/* * This file is part of the micropython-ulab project, * * https://github.com/v923z/micropython-ulab * * The MIT License (MIT) * * Copyright (c) 2019-2021 Zoltán Vörös */ #include #include #include "py/runtime.h" #include "../../ndarray.h" #include "../../ulab_tools.h" #include "../carray/carray_tools.h" #include "fft_tools.h" #ifndef MP_PI #define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846) #endif #ifndef MP_E #define MP_E MICROPY_FLOAT_CONST(2.71828182845904523536) #endif /* Kernel implementation for the case, when ulab has no complex support * The following function takes two arrays, namely, the real and imaginary * parts of a complex array, and calculates the Fourier transform in place. * * The function is basically a modification of four1 from Numerical Recipes, * has no dependencies beyond micropython itself (for the definition of mp_float_t), * and can be used independent of ulab. */ #if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE /* Kernel implementation for the complex case. Data are contained in data as data[0], data[1], data[2], data[3], .... , data[2n - 2], data[2n-1] real[0], imag[0], real[1], imag[1], .... , real[n-1], imag[n-1] In general real[i] = data[2i] imag[i] = data[2i+1] */ void fft_kernel_complex(mp_float_t *data, size_t n, int isign) { size_t j, m, mmax, istep; mp_float_t tempr, tempi; mp_float_t wtemp, wr, wpr, wpi, wi, theta; j = 0; for(size_t i = 0; i < n; i++) { if (j > i) { SWAP(mp_float_t, data[2*i], data[2*j]); SWAP(mp_float_t, data[2*i+1], data[2*j+1]); } m = n >> 1; while (j >= m && m > 0) { j -= m; m >>= 1; } j += m; } mmax = 1; while (n > mmax) { istep = mmax << 1; theta = MICROPY_FLOAT_CONST(-2.0)*isign*MP_PI/istep; wtemp = MICROPY_FLOAT_C_FUN(sin)(MICROPY_FLOAT_CONST(0.5) * theta); wpr = MICROPY_FLOAT_CONST(-2.0) * wtemp * wtemp; wpi = MICROPY_FLOAT_C_FUN(sin)(theta); wr = MICROPY_FLOAT_CONST(1.0); wi = MICROPY_FLOAT_CONST(0.0); for(m = 0; m < mmax; m++) { for(size_t i = m; i < n; i += istep) { j = i + mmax; tempr = wr * data[2*j] - wi * data[2*j+1]; tempi = wr * data[2*j+1] + wi * data[2*j]; data[2*j] = data[2*i] - tempr; data[2*j+1] = data[2*i+1] - tempi; data[2*i] += tempr; data[2*i+1] += tempi; } wtemp = wr; wr = wr*wpr - wi*wpi + wr; wi = wi*wpr + wtemp*wpi + wi; } mmax = istep; } } /* * The following function is a helper interface to the python side. * It has been factored out from fft.c, so that the same argument parsing * routine can be called from scipy.signal.spectrogram. */ mp_obj_t fft_fft_ifft_spectrogram(mp_obj_t data_in, uint8_t type) { if(!mp_obj_is_type(data_in, &ulab_ndarray_type)) { mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only")); } ndarray_obj_t *in = MP_OBJ_TO_PTR(data_in); #if ULAB_MAX_DIMS > 1 if(in->ndim != 1) { mp_raise_TypeError(translate("FFT is implemented for linear arrays only")); } #endif size_t len = in->len; // Check if input is of length of power of 2 if((len & (len-1)) != 0) { mp_raise_ValueError(translate("input array length must be power of 2")); } ndarray_obj_t *out = ndarray_new_linear_array(len, NDARRAY_COMPLEX); mp_float_t *data = (mp_float_t *)out->array; uint8_t *array = (uint8_t *)in->array; if(in->dtype == NDARRAY_COMPLEX) { uint8_t sz = 2 * sizeof(mp_float_t); uint8_t *data_ = (uint8_t *)out->array; for(size_t i = 0; i < len; i++) { memcpy(data_, array, sz); array += in->strides[ULAB_MAX_DIMS - 1]; } } else { mp_float_t (*func)(void *) = ndarray_get_float_function(in->dtype); for(size_t i = 0; i < len; i++) { // real part; the imaginary part is 0, no need to assign *data = func(array); data += 2; array += in->strides[ULAB_MAX_DIMS - 1]; } } data -= 2 * len; if((type == FFT_FFT) || (type == FFT_SPECTROGRAM)) { fft_kernel_complex(data, len, 1); if(type == FFT_SPECTROGRAM) { ndarray_obj_t *spectrum = ndarray_new_linear_array(len, NDARRAY_FLOAT); mp_float_t *sarray = (mp_float_t *)spectrum->array; for(size_t