/* * This file is part of the micropython-ulab project, * * https://github.com/v923z/micropython-ulab * * The MIT License (MIT) * * Copyright (c) 2019-2021 Zoltán Vörös * 2020 Scott Shawcroft for Adafruit Industries * 2020 Taku Fukada */ #include #include #include #include #include "py/runtime.h" #include "py/builtin.h" #include "py/binary.h" #include "py/obj.h" #include "py/objarray.h" #include "../carray/carray_tools.h" #include "fft.h" //| """Frequency-domain functions""" //| //| import ulab.numpy //| def fft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]: //| """ //| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2 //| :param ulab.numpy.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value //| :return tuple (r, c): The real and complex parts of the FFT //| //| Perform a Fast Fourier Transform from the time domain into the frequency domain //| //| See also ~ulab.extras.spectrum, which computes the magnitude of the fft, //| rather than separately returning its real and imaginary parts.""" //| ... //| #if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE static mp_obj_t fft_fft(mp_obj_t arg) { return fft_fft_ifft_spectrogram(arg, FFT_FFT); } MP_DEFINE_CONST_FUN_OBJ_1(fft_fft_obj, fft_fft); #else static mp_obj_t fft_fft(size_t n_args, const mp_obj_t *args) { if(n_args == 2) { return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_FFT); } else { return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_FFT); } } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj, 1, 2, fft_fft); #endif //| def ifft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]: //| """ //| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2 //| :param ulab.numpy.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value //| :return tuple (r, c): The real and complex parts of the inverse FFT //| //| Perform an Inverse Fast Fourier Transform from the frequeny domain into the time domain""" //| ... //| #if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE static mp_obj_t fft_ifft(mp_obj_t arg) { return fft_fft_ifft_spectrogram(arg, FFT_IFFT); } MP_DEFINE_CONST_FUN_OBJ_1(fft_ifft_obj, fft_ifft); #else static mp_obj_t fft_ifft(size_t n_args, const mp_obj_t *args) { NOT_IMPLEMENTED_FOR_COMPLEX() if(n_args == 2) { return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_IFFT); } else { return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_IFFT); } } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj, 1, 2, fft_ifft); #endif STATIC const mp_rom_map_elem_t ulab_fft_globals_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_fft) }, { MP_OBJ_NEW_QSTR(MP_QSTR_fft), (mp_obj_t)&fft_fft_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_ifft), (mp_obj_t)&fft_ifft_obj }, }; STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_fft_globals, ulab_fft_globals_table); const mp_obj_module_t ulab_fft_module = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t*)&mp_module_ulab_fft_globals, }; MP_REGISTER_MODULE(MP_QSTR_ulab_dot_fft, ulab_fft_module, MODULE_ULAB_ENABLED && CIRCUITPY_ULAB);