diff options
Diffstat (limited to '')
-rw-r--r-- | circuitpython/py/compile.c | 3611 |
1 files changed, 3611 insertions, 0 deletions
diff --git a/circuitpython/py/compile.c b/circuitpython/py/compile.c new file mode 100644 index 0000000..e5f341a --- /dev/null +++ b/circuitpython/py/compile.c @@ -0,0 +1,3611 @@ +/* + * This file is part of the MicroPython project, http://micropython.org/ + * + * The MIT License (MIT) + * + * SPDX-FileCopyrightText: Copyright (c) 2013-2020 Damien P. George + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include <stdbool.h> +#include <stdint.h> +#include <stdio.h> +#include <string.h> +#include <assert.h> + +#include "py/scope.h" +#include "py/emit.h" +#include "py/compile.h" +#include "py/runtime.h" +#include "py/asmbase.h" +#include "py/persistentcode.h" + +#include "supervisor/shared/translate.h" + +#if MICROPY_ENABLE_COMPILER + +// TODO need to mangle __attr names + +#define INVALID_LABEL (0xffff) + +typedef enum { +// define rules with a compile function +#define DEF_RULE(rule, comp, kind, ...) PN_##rule, +#define DEF_RULE_NC(rule, kind, ...) + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC + PN_const_object, // special node for a constant, generic Python object +// define rules without a compile function +#define DEF_RULE(rule, comp, kind, ...) +#define DEF_RULE_NC(rule, kind, ...) PN_##rule, + #include "py/grammar.h" +#undef DEF_RULE +#undef DEF_RULE_NC +} pn_kind_t; + +// Whether a mp_parse_node_struct_t that has pns->kind == PN_testlist_comp +// corresponds to a list comprehension or generator. +#define MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns) \ + (MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2 && \ + MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for)) + +#define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE + +#if NEED_METHOD_TABLE + +// we need a method table to do the lookup for the emitter functions +#define EMIT(fun) (comp->emit_method_table->fun(comp->emit)) +#define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__)) +#define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.local(comp->emit, qst, local_num, MP_EMIT_IDOP_LOCAL_FAST)) +#define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst, MP_EMIT_IDOP_GLOBAL_GLOBAL)) + +#else + +// if we only have the bytecode emitter enabled then we can do a direct call to the functions +#define EMIT(fun) (mp_emit_bc_##fun(comp->emit)) +#define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__)) +#define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_local(comp->emit, qst, local_num, MP_EMIT_IDOP_LOCAL_FAST)) +#define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst, MP_EMIT_IDOP_GLOBAL_GLOBAL)) + +#endif + +#if MICROPY_EMIT_NATIVE && MICROPY_DYNAMIC_COMPILER + +#define NATIVE_EMITTER(f) emit_native_table[mp_dynamic_compiler.native_arch]->emit_##f +#define NATIVE_EMITTER_TABLE emit_native_table[mp_dynamic_compiler.native_arch] + +STATIC const emit_method_table_t *emit_native_table[] = { + NULL, + &emit_native_x86_method_table, + &emit_native_x64_method_table, + &emit_native_arm_method_table, + &emit_native_thumb_method_table, + &emit_native_thumb_method_table, + &emit_native_thumb_method_table, + &emit_native_thumb_method_table, + &emit_native_thumb_method_table, + &emit_native_xtensa_method_table, + &emit_native_xtensawin_method_table, +}; + +#elif MICROPY_EMIT_NATIVE +// define a macro to access external native emitter +#if MICROPY_EMIT_X64 +#define NATIVE_EMITTER(f) emit_native_x64_##f +#elif MICROPY_EMIT_X86 +#define NATIVE_EMITTER(f) emit_native_x86_##f +#elif MICROPY_EMIT_THUMB +#define NATIVE_EMITTER(f) emit_native_thumb_##f +#elif MICROPY_EMIT_ARM +#define NATIVE_EMITTER(f) emit_native_arm_##f +#elif MICROPY_EMIT_XTENSA +#define NATIVE_EMITTER(f) emit_native_xtensa_##f +#elif MICROPY_EMIT_XTENSAWIN +#define NATIVE_EMITTER(f) emit_native_xtensawin_##f +#else +#error "unknown native emitter" +#endif +#define NATIVE_EMITTER_TABLE &NATIVE_EMITTER(method_table) +#endif + +#if MICROPY_EMIT_INLINE_ASM && MICROPY_DYNAMIC_COMPILER + +#define ASM_EMITTER(f) emit_asm_table[mp_dynamic_compiler.native_arch]->asm_##f +#define ASM_EMITTER_TABLE emit_asm_table[mp_dynamic_compiler.native_arch] + +STATIC const emit_inline_asm_method_table_t *emit_asm_table[] = { + NULL, + NULL, + NULL, + &emit_inline_thumb_method_table, + &emit_inline_thumb_method_table, + &emit_inline_thumb_method_table, + &emit_inline_thumb_method_table, + &emit_inline_thumb_method_table, + &emit_inline_thumb_method_table, + &emit_inline_xtensa_method_table, + NULL, +}; + +#elif MICROPY_EMIT_INLINE_ASM +// define macros for inline assembler +#if MICROPY_EMIT_INLINE_THUMB +#define ASM_DECORATOR_QSTR MP_QSTR_asm_thumb +#define ASM_EMITTER(f) emit_inline_thumb_##f +#elif MICROPY_EMIT_INLINE_XTENSA +#define ASM_DECORATOR_QSTR MP_QSTR_asm_xtensa +#define ASM_EMITTER(f) emit_inline_xtensa_##f +#else +#error "unknown asm emitter" +#endif +#define ASM_EMITTER_TABLE &ASM_EMITTER(method_table) +#endif + +#define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm)) +#define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__)) + +// elements in this struct are ordered to make it compact +typedef struct _compiler_t { + qstr source_file; + + uint8_t is_repl; + uint8_t pass; // holds enum type pass_kind_t + uint8_t have_star; + + // try to keep compiler clean from nlr + mp_obj_t compile_error; // set to an exception object if there's an error + size_t compile_error_line; // set to best guess of line of error + + uint next_label; + + uint16_t num_dict_params; + uint16_t num_default_params; + + uint16_t break_label; // highest bit set indicates we are breaking out of a for loop + uint16_t continue_label; + uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT + uint16_t break_continue_except_level; + + scope_t *scope_head; + scope_t *scope_cur; + + emit_t *emit; // current emitter + #if NEED_METHOD_TABLE + const emit_method_table_t *emit_method_table; // current emit method table + #endif + + #if MICROPY_EMIT_INLINE_ASM + emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm + const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm + #endif +} compiler_t; + +STATIC void compile_error_set_line(compiler_t *comp, mp_parse_node_t pn) { + // if the line of the error is unknown then try to update it from the pn + if (comp->compile_error_line == 0 && MP_PARSE_NODE_IS_STRUCT(pn)) { + comp->compile_error_line = ((mp_parse_node_struct_t *)pn)->source_line; + } +} + +STATIC void compile_syntax_error(compiler_t *comp, mp_parse_node_t pn, const compressed_string_t *msg) { + // only register the error if there has been no other error + if (comp->compile_error == MP_OBJ_NULL) { + comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg); + compile_error_set_line(comp, pn); + } +} + +STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra); +STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind); +STATIC void compile_atom_brace_helper(compiler_t *comp, mp_parse_node_struct_t *pns, bool create_map); +STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn); + +STATIC uint comp_next_label(compiler_t *comp) { + return comp->next_label++; +} + +#if MICROPY_EMIT_NATIVE +STATIC void reserve_labels_for_native(compiler_t *comp, int n) { + if (comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) { + comp->next_label += n; + } +} +#else +#define reserve_labels_for_native(comp, n) +#endif + +STATIC void compile_increase_except_level(compiler_t *comp, uint label, int kind) { + EMIT_ARG(setup_block, label, kind); + comp->cur_except_level += 1; + if (comp->cur_except_level > comp->scope_cur->exc_stack_size) { + comp->scope_cur->exc_stack_size = comp->cur_except_level; + } +} + +STATIC void compile_decrease_except_level(compiler_t *comp) { + assert(comp->cur_except_level > 0); + comp->cur_except_level -= 1; + EMIT(end_finally); + reserve_labels_for_native(comp, 1); +} + +STATIC scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) { + scope_t *scope = scope_new(kind, pn, comp->source_file, emit_options); + scope->parent = comp->scope_cur; + scope->next = NULL; + if (comp->scope_head == NULL) { + comp->scope_head = scope; + } else { + scope_t *s = comp->scope_head; + while (s->next != NULL) { + s = s->next; + } + s->next = scope; + } + return scope; +} + +typedef void (*apply_list_fun_t)(compiler_t *comp, mp_parse_node_t pn); + +STATIC void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_list_kind, apply_list_fun_t f) { + if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, pn_list_kind)) { + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); + for (int i = 0; i < num_nodes; i++) { + f(comp, pns->nodes[i]); + } + } else if (!MP_PARSE_NODE_IS_NULL(pn)) { + f(comp, pn); + } +} + +STATIC void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) { + int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); + for (int i = 0; i < num_nodes; i++) { + compile_node(comp, pns->nodes[i]); + if (comp->compile_error != MP_OBJ_NULL) { + // add line info for the error in case it didn't have a line number + compile_error_set_line(comp, pns->nodes[i]); + return; + } + } +} + +STATIC void compile_load_id(compiler_t *comp, qstr qst) { + if (comp->pass == MP_PASS_SCOPE) { + mp_emit_common_get_id_for_load(comp->scope_cur, qst); + } else { + #if NEED_METHOD_TABLE + mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst); + #else + mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst); + #endif + } +} + +STATIC void compile_store_id(compiler_t *comp, qstr qst) { + if (comp->pass == MP_PASS_SCOPE) { + mp_emit_common_get_id_for_modification(comp->scope_cur, qst); + } else { + #if NEED_METHOD_TABLE + mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst); + #else + mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst); + #endif + } +} + +STATIC void compile_delete_id(compiler_t *comp, qstr qst) { + if (comp->pass == MP_PASS_SCOPE) { + mp_emit_common_get_id_for_modification(comp->scope_cur, qst); + } else { + #if NEED_METHOD_TABLE + mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst); + #else + mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst); + #endif + } +} + +STATIC void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) { + // a simple tuple expression + size_t num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); + for (size_t i = 0; i < num_nodes; i++) { + compile_node(comp, pns->nodes[i]); + } + EMIT_ARG(build, num_nodes, MP_EMIT_BUILD_TUPLE); +} + +STATIC void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) { + if (mp_parse_node_is_const_false(pn)) { + if (jump_if == false) { + EMIT_ARG(jump, label); + } + return; + } else if (mp_parse_node_is_const_true(pn)) { + if (jump_if == true) { + EMIT_ARG(jump, label); + } + return; + } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); + if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) { + if (jump_if == false) { + and_or_logic1:; + uint label2 = comp_next_label(comp); + for (int i = 0; i < n - 1; i++) { + c_if_cond(comp, pns->nodes[i], !jump_if, label2); + } + c_if_cond(comp, pns->nodes[n - 1], jump_if, label); + EMIT_ARG(label_assign, label2); + } else { + and_or_logic2: + for (int i = 0; i < n; i++) { + c_if_cond(comp, pns->nodes[i], jump_if, label); + } + } + return; + } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) { + if (jump_if == false) { + goto and_or_logic2; + } else { + goto and_or_logic1; + } + } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) { + c_if_cond(comp, pns->nodes[0], !jump_if, label); + return; + } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_atom_paren) { + // cond is something in parenthesis + if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { + // empty tuple, acts as false for the condition + if (jump_if == false) { + EMIT_ARG(jump, label); + } + } else { + assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)); + // non-empty tuple, acts as true for the condition + if (jump_if == true) { + EMIT_ARG(jump, label); + } + } + return; + } + } + + // nothing special, fall back to default compiling for node and jump + compile_node(comp, pn); + EMIT_ARG(pop_jump_if, jump_if, label); +} + +typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t; +STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind); + +STATIC void c_assign_atom_expr(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) { + if (assign_kind != ASSIGN_AUG_STORE) { + compile_node(comp, pns->nodes[0]); + } + + if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { + mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1]; + if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) { + int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); + if (assign_kind != ASSIGN_AUG_STORE) { + for (int i = 0; i < n - 1; i++) { + compile_node(comp, pns1->nodes[i]); + } + } + assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1])); + pns1 = (mp_parse_node_struct_t *)pns1->nodes[n - 1]; + } + if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) { + if (assign_kind == ASSIGN_AUG_STORE) { + EMIT(rot_three); + EMIT_ARG(subscr, MP_EMIT_SUBSCR_STORE); + } else { + compile_node(comp, pns1->nodes[0]); + if (assign_kind == ASSIGN_AUG_LOAD) { + EMIT(dup_top_two); + EMIT_ARG(subscr, MP_EMIT_SUBSCR_LOAD); + } else { + EMIT_ARG(subscr, MP_EMIT_SUBSCR_STORE); + } + } + return; + } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) { + assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); + if (assign_kind == ASSIGN_AUG_LOAD) { + EMIT(dup_top); + EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_LOAD); + } else { + if (assign_kind == ASSIGN_AUG_STORE) { + EMIT(rot_two); + } + EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_STORE); + } + return; + } + } + + compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("can't assign to expression")); +} + +STATIC void c_assign_tuple(compiler_t *comp, uint num_tail, mp_parse_node_t *nodes_tail) { + // look for star expression + uint have_star_index = -1; + for (uint i = 0; i < num_tail; i++) { + if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes_tail[i], PN_star_expr)) { + if (have_star_index == (uint)-1) { + EMIT_ARG(unpack_ex, i, num_tail - i - 1); + have_star_index = i; + } else { + compile_syntax_error(comp, nodes_tail[i], MP_ERROR_TEXT("multiple *x in assignment")); + return; + } + } + } + if (have_star_index == (uint)-1) { + EMIT_ARG(unpack_sequence, num_tail); + } + for (uint i = 0; i < num_tail; i++) { + if (i == have_star_index) { + c_assign(comp, ((mp_parse_node_struct_t *)nodes_tail[i])->nodes[0], ASSIGN_STORE); + } else { + c_assign(comp, nodes_tail[i], ASSIGN_STORE); + } + } +} + +// assigns top of stack to pn +STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) { + assert(!MP_PARSE_NODE_IS_NULL(pn)); + if (MP_PARSE_NODE_IS_LEAF(pn)) { + if (MP_PARSE_NODE_IS_ID(pn)) { + qstr arg = MP_PARSE_NODE_LEAF_ARG(pn); + switch (assign_kind) { + case ASSIGN_STORE: + case ASSIGN_AUG_STORE: + compile_store_id(comp, arg); + break; + case ASSIGN_AUG_LOAD: + default: + compile_load_id(comp, arg); + break; + } + } else { + goto cannot_assign; + } + } else { + // pn must be a struct + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + switch (MP_PARSE_NODE_STRUCT_KIND(pns)) { + case PN_atom_expr_normal: + // lhs is an index or attribute + c_assign_atom_expr(comp, pns, assign_kind); + break; + + case PN_testlist_star_expr: + case PN_exprlist: + // lhs is a tuple + if (assign_kind != ASSIGN_STORE) { + goto cannot_assign; + } + c_assign_tuple(comp, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes); + break; + + case PN_atom_paren: + // lhs is something in parenthesis + if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { + // empty tuple + goto cannot_assign; + } else { + assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)); + if (assign_kind != ASSIGN_STORE) { + goto cannot_assign; + } + pns = (mp_parse_node_struct_t *)pns->nodes[0]; + goto testlist_comp; + } + break; + + case PN_atom_bracket: + // lhs is something in brackets + if (assign_kind != ASSIGN_STORE) { + goto cannot_assign; + } + if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { + // empty list, assignment allowed + c_assign_tuple(comp, 0, NULL); + } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { + pns = (mp_parse_node_struct_t *)pns->nodes[0]; + goto testlist_comp; + } else { + // brackets around 1 item + c_assign_tuple(comp, 1, pns->nodes); + } + break; + + default: + goto cannot_assign; + } + return; + + testlist_comp: + // lhs is a sequence + if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns)) { + goto cannot_assign; + } + c_assign_tuple(comp, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes); + return; + } + return; + +cannot_assign: + compile_syntax_error(comp, pn, MP_ERROR_TEXT("can't assign to expression")); +} + +// stuff for lambda and comprehensions and generators: +// if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults +// if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults +// if both exist, the tuple is above the dictionary (ie the first pop gets the tuple) +STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) { + assert(n_pos_defaults >= 0); + assert(n_kw_defaults >= 0); + + // set flags + if (n_kw_defaults > 0) { + this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS; + } + this_scope->num_def_pos_args = n_pos_defaults; + + #if MICROPY_EMIT_NATIVE + // When creating a function/closure it will take a reference to the current globals + comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_REFGLOBALS | MP_SCOPE_FLAG_HASCONSTS; + #endif + + // make closed over variables, if any + // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython) + int nfree = 0; + if (comp->scope_cur->kind != SCOPE_MODULE) { + for (int i = 0; i < comp->scope_cur->id_info_len; i++) { + id_info_t *id = &comp->scope_cur->id_info[i]; + if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { + for (int j = 0; j < this_scope->id_info_len; j++) { + id_info_t *id2 = &this_scope->id_info[j]; + if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) { + // in MicroPython we load closures using LOAD_FAST + EMIT_LOAD_FAST(id->qst, id->local_num); + nfree += 1; + } + } + } + } + } + + // make the function/closure + if (nfree == 0) { + EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults); + } else { + EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults); + } +} + +STATIC void compile_funcdef_lambdef_param(compiler_t *comp, mp_parse_node_t pn) { + // For efficiency of the code below we extract the parse-node kind here + int pn_kind; + if (MP_PARSE_NODE_IS_ID(pn)) { + pn_kind = -1; + } else { + assert(MP_PARSE_NODE_IS_STRUCT(pn)); + pn_kind = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn); + } + + if (pn_kind == PN_typedargslist_star || pn_kind == PN_varargslist_star) { + comp->have_star = true; + /* don't need to distinguish bare from named star + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; + if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { + // bare star + } else { + // named star + } + */ + + } else if (pn_kind == PN_typedargslist_dbl_star || pn_kind == PN_varargslist_dbl_star) { + // named double star + // TODO do we need to do anything with this? + + } else { + mp_parse_node_t pn_id; + mp_parse_node_t pn_equal; + if (pn_kind == -1) { + // this parameter is just an id + + pn_id = pn; + pn_equal = MP_PARSE_NODE_NULL; + + } else if (pn_kind == PN_typedargslist_name) { + // this parameter has a colon and/or equal specifier + + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + pn_id = pns->nodes[0]; + // pn_colon = pns->nodes[1]; // unused + pn_equal = pns->nodes[2]; + + } else { + assert(pn_kind == PN_varargslist_name); // should be + // this parameter has an equal specifier + + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + pn_id = pns->nodes[0]; + pn_equal = pns->nodes[1]; + } + + if (MP_PARSE_NODE_IS_NULL(pn_equal)) { + // this parameter does not have a default value + + // check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid) + if (!comp->have_star && comp->num_default_params != 0) { + compile_syntax_error(comp, pn, MP_ERROR_TEXT("non-default argument follows default argument")); + return; + } + + } else { + // this parameter has a default value + // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why + + if (comp->have_star) { + comp->num_dict_params += 1; + // in MicroPython we put the default dict parameters into a dictionary using the bytecode + if (comp->num_dict_params == 1) { + // in MicroPython we put the default positional parameters into a tuple using the bytecode + // we need to do this here before we start building the map for the default keywords + if (comp->num_default_params > 0) { + EMIT_ARG(build, comp->num_default_params, MP_EMIT_BUILD_TUPLE); + } else { + EMIT(load_null); // sentinel indicating empty default positional args + } + // first default dict param, so make the map + EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP); + } + + // compile value then key, then store it to the dict + compile_node(comp, pn_equal); + EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pn_id)); + EMIT(store_map); + } else { + comp->num_default_params += 1; + compile_node(comp, pn_equal); + } + } + } +} + +STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, mp_parse_node_t pn_params, pn_kind_t pn_list_kind) { + // When we call compile_funcdef_lambdef_param below it can compile an arbitrary + // expression for default arguments, which may contain a lambda. The lambda will + // call here in a nested way, so we must save and restore the relevant state. + bool orig_have_star = comp->have_star; + uint16_t orig_num_dict_params = comp->num_dict_params; + uint16_t orig_num_default_params = comp->num_default_params; + + // compile default parameters + comp->have_star = false; + comp->num_dict_params = 0; + comp->num_default_params = 0; + apply_to_single_or_list(comp, pn_params, pn_list_kind, compile_funcdef_lambdef_param); + + if (comp->compile_error != MP_OBJ_NULL) { + return; + } + + // in MicroPython we put the default positional parameters into a tuple using the bytecode + // the default keywords args may have already made the tuple; if not, do it now + if (comp->num_default_params > 0 && comp->num_dict_params == 0) { + EMIT_ARG(build, comp->num_default_params, MP_EMIT_BUILD_TUPLE); + EMIT(load_null); // sentinel indicating empty default keyword args + } + + // make the function + close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params); + + // restore state + comp->have_star = orig_have_star; + comp->num_dict_params = orig_num_dict_params; + comp->num_default_params = orig_num_default_params; +} + +// leaves function object on stack +// returns function name +STATIC qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) { + if (comp->pass == MP_PASS_SCOPE) { + // create a new scope for this function + scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options); + // store the function scope so the compiling function can use it at each pass + pns->nodes[4] = (mp_parse_node_t)s; + } + + // get the scope for this function + scope_t *fscope = (scope_t *)pns->nodes[4]; + + // compile the function definition + compile_funcdef_lambdef(comp, fscope, pns->nodes[1], PN_typedargslist); + + // return its name (the 'f' in "def f(...):") + return fscope->simple_name; +} + +// leaves class object on stack +// returns class name +STATIC qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) { + if (comp->pass == MP_PASS_SCOPE) { + // create a new scope for this class + scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options); + // store the class scope so the compiling function can use it at each pass + pns->nodes[3] = (mp_parse_node_t)s; + } + + EMIT(load_build_class); + + // scope for this class + scope_t *cscope = (scope_t *)pns->nodes[3]; + + // compile the class + close_over_variables_etc(comp, cscope, 0, 0); + + // get its name + EMIT_ARG(load_const_str, cscope->simple_name); + + // nodes[1] has parent classes, if any + // empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling + mp_parse_node_t parents = pns->nodes[1]; + if (MP_PARSE_NODE_IS_STRUCT_KIND(parents, PN_classdef_2)) { + parents = MP_PARSE_NODE_NULL; + } + compile_trailer_paren_helper(comp, parents, false, 2); + + // return its name (the 'C' in class C(...):") + return cscope->simple_name; +} + +// returns true if it was a built-in decorator (even if the built-in had an error) +STATIC bool compile_built_in_decorator(compiler_t *comp, size_t name_len, mp_parse_node_t *name_nodes, uint *emit_options) { + if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) { + return false; + } + + if (name_len != 2) { + compile_syntax_error(comp, name_nodes[0], MP_ERROR_TEXT("invalid micropython decorator")); + return true; + } + + qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]); + if (attr == MP_QSTR_bytecode) { + *emit_options = MP_EMIT_OPT_BYTECODE; + // @micropython.native decorator. + } else if (attr == MP_QSTR_native) { + // Different from MicroPython: native doesn't raise SyntaxError if native support isn't + // compiled, it just passes through the function unmodified. + #if MICROPY_EMIT_NATIVE + *emit_options = MP_EMIT_OPT_NATIVE_PYTHON; + #else + return true; + #endif + #if MICROPY_EMIT_NATIVE + // @micropython.viper decorator. + } else if (attr == MP_QSTR_viper) { + *emit_options = MP_EMIT_OPT_VIPER; + #endif + #if MICROPY_EMIT_INLINE_ASM + #if MICROPY_DYNAMIC_COMPILER + } else if (attr == MP_QSTR_asm_thumb) { + *emit_options = MP_EMIT_OPT_ASM; + } else if (attr == MP_QSTR_asm_xtensa) { + *emit_options = MP_EMIT_OPT_ASM; + #else + } else if (attr == ASM_DECORATOR_QSTR) { + *emit_options = MP_EMIT_OPT_ASM; + #endif + #endif + } else { + compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid micropython decorator")); + } + + #if MICROPY_DYNAMIC_COMPILER + if (*emit_options == MP_EMIT_OPT_NATIVE_PYTHON || *emit_options == MP_EMIT_OPT_VIPER) { + if (emit_native_table[mp_dynamic_compiler.native_arch] == NULL) { + compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid architecture")); + } + } else if (*emit_options == MP_EMIT_OPT_ASM) { + if (emit_asm_table[mp_dynamic_compiler.native_arch] == NULL) { + compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid architecture")); + } + } + #endif + + return true; +} + +STATIC void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) { + // get the list of decorators + mp_parse_node_t *nodes; + size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_decorators, &nodes); + + // inherit emit options for this function/class definition + uint emit_options = comp->scope_cur->emit_options; + + // compile each decorator + size_t num_built_in_decorators = 0; + for (size_t i = 0; i < n; i++) { + assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be + mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t *)nodes[i]; + + // nodes[0] contains the decorator function, which is a dotted name + mp_parse_node_t *name_nodes; + size_t name_len = mp_parse_node_extract_list(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes); + + // check for built-in decorators + if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) { + // this was a built-in + num_built_in_decorators += 1; + + } else { + // not a built-in, compile normally + + // compile the decorator function + compile_node(comp, name_nodes[0]); + for (size_t j = 1; j < name_len; j++) { + assert(MP_PARSE_NODE_IS_ID(name_nodes[j])); // should be + EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[j]), MP_EMIT_ATTR_LOAD); + } + + // nodes[1] contains arguments to the decorator function, if any + if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) { + // call the decorator function with the arguments in nodes[1] + compile_node(comp, pns_decorator->nodes[1]); + } + } + } + + // compile the body (funcdef, async funcdef or classdef) and get its name + mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t *)pns->nodes[1]; + qstr body_name = 0; + if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) { + body_name = compile_funcdef_helper(comp, pns_body, emit_options); + #if MICROPY_PY_ASYNC_AWAIT + } else if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_async_funcdef) { + assert(MP_PARSE_NODE_IS_STRUCT(pns_body->nodes[0])); + mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t *)pns_body->nodes[0]; + body_name = compile_funcdef_helper(comp, pns0, emit_options); + scope_t *fscope = (scope_t *)pns0->nodes[4]; + fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR | MP_SCOPE_FLAG_ASYNC; + #endif + } else { + assert(MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef); // should be + body_name = compile_classdef_helper(comp, pns_body, emit_options); + } + + // call each decorator + for (size_t i = 0; i < n - num_built_in_decorators; i++) { + EMIT_ARG(call_function, 1, 0, 0); + } + + // store func/class object into name + compile_store_id(comp, body_name); +} + +STATIC void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) { + qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options); + // store function object into function name + compile_store_id(comp, fname); +} + +STATIC void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) { + if (MP_PARSE_NODE_IS_ID(pn)) { + compile_delete_id(comp, MP_PARSE_NODE_LEAF_ARG(pn)); + } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_expr_normal)) { + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + + compile_node(comp, pns->nodes[0]); // base of the atom_expr_normal node + + if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { + mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1]; + if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) { + int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); + for (int i = 0; i < n - 1; i++) { + compile_node(comp, pns1->nodes[i]); + } + assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1])); + pns1 = (mp_parse_node_struct_t *)pns1->nodes[n - 1]; + } + if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) { + compile_node(comp, pns1->nodes[0]); + EMIT_ARG(subscr, MP_EMIT_SUBSCR_DELETE); + } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) { + assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); + EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_DELETE); + } else { + goto cannot_delete; + } + } else { + goto cannot_delete; + } + + } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) { + pn = ((mp_parse_node_struct_t *)pn)->nodes[0]; + if (MP_PARSE_NODE_IS_NULL(pn)) { + goto cannot_delete; + } else { + assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp)); + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns)) { + goto cannot_delete; + } + for (size_t i = 0; i < MP_PARSE_NODE_STRUCT_NUM_NODES(pns); ++i) { + c_del_stmt(comp, pns->nodes[i]); + } + } + } else { + // some arbitrary statement that we can't delete (eg del 1) + goto cannot_delete; + } + + return; + +cannot_delete: + compile_syntax_error(comp, (mp_parse_node_t)pn, MP_ERROR_TEXT("can't delete expression")); +} + +STATIC void compile_del_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + apply_to_single_or_list(comp, pns->nodes[0], PN_exprlist, c_del_stmt); +} + +STATIC void compile_break_cont_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + uint16_t label; + const compressed_string_t *error_msg; + if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_break_stmt) { + label = comp->break_label; + error_msg = MP_ERROR_TEXT("'break' outside loop"); + } else { + label = comp->continue_label; + error_msg = MP_ERROR_TEXT("'continue' outside loop"); + } + if (label == INVALID_LABEL) { + compile_syntax_error(comp, (mp_parse_node_t)pns, error_msg); + } + assert(comp->cur_except_level >= comp->break_continue_except_level); + EMIT_ARG(unwind_jump, label, comp->cur_except_level - comp->break_continue_except_level); +} + +STATIC void compile_return_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + #if MICROPY_CPYTHON_COMPAT + if (comp->scope_cur->kind != SCOPE_FUNCTION) { + compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'return' outside function")); + return; + } + #endif + if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { + // no argument to 'return', so return None + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + } else if (MICROPY_COMP_RETURN_IF_EXPR + && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_test_if_expr)) { + // special case when returning an if-expression; to match CPython optimisation + mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t *)pns->nodes[0]; + mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t *)pns_test_if_expr->nodes[1]; + + uint l_fail = comp_next_label(comp); + c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition + compile_node(comp, pns_test_if_expr->nodes[0]); // success value + EMIT(return_value); + EMIT_ARG(label_assign, l_fail); + compile_node(comp, pns_test_if_else->nodes[1]); // failure value + } else { + compile_node(comp, pns->nodes[0]); + } + EMIT(return_value); +} + +STATIC void compile_yield_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + compile_node(comp, pns->nodes[0]); + EMIT(pop_top); +} + +STATIC void compile_raise_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { + // raise + EMIT_ARG(raise_varargs, 0); + } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_raise_stmt_arg)) { + // raise x from y + pns = (mp_parse_node_struct_t *)pns->nodes[0]; + compile_node(comp, pns->nodes[0]); + compile_node(comp, pns->nodes[1]); + EMIT_ARG(raise_varargs, 2); + } else { + // raise x + compile_node(comp, pns->nodes[0]); + EMIT_ARG(raise_varargs, 1); + } +} + +// q_base holds the base of the name +// eg a -> q_base=a +// a.b.c -> q_base=a +STATIC void do_import_name(compiler_t *comp, mp_parse_node_t pn, qstr *q_base) { + bool is_as = false; + if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_as_name)) { + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + // a name of the form x as y; unwrap it + *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]); + pn = pns->nodes[0]; + is_as = true; + } + if (MP_PARSE_NODE_IS_NULL(pn)) { + // empty name (eg, from . import x) + *q_base = MP_QSTR_; + EMIT_ARG(import, MP_QSTR_, MP_EMIT_IMPORT_NAME); // import the empty string + } else if (MP_PARSE_NODE_IS_ID(pn)) { + // just a simple name + qstr q_full = MP_PARSE_NODE_LEAF_ARG(pn); + if (!is_as) { + *q_base = q_full; + } + EMIT_ARG(import, q_full, MP_EMIT_IMPORT_NAME); + } else { + assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_name)); // should be + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + { + // a name of the form a.b.c + if (!is_as) { + *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); + } + int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); + int len = n - 1; + for (int i = 0; i < n; i++) { + len += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])); + } + char *q_ptr = mp_local_alloc(len); + char *str_dest = q_ptr; + for (int i = 0; i < n; i++) { + if (i > 0) { + *str_dest++ = '.'; + } + size_t str_src_len; + const byte *str_src = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &str_src_len); + memcpy(str_dest, str_src, str_src_len); + str_dest += str_src_len; + } + qstr q_full = qstr_from_strn(q_ptr, len); + mp_local_free(q_ptr); + EMIT_ARG(import, q_full, MP_EMIT_IMPORT_NAME); + if (is_as) { + for (int i = 1; i < n; i++) { + EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), MP_EMIT_ATTR_LOAD); + } + } + } + } +} + +STATIC void compile_dotted_as_name(compiler_t *comp, mp_parse_node_t pn) { + EMIT_ARG(load_const_small_int, 0); // level 0 import + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything + qstr q_base; + do_import_name(comp, pn, &q_base); + compile_store_id(comp, q_base); +} + +STATIC void compile_import_name(compiler_t *comp, mp_parse_node_struct_t *pns) { + apply_to_single_or_list(comp, pns->nodes[0], PN_dotted_as_names, compile_dotted_as_name); +} + +STATIC void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) { + mp_parse_node_t pn_import_source = pns->nodes[0]; + + // extract the preceding .'s (if any) for a relative import, to compute the import level + uint import_level = 0; + do { + mp_parse_node_t pn_rel; + if (MP_PARSE_NODE_IS_TOKEN(pn_import_source) || MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_one_or_more_period_or_ellipsis)) { + // This covers relative imports with dots only like "from .. import" + pn_rel = pn_import_source; + pn_import_source = MP_PARSE_NODE_NULL; + } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_import_from_2b)) { + // This covers relative imports starting with dot(s) like "from .foo import" + mp_parse_node_struct_t *pns_2b = (mp_parse_node_struct_t *)pn_import_source; + pn_rel = pns_2b->nodes[0]; + pn_import_source = pns_2b->nodes[1]; + assert(!MP_PARSE_NODE_IS_NULL(pn_import_source)); // should not be + } else { + // Not a relative import + break; + } + + // get the list of . and/or ...'s + mp_parse_node_t *nodes; + size_t n = mp_parse_node_extract_list(&pn_rel, PN_one_or_more_period_or_ellipsis, &nodes); + + // count the total number of .'s + for (size_t i = 0; i < n; i++) { + if (MP_PARSE_NODE_IS_TOKEN_KIND(nodes[i], MP_TOKEN_DEL_PERIOD)) { + import_level++; + } else { + // should be an MP_TOKEN_ELLIPSIS + import_level += 3; + } + } + } while (0); + + if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) { + #if MICROPY_CPYTHON_COMPAT + if (comp->scope_cur->kind != SCOPE_MODULE) { + compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("import * not at module level")); + return; + } + #endif + + EMIT_ARG(load_const_small_int, import_level); + + // build the "fromlist" tuple + EMIT_ARG(load_const_str, MP_QSTR__star_); + EMIT_ARG(build, 1, MP_EMIT_BUILD_TUPLE); + + // do the import + qstr dummy_q; + do_import_name(comp, pn_import_source, &dummy_q); + EMIT_ARG(import, MP_QSTRnull, MP_EMIT_IMPORT_STAR); + + } else { + EMIT_ARG(load_const_small_int, import_level); + + // build the "fromlist" tuple + mp_parse_node_t *pn_nodes; + size_t n = mp_parse_node_extract_list(&pns->nodes[1], PN_import_as_names, &pn_nodes); + for (size_t i = 0; i < n; i++) { + assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name)); + mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t *)pn_nodes[i]; + qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id + EMIT_ARG(load_const_str, id2); + } + EMIT_ARG(build, n, MP_EMIT_BUILD_TUPLE); + + // do the import + qstr dummy_q; + do_import_name(comp, pn_import_source, &dummy_q); + for (size_t i = 0; i < n; i++) { + assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name)); + mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t *)pn_nodes[i]; + qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id + EMIT_ARG(import, id2, MP_EMIT_IMPORT_FROM); + if (MP_PARSE_NODE_IS_NULL(pns3->nodes[1])) { + compile_store_id(comp, id2); + } else { + compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1])); + } + } + EMIT(pop_top); + } +} + +STATIC void compile_declare_global(compiler_t *comp, mp_parse_node_t pn, id_info_t *id_info) { + if (id_info->kind != ID_INFO_KIND_UNDECIDED && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) { + compile_syntax_error(comp, pn, MP_ERROR_TEXT("identifier redefined as global")); + return; + } + id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; + + // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL + id_info = scope_find_global(comp->scope_cur, id_info->qst); + if (id_info != NULL) { + id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; + } +} + +STATIC void compile_declare_nonlocal(compiler_t *comp, mp_parse_node_t pn, id_info_t *id_info) { + if (id_info->kind == ID_INFO_KIND_UNDECIDED) { + id_info->kind = ID_INFO_KIND_GLOBAL_IMPLICIT; + scope_check_to_close_over(comp->scope_cur, id_info); + if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { + compile_syntax_error(comp, pn, MP_ERROR_TEXT("no binding for nonlocal found")); + } + } else if (id_info->kind != ID_INFO_KIND_FREE) { + compile_syntax_error(comp, pn, MP_ERROR_TEXT("identifier redefined as nonlocal")); + } +} + +STATIC void compile_global_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + if (comp->pass == MP_PASS_SCOPE) { + bool is_global = MP_PARSE_NODE_STRUCT_KIND(pns) == PN_global_stmt; + + if (!is_global && comp->scope_cur->kind == SCOPE_MODULE) { + compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("can't declare nonlocal in outer code")); + return; + } + + mp_parse_node_t *nodes; + size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes); + for (size_t i = 0; i < n; i++) { + qstr qst = MP_PARSE_NODE_LEAF_ARG(nodes[i]); + id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, ID_INFO_KIND_UNDECIDED); + if (is_global) { + compile_declare_global(comp, (mp_parse_node_t)pns, id_info); + } else { + compile_declare_nonlocal(comp, (mp_parse_node_t)pns, id_info); + } + } + } +} + +STATIC void compile_assert_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + // with optimisations enabled we don't compile assertions + if (MP_STATE_VM(mp_optimise_value) != 0) { + return; + } + + uint l_end = comp_next_label(comp); + c_if_cond(comp, pns->nodes[0], true, l_end); + EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython + if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { + // assertion message + compile_node(comp, pns->nodes[1]); + EMIT_ARG(call_function, 1, 0, 0); + } + EMIT_ARG(raise_varargs, 1); + EMIT_ARG(label_assign, l_end); +} + +STATIC void compile_if_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + uint l_end = comp_next_label(comp); + + // optimisation: don't emit anything when "if False" + if (!mp_parse_node_is_const_false(pns->nodes[0])) { + uint l_fail = comp_next_label(comp); + c_if_cond(comp, pns->nodes[0], false, l_fail); // if condition + + compile_node(comp, pns->nodes[1]); // if block + + // optimisation: skip everything else when "if True" + if (mp_parse_node_is_const_true(pns->nodes[0])) { + goto done; + } + + if ( + // optimisation: don't jump over non-existent elif/else blocks + !