i = 0; i < len; i++) { *sarray++ = MICROPY_FLOAT_C_FUN(sqrt)(data[0] * data[0] + data[1] * data[1]); data += 2; } m_del(mp_float_t, data, 2 * len); return MP_OBJ_FROM_PTR(spectrum); } } else { // inverse transform fft_kernel_complex(data, len, -1); // TODO: numpy accepts the norm keyword argument for(size_t i = 0; i < len; i++) { *data++ /= len; } } return MP_OBJ_FROM_PTR(out); } #else /* ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE */ void fft_kernel(mp_float_t *real, mp_float_t *imag, size_t n, int isign) { size_t j, m, mmax, istep; mp_float_t tempr, tempi; mp_float_t wtemp, wr, wpr, wpi, wi, theta; j = 0; for(size_t i = 0; i < n; i++) { if (j > i) { SWAP(mp_float_t, real[i], real[j]); SWAP(mp_float_t, imag[i], imag[j]); } m = n >> 1; while (j >= m && m > 0) { j -= m; m >>= 1; } j += m; } mmax = 1; while (n > mmax) { istep = mmax << 1; theta = MICROPY_FLOAT_CONST(-2.0)*isign*MP_PI/istep; wtemp = MICROPY_FLOAT_C_FUN(sin)(MICROPY_FLOAT_CONST(0.5) * theta); wpr = MICROPY_FLOAT_CONST(-2.0) * wtemp * wtemp; wpi = MICROPY_FLOAT_C_FUN(sin)(theta); wr = MICROPY_FLOAT_CONST(1.0); wi = MICROPY_FLOAT_CONST(0.0); for(m = 0; m < mmax; m++) { for(size_t i = m; i < n; i += istep) { j = i + mmax; tempr = wr * real[j] - wi * imag[j]; tempi = wr * imag[j] + wi * real[j]; real[j] = real[i] - tempr; imag[j] = imag[i] - tempi; real[i] += tempr; imag[i] += tempi; } wtemp = wr; wr = wr*wpr - wi*wpi + wr; wi = wi*wpr + wtemp*wpi + wi; } mmax = istep; } } mp_obj_t fft_fft_ifft_spectrogram(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im, uint8_t type) { if(!mp_obj_is_type(arg_re, &ulab_ndarray_type)) { mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only")); } if(n_args == 2) { if(!mp_obj_is_type(arg_im, &ulab_ndarray_type)) { mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only")); } } ndarray_obj_t *re = MP_OBJ_TO_PTR(arg_re); #if ULAB_MAX_DIMS > 1 if(re->ndim != 1) { COMPLEX_DTYPE_NOT_IMPLEMENTED(re->dtype) mp_raise_TypeError(translate("FFT is implemented for linear arrays only")); } #endif size_t len = re->len; // Check if input is of length of power of 2 if((len & (len-1)) != 0) { mp_raise_ValueError(translate("input array length must be power of 2")); } ndarray_obj_t *out_re = ndarray_new_linear_array(len, NDARRAY_FLOAT); mp_float_t *data_re = (mp_float_t *)out_re->array; uint8_t *array = (uint8_t *)re->array; mp_float_t (*func)(void *) = ndarray_get_float_function(re->dtype); for(size_t i=0; i < len; i++) { *data_re++ = func(array); array += re->strides[ULAB_MAX_DIMS - 1]; } data_re -= len; ndarray_obj_t *out_im = ndarray_new_linear_array(len, NDARRAY_FLOAT); mp_float_t *data_im = (mp_float_t *)out_im->array; if(n_args == 2) { ndarray_obj_t *im = MP_OBJ_TO_PTR(arg_im); #if ULAB_MAX_DIMS > 1 if(im->ndim != 1) { COMPLEX_DTYPE_NOT_IMPLEMENTED(im->dtype) mp_raise_TypeError(translate("FFT is implemented for linear arrays only")); } #endif if (re->len != im->len) { mp_raise_ValueError(translate("real and imaginary parts must be of equal length")); } array = (uint8_t *)im->array; func = ndarray_get_float_function(im->dtype); for(size_t i=0; i < len; i++) { *data_im++ = func(array); array += im->strides[ULAB_MAX_DIMS - 1]; } data_im -= len; } if((type == FFT_FFT) || (type == FFT_SPECTROGRAM)) { fft_kernel(data_re, data_im, len, 1); if(type == FFT_SPECTROGRAM) { for(size_t i=0; i < len; i++) { *data_re = MICROPY_FLOAT_C_FUN(sqrt)(*data_re * *data_re + *data_im * *data_im); data_re++; data_im++; } } } else { // inverse transform fft_kernel(data_re, data_im, len, -1); // TODO: numpy accepts the norm keyword argument for(size_t i=0; i < len; i++) { *data_re++ /= len; *data_im++ /= len; } } if(type == FFT_SPECTROGRAM) { return MP_OBJ_TO_PTR(out_re); } else { mp_obj_t tuple[2]; tuple[0] = out_re; tuple[1] = out_im; return mp_obj_new_tuple(2, tuple); } } #endif /* ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE */