sort_helper(args[0].u_obj, args[1].u_obj, 0); } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_sort_obj, 1, numerical_sort); #endif #if NDARRAY_HAS_SORT // method of an ndarray static mp_obj_t numerical_sort_inplace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, { MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_int = -1 } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); return numerical_sort_helper(args[0].u_obj, args[1].u_obj, 1); } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_sort_inplace_obj, 1, numerical_sort_inplace); #endif /* NDARRAY_HAS_SORT */ #if ULAB_NUMPY_HAS_STD //| def std(array: _ArrayLike, *, axis: Optional[int] = None, ddof: int = 0) -> _float: //| """Return the standard deviation of the array, as a number if axis is None, otherwise as an array.""" //| ... //| mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } } , { MP_QSTR_axis, MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, { MP_QSTR_ddof, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_obj_t oin = args[0].u_obj; mp_obj_t axis = args[1].u_obj; size_t ddof = args[2].u_int; if((axis != mp_const_none) && (mp_obj_get_int(axis) != 0) && (mp_obj_get_int(axis) != 1)) { // this seems to pass with False, and True... mp_raise_ValueError(translate("axis must be None, or an integer")); } if(mp_obj_is_type(oin, &mp_type_tuple) || mp_obj_is_type(oin, &mp_type_list) || mp_obj_is_type(oin, &mp_type_range)) { return numerical_sum_mean_std_iterable(oin, NUMERICAL_STD, ddof); } else if(mp_obj_is_type(oin, &ulab_ndarray_type)) { ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin); return numerical_sum_mean_std_ndarray(ndarray, axis, NUMERICAL_STD, ddof); } else { mp_raise_TypeError(translate("input must be tuple, list, range, or ndarray")); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_std_obj, 1, numerical_std); #endif #if ULAB_NUMPY_HAS_SUM //| def sum(array: _ArrayLike, *, axis: Optional[int] = None) -> Union[_float, int, ulab.numpy.ndarray]: //| """Return the sum of the array, as a number if axis is None, otherwise as an array.""" //| ... //| mp_obj_t numerical_sum(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { return numerical_function(n_args, pos_args, kw_args, NUMERICAL_SUM); } MP_DEFINE_CONST_FUN_OBJ_KW(numerical_sum_obj, 1, numerical_sum); #endif