(MP_PARSE_NODE_IS_NULL(pns->nodes[2]) && MP_PARSE_NODE_IS_NULL(pns->nodes[3])) + // optimisation: don't jump if last instruction was return + && !EMIT(last_emit_was_return_value) + ) { + // jump over elif/else blocks + EMIT_ARG(jump, l_end); + } + + EMIT_ARG(label_assign, l_fail); + } + + // compile elif blocks (if any) + mp_parse_node_t *pn_elif; + size_t n_elif = mp_parse_node_extract_list(&pns->nodes[2], PN_if_stmt_elif_list, &pn_elif); + for (size_t i = 0; i < n_elif; i++) { + assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_elif[i], PN_if_stmt_elif)); // should be + mp_parse_node_struct_t *pns_elif = (mp_parse_node_struct_t *)pn_elif[i]; + + // optimisation: don't emit anything when "if False" + if (!mp_parse_node_is_const_false(pns_elif->nodes[0])) { + uint l_fail = comp_next_label(comp); + c_if_cond(comp, pns_elif->nodes[0], false, l_fail); // elif condition + + compile_node(comp, pns_elif->nodes[1]); // elif block + + // optimisation: skip everything else when "elif True" + if (mp_parse_node_is_const_true(pns_elif->nodes[0])) { + goto done; + } + + // optimisation: don't jump if last instruction was return + if (!EMIT(last_emit_was_return_value)) { + EMIT_ARG(jump, l_end); + } + EMIT_ARG(label_assign, l_fail); + } + } + + // compile else block + compile_node(comp, pns->nodes[3]); // can be null + +done: + EMIT_ARG(label_assign, l_end); +} + +#define START_BREAK_CONTINUE_BLOCK \ + uint16_t old_break_label = comp->break_label; \ + uint16_t old_continue_label = comp->continue_label; \ + uint16_t old_break_continue_except_level = comp->break_continue_except_level; \ + uint break_label = comp_next_label(comp); \ + uint continue_label = comp_next_label(comp); \ + comp->break_label = break_label; \ + comp->continue_label = continue_label; \ + comp->break_continue_except_level = comp->cur_except_level; + +#define END_BREAK_CONTINUE_BLOCK \ + comp->break_label = old_break_label; \ + comp->continue_label = old_continue_label; \ + comp->break_continue_except_level = old_break_continue_except_level; + +STATIC void compile_while_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + START_BREAK_CONTINUE_BLOCK + + if (!mp_parse_node_is_const_false(pns->nodes[0])) { // optimisation: don't emit anything for "while False" + uint top_label = comp_next_label(comp); + if (!mp_parse_node_is_const_true(pns->nodes[0])) { // optimisation: don't jump to cond for "while True" + EMIT_ARG(jump, continue_label); + } + EMIT_ARG(label_assign, top_label); + compile_node(comp, pns->nodes[1]); // body + EMIT_ARG(label_assign, continue_label); + c_if_cond(comp, pns->nodes[0], true, top_label); // condition + } + + // break/continue apply to outer loop (if any) in the else block + END_BREAK_CONTINUE_BLOCK + + compile_node(comp, pns->nodes[2]); // else + + EMIT_ARG(label_assign, break_label); +} + +// This function compiles an optimised for-loop of the form: +// for <var> in range(<start>, <end>, <step>): +// <body> +// else: +// <else> +// <var> must be an identifier and <step> must be a small-int. +// +// Semantics of for-loop require: +// - final failing value should not be stored in the loop variable +// - if the loop never runs, the loop variable should never be assigned +// - assignments to <var>, <end> or <step> in the body do not alter the loop +// (<step> is a constant for us, so no need to worry about it changing) +// +// If <end> is a small-int, then the stack during the for-loop contains just +// the current value of <var>. Otherwise, the stack contains <end> then the +// current value of <var>. +STATIC void compile_for_stmt_optimised_range(compiler_t *comp, mp_parse_node_t pn_var, mp_parse_node_t pn_start, mp_parse_node_t pn_end, mp_parse_node_t pn_step, mp_parse_node_t pn_body, mp_parse_node_t pn_else) { + START_BREAK_CONTINUE_BLOCK + + uint top_label = comp_next_label(comp); + uint entry_label = comp_next_label(comp); + + // put the end value on the stack if it's not a small-int constant + bool end_on_stack = !MP_PARSE_NODE_IS_SMALL_INT(pn_end); + if (end_on_stack) { + compile_node(comp, pn_end); + } + + // compile: start + compile_node(comp, pn_start); + + EMIT_ARG(jump, entry_label); + EMIT_ARG(label_assign, top_label); + + // duplicate next value and store it to var + EMIT(dup_top); + c_assign(comp, pn_var, ASSIGN_STORE); + + // compile body + compile_node(comp, pn_body); + + EMIT_ARG(label_assign, continue_label); + + // compile: var + step + compile_node(comp, pn_step); + EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD); + + EMIT_ARG(label_assign, entry_label); + + // compile: if var <cond> end: goto top + if (end_on_stack) { + EMIT(dup_top_two); + EMIT(rot_two); + } else { + EMIT(dup_top); + compile_node(comp, pn_end); + } + assert(MP_PARSE_NODE_IS_SMALL_INT(pn_step)); + if (MP_PARSE_NODE_LEAF_SMALL_INT(pn_step) >= 0) { + EMIT_ARG(binary_op, MP_BINARY_OP_LESS); + } else { + EMIT_ARG(binary_op, MP_BINARY_OP_MORE); + } + EMIT_ARG(pop_jump_if, true, top_label); + + // break/continue apply to outer loop (if any) in the else block + END_BREAK_CONTINUE_BLOCK + + // Compile the else block. We must pop the iterator variables before + // executing the else code because it may contain break/continue statements. + uint end_label = 0; + if (!MP_PARSE_NODE_IS_NULL(pn_else)) { + // discard final value of "var", and possible "end" value + EMIT(pop_top); + if (end_on_stack) { + EMIT(pop_top); + } + compile_node(comp, pn_else); + end_label = comp_next_label(comp); + EMIT_ARG(jump, end_label); + EMIT_ARG(adjust_stack_size, 1 + end_on_stack); + } + + EMIT_ARG(label_assign, break_label); + + // discard final value of var that failed the loop condition + EMIT(pop_top); + + // discard <end> value if it's on the stack + if (end_on_stack) { + EMIT(pop_top); + } + + if (!MP_PARSE_NODE_IS_NULL(pn_else)) { + EMIT_ARG(label_assign, end_label); + } +} + +STATIC void compile_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + // this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable + // this is actually slower, but uses no heap memory + // for viper it will be much, much faster + if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_atom_expr_normal)) { + mp_parse_node_struct_t *pns_it = (mp_parse_node_struct_t *)pns->nodes[1]; + if (MP_PARSE_NODE_IS_ID(pns_it->nodes[0]) + && MP_PARSE_NODE_LEAF_ARG(pns_it->nodes[0]) == MP_QSTR_range + && MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pns_it->nodes[1]) == PN_trailer_paren) { + mp_parse_node_t pn_range_args = ((mp_parse_node_struct_t *)pns_it->nodes[1])->nodes[0]; + mp_parse_node_t *args; + size_t n_args = mp_parse_node_extract_list(&pn_range_args, PN_arglist, &args); + mp_parse_node_t pn_range_start; + mp_parse_node_t pn_range_end; + mp_parse_node_t pn_range_step; + bool optimize = false; + if (1 <= n_args && n_args <= 3) { + optimize = true; + if (n_args == 1) { + pn_range_start = mp_parse_node_new_small_int(0); + pn_range_end = args[0]; + pn_range_step = mp_parse_node_new_small_int(1); + } else if (n_args == 2) { + pn_range_start = args[0]; + pn_range_end = args[1]; + pn_range_step = mp_parse_node_new_small_int(1); + } else { + pn_range_start = args[0]; + pn_range_end = args[1]; + pn_range_step = args[2]; + // the step must be a non-zero constant integer to do the optimisation + if (!MP_PARSE_NODE_IS_SMALL_INT(pn_range_step) + || MP_PARSE_NODE_LEAF_SMALL_INT(pn_range_step) == 0) { + optimize = false; + } + } + // arguments must be able to be compiled as standard expressions + if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_start)) { + int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_range_start); + if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) { + optimize = false; + } + } + if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_end)) { + int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_range_end); + if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) { + optimize = false; + } + } + } + if (optimize) { + compile_for_stmt_optimised_range(comp, pns->nodes[0], pn_range_start, pn_range_end, pn_range_step, pns->nodes[2], pns->nodes[3]); + return; + } + } + } + + START_BREAK_CONTINUE_BLOCK + comp->break_label |= MP_EMIT_BREAK_FROM_FOR; + + uint pop_label = comp_next_label(comp); + + compile_node(comp, pns->nodes[1]); // iterator + EMIT_ARG(get_iter, true); + EMIT_ARG(label_assign, continue_label); + EMIT_ARG(for_iter, pop_label); + c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable + compile_node(comp, pns->nodes[2]); // body + if (!EMIT(last_emit_was_return_value)) { + EMIT_ARG(jump, continue_label); + } + EMIT_ARG(label_assign, pop_label); + EMIT(for_iter_end); + + // break/continue apply to outer loop (if any) in the else block + END_BREAK_CONTINUE_BLOCK + + compile_node(comp, pns->nodes[3]); // else (may be empty) + + EMIT_ARG(label_assign, break_label); +} + +STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_excepts, mp_parse_node_t pn_else) { + // setup code + uint l1 = comp_next_label(comp); + uint success_label = comp_next_label(comp); + + compile_increase_except_level(comp, l1, MP_EMIT_SETUP_BLOCK_EXCEPT); + + compile_node(comp, pn_body); // body + EMIT_ARG(pop_except_jump, success_label, false); // jump over exception handler + + EMIT_ARG(label_assign, l1); // start of exception handler + EMIT(start_except_handler); + + // at this point the top of the stack contains the exception instance that was raised + + uint l2 = comp_next_label(comp); + + for (int i = 0; i < n_except; i++) { + assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_excepts[i], PN_try_stmt_except)); // should be + mp_parse_node_struct_t *pns_except = (mp_parse_node_struct_t *)pn_excepts[i]; + + qstr qstr_exception_local = 0; + uint end_finally_label = comp_next_label(comp); + #if MICROPY_PY_SYS_SETTRACE + EMIT_ARG(set_source_line, pns_except->source_line); + #endif + + if (MP_PARSE_NODE_IS_NULL(pns_except->nodes[0])) { + // this is a catch all exception handler + if (i + 1 != n_except) { + compile_syntax_error(comp, pn_excepts[i], MP_ERROR_TEXT("default 'except' must be last")); + compile_decrease_except_level(comp); + return; + } + } else { + // this exception handler requires a match to a certain type of exception + mp_parse_node_t pns_exception_expr = pns_except->nodes[0]; + if (MP_PARSE_NODE_IS_STRUCT(pns_exception_expr)) { + mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t *)pns_exception_expr; + if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_try_stmt_as_name) { + // handler binds the exception to a local + pns_exception_expr = pns3->nodes[0]; + qstr_exception_local = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]); + } + } + EMIT(dup_top); + compile_node(comp, pns_exception_expr); + EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH); + EMIT_ARG(pop_jump_if, false, end_finally_label); + } + + // either discard or store the exception instance + if (qstr_exception_local == 0) { + EMIT(pop_top); + } else { + compile_store_id(comp, qstr_exception_local); + } + + // If the exception is bound to a variable <e> then the <body> of the + // exception handler is wrapped in a try-finally so that the name <e> can + // be deleted (per Python semantics) even if the <body> has an exception. + // In such a case the generated code for the exception handler is: + // try: + // <body> + // finally: + // <e> = None + // del <e> + uint l3 = 0; + if (qstr_exception_local != 0) { + l3 = comp_next_label(comp); + compile_increase_except_level(comp, l3, MP_EMIT_SETUP_BLOCK_FINALLY); + } + compile_node(comp, pns_except->nodes[1]); // the <body> + if (qstr_exception_local != 0) { + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT_ARG(label_assign, l3); + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + compile_store_id(comp, qstr_exception_local); + compile_delete_id(comp, qstr_exception_local); + compile_decrease_except_level(comp); + } + + EMIT_ARG(pop_except_jump, l2, true); + EMIT_ARG(label_assign, end_finally_label); + EMIT_ARG(adjust_stack_size, 1); // stack adjust for the exception instance + } + + compile_decrease_except_level(comp); + EMIT(end_except_handler); + + EMIT_ARG(label_assign, success_label); + compile_node(comp, pn_else); // else block, can be null + EMIT_ARG(label_assign, l2); +} + +STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) { + uint l_finally_block = comp_next_label(comp); + + compile_increase_except_level(comp, l_finally_block, MP_EMIT_SETUP_BLOCK_FINALLY); + + if (n_except == 0) { + assert(MP_PARSE_NODE_IS_NULL(pn_else)); + EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state + compile_node(comp, pn_body); + EMIT_ARG(adjust_stack_size, -3); + } else { + compile_try_except(comp, pn_body, n_except, pn_except, pn_else); + } + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT_ARG(label_assign, l_finally_block); + compile_node(comp, pn_finally); + + compile_decrease_except_level(comp); +} + +STATIC void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should be + { + mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[1]; + if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_finally) { + // just try-finally + compile_try_finally(comp, pns->nodes[0], 0, NULL, MP_PARSE_NODE_NULL, pns2->nodes[0]); + } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_except_and_more) { + // try-except and possibly else and/or finally + mp_parse_node_t *pn_excepts; + size_t n_except = mp_parse_node_extract_list(&pns2->nodes[0], PN_try_stmt_except_list, &pn_excepts); + if (MP_PARSE_NODE_IS_NULL(pns2->nodes[2])) { + // no finally + compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1]); + } else { + // have finally + compile_try_finally(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1], ((mp_parse_node_struct_t *)pns2->nodes[2])->nodes[0]); + } + } else { + // just try-except + mp_parse_node_t *pn_excepts; + size_t n_except = mp_parse_node_extract_list(&pns->nodes[1], PN_try_stmt_except_list, &pn_excepts); + compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, MP_PARSE_NODE_NULL); + } + } +} + +STATIC void compile_with_stmt_helper(compiler_t *comp, size_t n, mp_parse_node_t *nodes, mp_parse_node_t body) { + if (n == 0) { + // no more pre-bits, compile the body of the with + compile_node(comp, body); + } else { + uint l_end = comp_next_label(comp); + if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) { + // this pre-bit is of the form "a as b" + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)nodes[0]; + compile_node(comp, pns->nodes[0]); + compile_increase_except_level(comp, l_end, MP_EMIT_SETUP_BLOCK_WITH); + c_assign(comp, pns->nodes[1], ASSIGN_STORE); + } else { + // this pre-bit is just an expression + compile_node(comp, nodes[0]); + compile_increase_except_level(comp, l_end, MP_EMIT_SETUP_BLOCK_WITH); + EMIT(pop_top); + } + // compile additional pre-bits and the body + compile_with_stmt_helper(comp, n - 1, nodes + 1, body); + // finish this with block + EMIT_ARG(with_cleanup, l_end); + reserve_labels_for_native(comp, 3); // used by native's with_cleanup + compile_decrease_except_level(comp); + } +} + +STATIC void compile_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit) + mp_parse_node_t *nodes; + size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes); + assert(n > 0); + + // compile in a nested fashion + compile_with_stmt_helper(comp, n, nodes, pns->nodes[1]); +} + +STATIC void compile_yield_from(compiler_t *comp) { + EMIT_ARG(get_iter, false); + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT_ARG(yield, MP_EMIT_YIELD_FROM); + reserve_labels_for_native(comp, 3); +} + +#if MICROPY_PY_ASYNC_AWAIT +STATIC void compile_await_object_method(compiler_t *comp, qstr method) { + EMIT_ARG(load_method, method, false); + EMIT_ARG(call_method, 0, 0, 0); + compile_yield_from(comp); +} + +STATIC void compile_async_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + // comp->break_label |= MP_EMIT_BREAK_FROM_FOR; + qstr context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]); + uint while_else_label = comp_next_label(comp); + uint try_exception_label = comp_next_label(comp); + uint try_else_label = comp_next_label(comp); + uint try_finally_label = comp_next_label(comp); + + compile_node(comp, pns->nodes[1]); // iterator + EMIT_ARG(load_method, MP_QSTR___aiter__, false); + EMIT_ARG(call_method, 0, 0, 0); + compile_store_id(comp, context); + + START_BREAK_CONTINUE_BLOCK + + EMIT_ARG(label_assign, continue_label); + + compile_increase_except_level(comp, try_exception_label, MP_EMIT_SETUP_BLOCK_EXCEPT); + + compile_load_id(comp, context); + compile_await_object_method(comp, MP_QSTR___anext__); + c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable + EMIT_ARG(pop_except_jump, try_else_label, false); + + EMIT_ARG(label_assign, try_exception_label); + EMIT(start_except_handler); + EMIT(dup_top); + EMIT_LOAD_GLOBAL(MP_QSTR_StopAsyncIteration); + EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH); + EMIT_ARG(pop_jump_if, false, try_finally_label); + EMIT(pop_top); // pop exception instance + EMIT_ARG(pop_except_jump, while_else_label, true); + + EMIT_ARG(label_assign, try_finally_label); + EMIT_ARG(adjust_stack_size, 1); // if we jump here, the exc is on the stack + compile_decrease_except_level(comp); + EMIT(end_except_handler); + + EMIT_ARG(label_assign, try_else_label); + compile_node(comp, pns->nodes[2]); // body + + EMIT_ARG(jump, continue_label); + // break/continue apply to outer loop (if any) in the else block + END_BREAK_CONTINUE_BLOCK + + EMIT_ARG(label_assign, while_else_label); + compile_node(comp, pns->nodes[3]); // else + + EMIT_ARG(label_assign, break_label); +} + +STATIC void compile_async_with_stmt_helper(compiler_t *comp, size_t n, mp_parse_node_t *nodes, mp_parse_node_t body) { + if (n == 0) { + // no more pre-bits, compile the body of the with + compile_node(comp, body); + } else { + uint l_finally_block = comp_next_label(comp); + uint l_aexit_no_exc = comp_next_label(comp); + uint l_ret_unwind_jump = comp_next_label(comp); + uint l_end = comp_next_label(comp); + + if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) { + // this pre-bit is of the form "a as b" + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)nodes[0]; + compile_node(comp, pns->nodes[0]); + EMIT(dup_top); + compile_await_object_method(comp, MP_QSTR___aenter__); + c_assign(comp, pns->nodes[1], ASSIGN_STORE); + } else { + // this pre-bit is just an expression + compile_node(comp, nodes[0]); + EMIT(dup_top); + compile_await_object_method(comp, MP_QSTR___aenter__); + EMIT(pop_top); + } + + // To keep the Python stack size down, and because we can't access values on + // this stack further down than 3 elements (via rot_three), we don't preload + // __aexit__ (as per normal with) but rather wait until we need it below. + + // Start the try-finally statement + compile_increase_except_level(comp, l_finally_block, MP_EMIT_SETUP_BLOCK_FINALLY); + + // Compile any additional pre-bits of the "async with", and also the body + EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state + compile_async_with_stmt_helper(comp, n - 1, nodes + 1, body); + EMIT_ARG(adjust_stack_size, -3); + + // We have now finished the "try" block and fall through to the "finally" + + // At this point, after the with body has executed, we have 3 cases: + // 1. no exception, we just fall through to this point; stack: (..., ctx_mgr) + // 2. exception propagating out, we get to the finally block; stack: (..., ctx_mgr, exc) + // 3. return or unwind jump, we get to the finally block; stack: (..., ctx_mgr, X, INT) + + // Handle case 1: call __aexit__ + // Stack: (..., ctx_mgr) + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // to tell end_finally there's no exception + EMIT(rot_two); + EMIT_ARG(jump, l_aexit_no_exc); // jump to code below to call __aexit__ + + // Start of "finally" block + // At this point we have case 2 or 3, we detect which one by the TOS being an exception or not + EMIT_ARG(label_assign, l_finally_block); + + // Detect if TOS an exception or not + EMIT(dup_top); + EMIT_LOAD_GLOBAL(MP_QSTR_BaseException); + EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH); + EMIT_ARG(pop_jump_if, false, l_ret_unwind_jump); // if not an exception then we have case 3 + + // Handle case 2: call __aexit__ and either swallow or re-raise the exception + // Stack: (..., ctx_mgr, exc) + EMIT(dup_top); + EMIT(rot_three); + EMIT(rot_two); + EMIT_ARG(load_method, MP_QSTR___aexit__, false); + EMIT(rot_three); + EMIT(rot_three); + EMIT(dup_top); + #if MICROPY_CPYTHON_COMPAT + EMIT_ARG(attr, MP_QSTR___class__, MP_EMIT_ATTR_LOAD); // get type(exc) + #else + compile_load_id(comp, MP_QSTR_type); + EMIT(rot_two); + EMIT_ARG(call_function, 1, 0, 0); // get type(exc) + #endif + EMIT(rot_two); + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // dummy traceback value + // Stack: (..., exc, __aexit__, ctx_mgr, type(exc), exc, None) + EMIT_ARG(call_method, 3, 0, 0); + compile_yield_from(comp); + EMIT_ARG(pop_jump_if, false, l_end); + EMIT(pop_top); // pop exception + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // replace with None to swallow exception + EMIT_ARG(jump, l_end); + EMIT_ARG(adjust_stack_size, 2); + + // Handle case 3: call __aexit__ + // Stack: (..., ctx_mgr, X, INT) + EMIT_ARG(label_assign, l_ret_unwind_jump); + EMIT(rot_three); + EMIT(rot_three); + EMIT_ARG(label_assign, l_aexit_no_exc); + EMIT_ARG(load_method, MP_QSTR___aexit__, false); + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT(dup_top); + EMIT(dup_top); + EMIT_ARG(call_method, 3, 0, 0); + compile_yield_from(comp); + EMIT(pop_top); + EMIT_ARG(adjust_stack_size, -1); + + // End of "finally" block + // Stack can have one of three configurations: + // a. (..., None) - from either case 1, or case 2 with swallowed exception + // b. (..., exc) - from case 2 with re-raised exception + // c. (..., X, INT) - from case 3 + EMIT_ARG(label_assign, l_end); + compile_decrease_except_level(comp); + } +} + +STATIC void compile_async_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit) + mp_parse_node_t *nodes; + size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes); + assert(n > 0); + + // compile in a nested fashion + compile_async_with_stmt_helper(comp, n, nodes, pns->nodes[1]); +} + +STATIC void compile_async_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[0])); + mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t *)pns->nodes[0]; + if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_funcdef) { + // async def + compile_funcdef(comp, pns0); + scope_t *fscope = (scope_t *)pns0->nodes[4]; + fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR | MP_SCOPE_FLAG_ASYNC; + } else { + // async for/with; first verify the scope is a generator + int scope_flags = comp->scope_cur->scope_flags; + if (!(scope_flags & MP_SCOPE_FLAG_GENERATOR)) { + compile_syntax_error(comp, (mp_parse_node_t)pns0, + MP_ERROR_TEXT("'await', 'async for' or 'async with' outside async function")); + return; + } + + if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_for_stmt) { + // async for + compile_async_for_stmt(comp, pns0); + } else { + // async with + assert(MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_with_stmt); + compile_async_with_stmt(comp, pns0); + } + } +} +#endif + +STATIC void compile_expr_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { + mp_parse_node_t pn_rhs = pns->nodes[1]; + if (MP_PARSE_NODE_IS_NULL(pn_rhs)) { + if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) { + // for REPL, evaluate then print the expression + compile_load_id(comp, MP_QSTR___repl_print__); + compile_node(comp, pns->nodes[0]); + EMIT_ARG(call_function, 1, 0, 0); + EMIT(pop_top); + + } else { + // for non-REPL, evaluate then discard the expression + if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0])) + || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) { + // do nothing with a lonely constant + } else { + compile_node(comp, pns->nodes[0]); // just an expression + EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack + } + } + } else if (MP_PARSE_NODE_IS_STRUCT(pn_rhs)) { + mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pn_rhs; + int kind = MP_PARSE_NODE_STRUCT_KIND(pns1); + if (kind == PN_annassign) { + // the annotation is in pns1->nodes[0] and is ignored + if (MP_PARSE_NODE_IS_NULL(pns1->nodes[1])) { + // an annotation of the form "x: y" + // inside a function this declares "x" as a local + if (comp->scope_cur->kind == SCOPE_FUNCTION) { + if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) { + qstr lhs = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); + scope_find_or_add_id(comp->scope_cur, lhs, ID_INFO_KIND_LOCAL); + } + } + } else { + // an assigned annotation of the form "x: y = z" + pn_rhs = pns1->nodes[1]; + goto plain_assign; + } + } else if (kind == PN_expr_stmt_augassign) { + c_assign(comp, pns->nodes[0], ASSIGN_AUG_LOAD); // lhs load for aug assign + compile_node(comp, pns1->nodes[1]); // rhs + assert(MP_PARSE_NODE_IS_TOKEN(pns1->nodes[0])); + mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]); + mp_binary_op_t op = MP_BINARY_OP_INPLACE_OR + (tok - MP_TOKEN_DEL_PIPE_EQUAL); + EMIT_ARG(binary_op, op); + c_assign(comp, pns->nodes[0], ASSIGN_AUG_STORE); // lhs store for aug assign + } else if (kind == PN_expr_stmt_assign_list) { + int rhs = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) - 1; + compile_node(comp, pns1->nodes[rhs]); // rhs + // following CPython, we store left-most first + if (rhs > 0) { + EMIT(dup_top); + } + c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store + for (int i = 0; i < rhs; i++) { + if (i + 1 < rhs) { + EMIT(dup_top); + } + c_assign(comp, pns1->nodes[i], ASSIGN_STORE); // middle store + } + } else { + plain_assign: + #if MICROPY_COMP_DOUBLE_TUPLE_ASSIGN + if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_rhs, PN_testlist_star_expr) + && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)) { + mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t *)pns->nodes[0]; + pns1 = (mp_parse_node_struct_t *)pn_rhs; + uint32_t n_pns0 = MP_PARSE_NODE_STRUCT_NUM_NODES(pns0); + // Can only optimise a tuple-to-tuple assignment when all of the following hold: + // - equal number of items in LHS and RHS tuples + // - 2 or 3 items in the tuples + // - there are no star expressions in the LHS tuple + if (n_pns0 == MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) + && (n_pns0 == 2 + #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN + || n_pns0 == 3 + #endif + ) + && !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr) + && !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr) + #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN + && (n_pns0 == 2 || !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr)) + #endif + ) { + // Optimisation for a, b = c, d or a, b, c = d, e, f + compile_node(comp, pns1->nodes[0]); // rhs + compile_node(comp, pns1->nodes[1]); // rhs + #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN + if (n_pns0 == 3) { + compile_node(comp, pns1->nodes[2]); // rhs + EMIT(rot_three); + } + #endif + EMIT(rot_two); + c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store + c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store + #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN + if (n_pns0 == 3) { + c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store + } + #endif + return; + } + } + #endif + + compile_node(comp, pn_rhs); // rhs + c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store + } + } else { + goto plain_assign; + } +} + +STATIC void compile_test_if_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { + assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_test_if_else)); + mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t *)pns->nodes[1]; + + uint l_fail = comp_next_label(comp); + uint l_end = comp_next_label(comp); + c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition + compile_node(comp, pns->nodes[0]); // success value + EMIT_ARG(jump, l_end); + EMIT_ARG(label_assign, l_fail); + EMIT_ARG(adjust_stack_size, -1); // adjust stack size + compile_node(comp, pns_test_if_else->nodes[1]); // failure value + EMIT_ARG(label_assign, l_end); +} + +STATIC void compile_lambdef(compiler_t *comp, mp_parse_node_struct_t *pns) { + if (comp->pass == MP_PASS_SCOPE) { + // create a new scope for this lambda + scope_t *s = scope_new_and_link(comp, SCOPE_LAMBDA, (mp_parse_node_t)pns, comp->scope_cur->emit_options); + // store the lambda scope so the compiling function (this one) can use it at each pass + pns->nodes[2] = (mp_parse_node_t)s; + } + + // get the scope for this lambda + scope_t *this_scope = (scope_t *)pns->nodes[2]; + + // compile the lambda definition + compile_funcdef_lambdef(comp, this_scope, pns->nodes[0], PN_varargslist); +} + +#if MICROPY_PY_ASSIGN_EXPR +STATIC void compile_namedexpr_helper(compiler_t *comp, mp_parse_node_t pn_name, mp_parse_node_t pn_expr) { + if (!MP_PARSE_NODE_IS_ID(pn_name)) { + compile_syntax_error(comp, (mp_parse_node_t)pn_name, MP_ERROR_TEXT("can't assign to expression")); + } + compile_node(comp, pn_expr); + EMIT(dup_top); + scope_t *old_scope = comp->scope_cur; + if (SCOPE_IS_COMP_LIKE(comp->scope_cur->kind)) { + // Use parent's scope for assigned value so it can "escape" + comp->scope_cur = comp->scope_cur->parent; + } + compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pn_name)); + comp->scope_cur = old_scope; +} + +STATIC void compile_namedexpr(compiler_t *comp, mp_parse_node_struct_t *pns) { + compile_namedexpr_helper(comp, pns->nodes[0], pns->nodes[1]); +} +#endif + +STATIC void compile_or_and_test(compiler_t *comp, mp_parse_node_struct_t *pns) { + bool cond = MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test; + uint l_end = comp_next_label(comp); + int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); + for (int i = 0; i < n; i += 1) { + compile_node(comp, pns->nodes[i]); + if (i + 1 < n) { + EMIT_ARG(jump_if_or_pop, cond, l_end); + } + } + EMIT_ARG(label_assign, l_end); +} + +STATIC void compile_not_test_2(compiler_t *comp, mp_parse_node_struct_t *pns) { + compile_node(comp, pns->nodes[0]); + EMIT_ARG(unary_op, MP_UNARY_OP_NOT); +} + +STATIC void compile_comparison(compiler_t *comp, mp_parse_node_struct_t *pns) { + int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); + compile_node(comp, pns->nodes[0]); + bool multi = (num_nodes > 3); + uint l_fail = 0; + if (multi) { + l_fail = comp_next_label(comp); + } + for (int i = 1; i + 1 < num_nodes; i += 2) { + compile_node(comp, pns->nodes[i + 1]); + if (i + 2 < num_nodes) { + EMIT(dup_top); + EMIT(rot_three); + } + if (MP_PARSE_NODE_IS_TOKEN(pns->nodes[i])) { + mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]); + mp_binary_op_t op; + if (tok == MP_TOKEN_KW_IN) { + op = MP_BINARY_OP_IN; + } else { + op = MP_BINARY_OP_LESS + (tok - MP_TOKEN_OP_LESS); + } + EMIT_ARG(binary_op, op); + } else { + assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])); // should be + mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[i]; + int kind = MP_PARSE_NODE_STRUCT_KIND(pns2); + if (kind == PN_comp_op_not_in) { + EMIT_ARG(binary_op, MP_BINARY_OP_NOT_IN); + } else { + assert(kind == PN_comp_op_is); // should be + if (MP_PARSE_NODE_IS_NULL(pns2->nodes[0])) { + EMIT_ARG(binary_op, MP_BINARY_OP_IS); + } else { + EMIT_ARG(binary_op, MP_BINARY_OP_IS_NOT); + } + } + } + if (i + 2 < num_nodes) { + EMIT_ARG(jump_if_or_pop, false, l_fail); + } + } + if (multi) { + uint l_end = comp_next_label(comp); + EMIT_ARG(jump, l_end); + EMIT_ARG(label_assign, l_fail); + EMIT_ARG(adjust_stack_size, 1); + EMIT(rot_two); + EMIT(pop_top); + EMIT_ARG(label_assign, l_end); + } +} + +STATIC void compile_star_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { + compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("*x must be assignment target")); +} + +STATIC void compile_binary_op(compiler_t *comp, mp_parse_node_struct_t *pns) { + MP_STATIC_ASSERT(MP_BINARY_OP_OR + PN_xor_expr - PN_expr == MP_BINARY_OP_XOR); + MP_STATIC_ASSERT(MP_BINARY_OP_OR + PN_and_expr - PN_expr == MP_BINARY_OP_AND); + mp_binary_op_t binary_op = MP_BINARY_OP_OR + MP_PARSE_NODE_STRUCT_KIND(pns) - PN_expr; + int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); + compile_node(comp, pns->nodes[0]); + for (int i = 1; i < num_nodes; ++i) { + compile_node(comp, pns->nodes[i]); + EMIT_ARG(binary_op, binary_op); + } +} + +STATIC void compile_term(compiler_t *comp, mp_parse_node_struct_t *pns) { + int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); + compile_node(comp, pns->nodes[0]); + for (int i = 1; i + 1 < num_nodes; i += 2) { + compile_node(comp, pns->nodes[i + 1]); + mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]); + mp_binary_op_t op = MP_BINARY_OP_LSHIFT + (tok - MP_TOKEN_OP_DBL_LESS); + EMIT_ARG(binary_op, op); + } +} + +STATIC void compile_factor_2(compiler_t *comp, mp_parse_node_struct_t *pns) { + compile_node(comp, pns->nodes[1]); + mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); + mp_unary_op_t op; + if (tok == MP_TOKEN_OP_TILDE) { + op = MP_UNARY_OP_INVERT; + } else { + assert(tok == MP_TOKEN_OP_PLUS || tok == MP_TOKEN_OP_MINUS); + op = MP_UNARY_OP_POSITIVE + (tok - MP_TOKEN_OP_PLUS); + } + EMIT_ARG(unary_op, op); +} + +STATIC void compile_atom_expr_normal(compiler_t *comp, mp_parse_node_struct_t *pns) { + // compile the subject of the expression + compile_node(comp, pns->nodes[0]); + + // compile_atom_expr_await may call us with a NULL node + if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { + return; + } + + // get the array of trailers (known to be an array of PARSE_NODE_STRUCT) + size_t num_trail = 1; + mp_parse_node_struct_t **pns_trail = (mp_parse_node_struct_t **)&pns->nodes[1]; + if (MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_atom_expr_trailers) { + num_trail = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_trail[0]); + pns_trail = (mp_parse_node_struct_t **)&pns_trail[0]->nodes[0]; + } + + // the current index into the array of trailers + size_t i = 0; + + // handle special super() call + if (comp->scope_cur->kind == SCOPE_FUNCTION + && MP_PARSE_NODE_IS_ID(pns->nodes[0]) + && MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_super + && MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_trailer_paren + && MP_PARSE_NODE_IS_NULL(pns_trail[0]->nodes[0])) { + // at this point we have matched "super()" within a function + + // load the class for super to search for a parent + compile_load_id(comp, MP_QSTR___class__); + + // look for first argument to function (assumes it's "self") + bool found = false; + id_info_t *id = &comp->scope_cur->id_info[0]; + for (size_t n = comp->scope_cur->id_info_len; n > 0; --n, ++id) { + if (id->flags & ID_FLAG_IS_PARAM) { + // first argument found; load it + compile_load_id(comp, id->qst); + found = true; + break; + } + } + if (!found) { + compile_syntax_error(comp, (mp_parse_node_t)pns_trail[0], + MP_ERROR_TEXT("super() can't find self")); // really a TypeError + return; + } + + if (num_trail >= 3 + && MP_PARSE_NODE_STRUCT_KIND(pns_trail[1]) == PN_trailer_period + && MP_PARSE_NODE_STRUCT_KIND(pns_trail[2]) == PN_trailer_paren) { + // optimisation for method calls super().f(...), to eliminate heap allocation + mp_parse_node_struct_t *pns_period = pns_trail[1]; + mp_parse_node_struct_t *pns_paren = pns_trail[2]; + EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), true); + compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0); + i = 3; + } else { + // a super() call + EMIT_ARG(call_function, 2, 0, 0); + i = 1; + } + + #if MICROPY_COMP_CONST_LITERAL && MICROPY_PY_COLLECTIONS_ORDEREDDICT + // handle special OrderedDict constructor + } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0]) + && MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_OrderedDict + && MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_trailer_paren + && MP_PARSE_NODE_IS_STRUCT_KIND(pns_trail[0]->nodes[0], PN_atom_brace)) { + // at this point we have matched "OrderedDict({...})" + + EMIT_ARG(call_function, 0, 0, 0); + mp_parse_node_struct_t *pns_dict = (mp_parse_node_struct_t *)pns_trail[0]->nodes[0]; + compile_atom_brace_helper(comp, pns_dict, false); + i = 1; + #endif + } + + // compile the remaining trailers + for (; i < num_trail; i++) { + if (i + 1 < num_trail + && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i]) == PN_trailer_period + && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i + 1]) == PN_trailer_paren) { + // optimisation for method calls a.f(...), following PyPy + mp_parse_node_struct_t *pns_period = pns_trail[i]; + mp_parse_node_struct_t *pns_paren = pns_trail[i + 1]; + EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), false); + compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0); + i += 1; + } else { + // node is one of: trailer_paren, trailer_bracket, trailer_period + compile_node(comp, (mp_parse_node_t)pns_trail[i]); + } + } +} + +STATIC void compile_power(compiler_t *comp, mp_parse_node_struct_t *pns) { + compile_generic_all_nodes(comp, pns); // 2 nodes, arguments of power + EMIT_ARG(binary_op, MP_BINARY_OP_POWER); +} + +STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra) { + // function to call is on top of stack + + // get the list of arguments + mp_parse_node_t *args; + size_t n_args = mp_parse_node_extract_list(&pn_arglist, PN_arglist, &args); + + // compile the arguments + // Rather than calling compile_node on the list, we go through the list of args + // explicitly here so that we can count the number of arguments and give sensible + // error messages. + int n_positional = n_positional_extra; + uint n_keyword = 0; + uint star_flags = 0; + mp_parse_node_struct_t *star_args_node = NULL, *dblstar_args_node = NULL; + for (size_t i = 0; i < n_args; i++) { + if (MP_PARSE_NODE_IS_STRUCT(args[i])) { + mp_parse_node_struct_t *pns_arg = (mp_parse_node_struct_t *)args[i]; + if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_star) { + if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) { + compile_syntax_error(comp, (mp_parse_node_t)pns_arg, MP_ERROR_TEXT("can't have multiple *x")); + return; + } + star_flags |= MP_EMIT_STAR_FLAG_SINGLE; + star_args_node = pns_arg; + } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_dbl_star) { + if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) { + compile_syntax_error(comp, (mp_parse_node_t)pns_arg, MP_ERROR_TEXT("can't have multiple **x")); + return; + } + star_flags |= MP_EMIT_STAR_FLAG_DOUBLE; + dblstar_args_node = pns_arg; + } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_argument) { + #if MICROPY_PY_ASSIGN_EXPR + if (MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_argument_3)) { + compile_namedexpr_helper(comp, pns_arg->nodes[0], ((mp_parse_node_struct_t *)pns_arg->nodes[1])->nodes[0]); + n_positional++; + } else + #endif + if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_comp_for)) { + if (!MP_PARSE_NODE_IS_ID(pns_arg->nodes[0])) { + compile_syntax_error(comp, (mp_parse_node_t)pns_arg, MP_ERROR_TEXT("LHS of keyword arg must be an id")); + return; + } + EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns_arg->nodes[0])); + compile_node(comp, pns_arg->nodes[1]); + n_keyword += 1; + } else { + compile_comprehension(comp, pns_arg, SCOPE_GEN_EXPR); + n_positional++; + } + } else { + goto normal_argument; + } + } else { + normal_argument: + if (star_flags) { + compile_syntax_error(comp, args[i], MP_ERROR_TEXT("non-keyword arg after */**")); + return; + } + if (n_keyword > 0) { + compile_syntax_error(comp, args[i], MP_ERROR_TEXT("non-keyword arg after keyword arg")); + return; + } + compile_node(comp, args[i]); + n_positional++; + } + } + + // compile the star/double-star arguments if we had them + // if we had one but not the other then we load "null" as a place holder + if (star_flags != 0) { + if (star_args_node == NULL) { + EMIT(load_null); + } else { + compile_node(comp, star_args_node->nodes[0]); + } + if (dblstar_args_node == NULL) { + EMIT(load_null); + } else { + compile_node(comp, dblstar_args_node->nodes[0]); + } + } + + // emit the function/method call + if (is_method_call) { + EMIT_ARG(call_method, n_positional, n_keyword, star_flags); + } else { + EMIT_ARG(call_function, n_positional, n_keyword, star_flags); + } +} + +// pns needs to have 2 nodes, first is lhs of comprehension, second is PN_comp_for node +STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind) { + assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2); + assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for)); + mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t *)pns->nodes[1]; + + if (comp->pass == MP_PASS_SCOPE) { + // create a new scope for this comprehension + scope_t *s = scope_new_and_link(comp, kind, (mp_parse_node_t)pns, comp->scope_cur->emit_options); + // store the comprehension scope so the compiling function (this one) can use it at each pass + pns_comp_for->nodes[3] = (mp_parse_node_t)s; + } + + // get the scope for this comprehension + scope_t *this_scope = (scope_t *)pns_comp_for->nodes[3]; + + // compile the comprehension + close_over_variables_etc(comp, this_scope, 0, 0); + + compile_node(comp, pns_comp_for->nodes[1]); // source of the iterator + if (kind == SCOPE_GEN_EXPR) { + EMIT_ARG(get_iter, false); + } + EMIT_ARG(call_function, 1, 0, 0); +} + +STATIC void compile_atom_paren(compiler_t *comp, mp_parse_node_struct_t *pns) { + if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { + // an empty tuple + EMIT_ARG(build, 0, MP_EMIT_BUILD_TUPLE); + } else { + assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)); + pns = (mp_parse_node_struct_t *)pns->nodes[0]; + if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns)) { + // generator expression + compile_comprehension(comp, pns, SCOPE_GEN_EXPR); + } else { + // tuple with N items + compile_generic_tuple(comp, pns); + } + } +} + +STATIC void compile_atom_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) { + if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { + // empty list + EMIT_ARG(build, 0, MP_EMIT_BUILD_LIST); + } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { + mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[0]; + if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns2)) { + // list comprehension + compile_comprehension(comp, pns2, SCOPE_LIST_COMP); + } else { + // list with N items + compile_generic_all_nodes(comp, pns2); + EMIT_ARG(build, MP_PARSE_NODE_STRUCT_NUM_NODES(pns2), MP_EMIT_BUILD_LIST); + } + } else { + // list with 1 item + compile_node(comp, pns->nodes[0]); + EMIT_ARG(build, 1, MP_EMIT_BUILD_LIST); + } +} + +STATIC void compile_atom_brace_helper(compiler_t *comp, mp_parse_node_struct_t *pns, bool create_map) { + mp_parse_node_t pn = pns->nodes[0]; + if (MP_PARSE_NODE_IS_NULL(pn)) { + // empty dict + if (create_map) { + EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP); + } + } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { + pns = (mp_parse_node_struct_t *)pn; + if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker_item) { + // dict with one element + if (create_map) { + EMIT_ARG(build, 1, MP_EMIT_BUILD_MAP); + } + compile_node(comp, pn); + EMIT(store_map); + } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) { + assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed + mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1]; + if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) { + // dict/set with multiple elements + + // get tail elements (2nd, 3rd, ...) + mp_parse_node_t *nodes; + size_t n = mp_parse_node_extract_list(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes); + + // first element sets whether it's a dict or set + bool is_dict; + if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) { + // a dictionary + if (create_map) { + EMIT_ARG(build, 1 + n, MP_EMIT_BUILD_MAP); + } + compile_node(comp, pns->nodes[0]); + EMIT(store_map); + is_dict = true; + } else { + // a set + compile_node(comp, pns->nodes[0]); // 1st value of set + is_dict = false; + } + + // process rest of elements + for (size_t i = 0; i < n; i++) { + mp_parse_node_t pn_i = nodes[i]; + bool is_key_value = MP_PARSE_NODE_IS_STRUCT_KIND(pn_i, PN_dictorsetmaker_item); + compile_node(comp, pn_i); + if (is_dict) { + if (!is_key_value) { + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("invalid syntax")); + #else + compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("expecting key:value for dict")); + #endif + return; + } + EMIT(store_map); + } else { + if (is_key_value) { + #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE + compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("invalid syntax")); + #else + compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("expecting just a value for set")); + #endif + return; + } + } + } + + #if MICROPY_PY_BUILTINS_SET + // if it's a set, build it + if (!is_dict) { + EMIT_ARG(build, 1 + n, MP_EMIT_BUILD_SET); + } + #endif + } else { + assert(MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for); // should be + // dict/set comprehension + if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) { + // a dictionary comprehension + compile_comprehension(comp, pns, SCOPE_DICT_COMP); + } else { + // a set comprehension + compile_comprehension(comp, pns, SCOPE_SET_COMP); + } + } + } else { + // set with one element + goto set_with_one_element; + } + } else { + // set with one element + set_with_one_element: + #if MICROPY_PY_BUILTINS_SET + compile_node(comp, pn); + EMIT_ARG(build, 1, MP_EMIT_BUILD_SET); + #else + assert(0); + #endif + } +} + +STATIC void compile_atom_brace(compiler_t *comp, mp_parse_node_struct_t *pns) { + compile_atom_brace_helper(comp, pns, true); +} + +STATIC void compile_trailer_paren(compiler_t *comp, mp_parse_node_struct_t *pns) { + compile_trailer_paren_helper(comp, pns->nodes[0], false, 0); +} + +STATIC void compile_trailer_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) { + // object who's index we want is on top of stack + compile_node(comp, pns->nodes[0]); // the index + EMIT_ARG(subscr, MP_EMIT_SUBSCR_LOAD); +} + +STATIC void compile_trailer_period(compiler_t *comp, mp_parse_node_struct_t *pns) { + // object who's attribute we want is on top of stack + EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]), MP_EMIT_ATTR_LOAD); // attribute to get +} + +#if MICROPY_PY_BUILTINS_SLICE +STATIC void compile_subscript(compiler_t *comp, mp_parse_node_struct_t *pns) { + if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_2) { + compile_node(comp, pns->nodes[0]); // start of slice + assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be + pns = (mp_parse_node_struct_t *)pns->nodes[1]; + } else { + // pns is a PN_subscript_3, load None for start of slice + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + } + + assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3); // should always be + mp_parse_node_t pn = pns->nodes[0]; + if (MP_PARSE_NODE_IS_NULL(pn)) { + // [?:] + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE); + } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { + pns = (mp_parse_node_struct_t *)pn; + if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3c) { + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + pn = pns->nodes[0]; + if (MP_PARSE_NODE_IS_NULL(pn)) { + // [?::] + EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE); + } else { + // [?::x] + compile_node(comp, pn); + EMIT_ARG(build, 3, MP_EMIT_BUILD_SLICE); + } + } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3d) { + compile_node(comp, pns->nodes[0]); + assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be + pns = (mp_parse_node_struct_t *)pns->nodes[1]; + assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_sliceop); // should always be + if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { + // [?:x:] + EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE); + } else { + // [?:x:x] + compile_node(comp, pns->nodes[0]); + EMIT_ARG(build, 3, MP_EMIT_BUILD_SLICE); + } + } else { + // [?:x] + compile_node(comp, pn); + EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE); + } + } else { + // [?:x] + compile_node(comp, pn); + EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE); + } +} +#endif // MICROPY_PY_BUILTINS_SLICE + +STATIC void compile_dictorsetmaker_item(compiler_t *comp, mp_parse_node_struct_t *pns) { + // if this is called then we are compiling a dict key:value pair + compile_node(comp, pns->nodes[1]); // value + compile_node(comp, pns->nodes[0]); // key +} + +STATIC void compile_classdef(compiler_t *comp, mp_parse_node_struct_t *pns) { + qstr cname = compile_classdef_helper(comp, pns, comp->scope_cur->emit_options); + // store class object into class name + compile_store_id(comp, cname); +} + +STATIC void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { + if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) { + compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'yield' outside function")); + return; + } + if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT_ARG(yield, MP_EMIT_YIELD_VALUE); + reserve_labels_for_native(comp, 1); + } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) { + pns = (mp_parse_node_struct_t *)pns->nodes[0]; + #if MICROPY_PY_ASYNC_AWAIT + if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_ASYNC) != 0) { + compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'yield from' inside async function")); + return; + } + #endif + compile_node(comp, pns->nodes[0]); + compile_yield_from(comp); + } else { + compile_node(comp, pns->nodes[0]); + EMIT_ARG(yield, MP_EMIT_YIELD_VALUE); + reserve_labels_for_native(comp, 1); + } +} + +#if MICROPY_PY_ASYNC_AWAIT +STATIC void compile_atom_expr_await(compiler_t *comp, mp_parse_node_struct_t *pns) { + if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) { + compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'await' outside function")); + return; + } + compile_atom_expr_normal(comp, pns); + + // If it's an awaitable thing, need to reach for the __await__ method for the coroutine. + // async def functions' __await__ return themselves, which are able to receive a send(), + // while other types with custom __await__ implementations return async generators. + EMIT_ARG(load_method, MP_QSTR___await__, false); + EMIT_ARG(call_method, 0, 0, 0); + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT_ARG(yield, MP_EMIT_YIELD_FROM); + reserve_labels_for_native(comp, 3); +} +#endif + +STATIC mp_obj_t get_const_object(mp_parse_node_struct_t *pns) { + #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D + // nodes are 32-bit pointers, but need to extract 64-bit object + return (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32); + #else + return (mp_obj_t)pns->nodes[0]; + #endif +} + +STATIC void compile_const_object(compiler_t *comp, mp_parse_node_struct_t *pns) { + EMIT_ARG(load_const_obj, get_const_object(pns)); +} + +typedef void (*compile_function_t)(compiler_t *, mp_parse_node_struct_t *); +STATIC const compile_function_t compile_function[] = { +// only define rules with a compile function +#define c(f) compile_##f +#define DEF_RULE(rule, comp, kind, ...) comp, +#define DEF_RULE_NC(rule, kind, ...) + #include "py/grammar.h" +#undef c +#undef DEF_RULE +#undef DEF_RULE_NC + compile_const_object, +}; + +STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) { + if (MP_PARSE_NODE_IS_NULL(pn)) { + // pass + } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { + mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn); + #if MICROPY_DYNAMIC_COMPILER + mp_uint_t sign_mask = -((mp_uint_t)1 << (mp_dynamic_compiler.small_int_bits - 1)); + if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) { + // integer fits in target runtime's small-int + EMIT_ARG(load_const_small_int, arg); + } else { + // integer doesn't fit, so create a multi-precision int object + // (but only create the actual object on the last pass) + if (comp->pass != MP_PASS_EMIT) { + EMIT_ARG(load_const_obj, mp_const_none); + } else { + EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg)); + } + } + #else + EMIT_ARG(load_const_small_int, arg); + #endif + } else if (MP_PARSE_NODE_IS_LEAF(pn)) { + uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn); + switch (MP_PARSE_NODE_LEAF_KIND(pn)) { + case MP_PARSE_NODE_ID: + compile_load_id(comp, arg); + break; + case MP_PARSE_NODE_STRING: + EMIT_ARG(load_const_str, arg); + break; + case MP_PARSE_NODE_BYTES: + // only create and load the actual bytes object on the last pass + if (comp->pass != MP_PASS_EMIT) { + EMIT_ARG(load_const_obj, mp_const_none); + } else { + size_t len; + const byte *data = qstr_data(arg, &len); + EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len)); + } + break; + case MP_PARSE_NODE_TOKEN: + default: + if (arg == MP_TOKEN_NEWLINE) { + // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline) + // or when single_input lets through a NEWLINE (user enters a blank line) + // do nothing + } else { + EMIT_ARG(load_const_tok, arg); + } + break; + } + } else { + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + EMIT_ARG(set_source_line, pns->source_line); + assert(MP_PARSE_NODE_STRUCT_KIND(pns) <= PN_const_object); + compile_function_t f = compile_function[MP_PARSE_NODE_STRUCT_KIND(pns)]; + f(comp, pns); + } +} + +#if MICROPY_EMIT_NATIVE +STATIC int compile_viper_type_annotation(compiler_t *comp, mp_parse_node_t pn_annotation) { + int native_type = MP_NATIVE_TYPE_OBJ; + if (MP_PARSE_NODE_IS_NULL(pn_annotation)) { + // No annotation, type defaults to object + } else if (MP_PARSE_NODE_IS_ID(pn_annotation)) { + qstr type_name = MP_PARSE_NODE_LEAF_ARG(pn_annotation); + native_type = mp_native_type_from_qstr(type_name); + if (native_type < 0) { + comp->compile_error = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, MP_ERROR_TEXT("unknown type '%q'"), type_name); + native_type = 0; + } + } else { + compile_syntax_error(comp, pn_annotation, MP_ERROR_TEXT("annotation must be an identifier")); + } + return native_type; +} +#endif + +STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) { + (void)pn_dbl_star; + + // check that **kw is last + if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) { + compile_syntax_error(comp, pn, MP_ERROR_TEXT("invalid syntax")); + return; + } + + qstr param_name = MP_QSTRnull; + uint param_flag = ID_FLAG_IS_PARAM; + mp_parse_node_struct_t *pns = NULL; + if (MP_PARSE_NODE_IS_ID(pn)) { + param_name = MP_PARSE_NODE_LEAF_ARG(pn); + if (comp->have_star) { + // comes after a star, so counts as a keyword-only parameter + comp->scope_cur->num_kwonly_args += 1; + } else { + // comes before a star, so counts as a positional parameter + comp->scope_cur->num_pos_args += 1; + } + } else { + assert(MP_PARSE_NODE_IS_STRUCT(pn)); + pns = (mp_parse_node_struct_t *)pn; + if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) { + // named parameter with possible annotation + param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); + if (comp->have_star) { + // comes after a star, so counts as a keyword-only parameter + comp->scope_cur->num_kwonly_args += 1; + } else { + // comes before a star, so counts as a positional parameter + comp->scope_cur->num_pos_args += 1; + } + } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_star) { + if (comp->have_star) { + // more than one star + compile_syntax_error(comp, pn, MP_ERROR_TEXT("invalid syntax")); + return; + } + comp->have_star = true; + param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM; + if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { + // bare star + // TODO see http://www.python.org/dev/peps/pep-3102/ + // assert(comp->scope_cur->num_dict_params == 0); + pns = NULL; + } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) { + // named star + comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS; + param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); + pns = NULL; + } else { + assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)); // should be + // named star with possible annotation + comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS; + pns = (mp_parse_node_struct_t *)pns->nodes[0]; + param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); + } + } else { + // double star with possible annotation + assert(MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star); // should be + param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); + param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM; + comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS; + } + } + + if (param_name != MP_QSTRnull) { + id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, ID_INFO_KIND_UNDECIDED); + if (id_info->kind != ID_INFO_KIND_UNDECIDED) { + compile_syntax_error(comp, pn, MP_ERROR_TEXT("argument name reused")); + return; + } + id_info->kind = ID_INFO_KIND_LOCAL; + id_info->flags = param_flag; + + #if MICROPY_EMIT_NATIVE + if (comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER && pn_name == PN_typedargslist_name && pns != NULL) { + id_info->flags |= compile_viper_type_annotation(comp, pns->nodes[1]) << ID_FLAG_VIPER_TYPE_POS; + } + #else + (void)pns; + #endif + } +} + +STATIC void compile_scope_func_param(compiler_t *comp, mp_parse_node_t pn) { + compile_scope_func_lambda_param(comp, pn, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star); +} + +STATIC void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) { + compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star); +} + +STATIC void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_struct_t *pns_comp_for, mp_parse_node_t pn_inner_expr, int for_depth) { + uint l_top = comp_next_label(comp); + uint l_end = comp_next_label(comp); + EMIT_ARG(label_assign, l_top); + EMIT_ARG(for_iter, l_end); + c_assign(comp, pns_comp_for->nodes[0], ASSIGN_STORE); + mp_parse_node_t pn_iter = pns_comp_for->nodes[2]; + +tail_recursion: + if (MP_PARSE_NODE_IS_NULL(pn_iter)) { + // no more nested if/for; compile inner expression + compile_node(comp, pn_inner_expr); + if (comp->scope_cur->kind == SCOPE_GEN_EXPR) { + EMIT_ARG(yield, MP_EMIT_YIELD_VALUE); + reserve_labels_for_native(comp, 1); + EMIT(pop_top); + } else { + EMIT_ARG(store_comp, comp->scope_cur->kind, 4 * for_depth + 5); + } + } else if (MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_iter) == PN_comp_if) { + // if condition + mp_parse_node_struct_t *pns_comp_if = (mp_parse_node_struct_t *)pn_iter; + c_if_cond(comp, pns_comp_if->nodes[0], false, l_top); + pn_iter = pns_comp_if->nodes[1]; + goto tail_recursion; + } else { + assert(MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_iter) == PN_comp_for); // should be + // for loop + mp_parse_node_struct_t *pns_comp_for2 = (mp_parse_node_struct_t *)pn_iter; + compile_node(comp, pns_comp_for2->nodes[1]); + EMIT_ARG(get_iter, true); + compile_scope_comp_iter(comp, pns_comp_for2, pn_inner_expr, for_depth + 1); + } + + EMIT_ARG(jump, l_top); + EMIT_ARG(label_assign, l_end); + EMIT(for_iter_end); +} + +STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) { + #if MICROPY_ENABLE_DOC_STRING + // see http://www.python.org/dev/peps/pep-0257/ + + // look for the first statement + if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { + // a statement; fall through + } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) { + // file input; find the first non-newline node + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); + for (int i = 0; i < num_nodes; i++) { + pn = pns->nodes[i]; + if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) { + // not a newline, so this is the first statement; finish search + break; + } + } + // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully + } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) { + // a list of statements; get the first one + pn = ((mp_parse_node_struct_t *)pn)->nodes[0]; + } else { + return; + } + + // check the first statement for a doc string + if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; + if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) + && MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING) + || (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object) + && mp_obj_is_str(get_const_object((mp_parse_node_struct_t *)pns->nodes[0])))) { + // compile the doc string + compile_node(comp, pns->nodes[0]); + // store the doc string + compile_store_id(comp, MP_QSTR___doc__); + } + } + #else + (void)comp; + (void)pn; + #endif +} + +STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) { + comp->pass = pass; + comp->scope_cur = scope; + comp->next_label = 0; + EMIT_ARG(start_pass, pass, scope); + reserve_labels_for_native(comp, 6); // used by native's start_pass + + if (comp->pass == MP_PASS_SCOPE) { + // reset maximum stack sizes in scope + // they will be computed in this first pass + scope->stack_size = 0; + scope->exc_stack_size = 0; + } + + // compile + if (MP_PARSE_NODE_IS_STRUCT_KIND(scope->pn, PN_eval_input)) { + assert(scope->kind == SCOPE_MODULE); + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn; + compile_node(comp, pns->nodes[0]); // compile the expression + EMIT(return_value); + } else if (scope->kind == SCOPE_MODULE) { + if (!comp->is_repl) { + check_for_doc_string(comp, scope->pn); + } + compile_node(comp, scope->pn); + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT(return_value); + } else if (scope->kind == SCOPE_FUNCTION) { + assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn; + assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef); + + // work out number of parameters, keywords and default parameters, and add them to the id_info array + // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) + if (comp->pass == MP_PASS_SCOPE) { + comp->have_star = false; + apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param); + + #if MICROPY_EMIT_NATIVE + if (scope->emit_options == MP_EMIT_OPT_VIPER) { + // Compile return type; pns->nodes[2] is return/whole function annotation + scope->scope_flags |= compile_viper_type_annotation(comp, pns->nodes[2]) << MP_SCOPE_FLAG_VIPERRET_POS; + } + #endif // MICROPY_EMIT_NATIVE + } + + compile_node(comp, pns->nodes[3]); // 3 is function body + // emit return if it wasn't the last opcode + if (!EMIT(last_emit_was_return_value)) { + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT(return_value); + } + } else if (scope->kind == SCOPE_LAMBDA) { + assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn; + assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 3); + + // Set the source line number for the start of the lambda + EMIT_ARG(set_source_line, pns->source_line); + + // work out number of parameters, keywords and default parameters, and add them to the id_info array + // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) + if (comp->pass == MP_PASS_SCOPE) { + comp->have_star = false; + apply_to_single_or_list(comp, pns->nodes[0], PN_varargslist, compile_scope_lambda_param); + } + + compile_node(comp, pns->nodes[1]); // 1 is lambda body + + // if the lambda is a generator, then we return None, not the result of the expression of the lambda + if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { + EMIT(pop_top); + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + } + EMIT(return_value); + } else if (SCOPE_IS_COMP_LIKE(scope->kind)) { + // a bit of a hack at the moment + + assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn; + assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2); + assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for)); + mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t *)pns->nodes[1]; + + // We need a unique name for the comprehension argument (the iterator). + // CPython uses .0, but we should be able to use anything that won't + // clash with a user defined variable. Best to use an existing qstr, + // so we use the blank qstr. + qstr qstr_arg = MP_QSTR_; + if (comp->pass == MP_PASS_SCOPE) { + scope_find_or_add_id(comp->scope_cur, qstr_arg, ID_INFO_KIND_LOCAL); + scope->num_pos_args = 1; + } + + // Set the source line number for the start of the comprehension + EMIT_ARG(set_source_line, pns->source_line); + + if (scope->kind == SCOPE_LIST_COMP) { + EMIT_ARG(build, 0, MP_EMIT_BUILD_LIST); + } else if (scope->kind == SCOPE_DICT_COMP) { + EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP); + #if MICROPY_PY_BUILTINS_SET + } else if (scope->kind == SCOPE_SET_COMP) { + EMIT_ARG(build, 0, MP_EMIT_BUILD_SET); + #endif + } + + // There are 4 slots on the stack for the iterator, and the first one is + // NULL to indicate that the second one points to the iterator object. + if (scope->kind == SCOPE_GEN_EXPR) { + MP_STATIC_ASSERT(MP_OBJ_ITER_BUF_NSLOTS == 4); + EMIT(load_null); + compile_load_id(comp, qstr_arg); + EMIT(load_null); + EMIT(load_null); + } else { + compile_load_id(comp, qstr_arg); + EMIT_ARG(get_iter, true); + } + + compile_scope_comp_iter(comp, pns_comp_for, pns->nodes[0], 0); + + if (scope->kind == SCOPE_GEN_EXPR) { + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + } + EMIT(return_value); + } else { + assert(scope->kind == SCOPE_CLASS); + assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn; + assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef); + + if (comp->pass == MP_PASS_SCOPE) { + scope_find_or_add_id(scope, MP_QSTR___class__, ID_INFO_KIND_LOCAL); + } + + #if MICROPY_PY_SYS_SETTRACE + EMIT_ARG(set_source_line, pns->source_line); + #endif + compile_load_id(comp, MP_QSTR___name__); + compile_store_id(comp, MP_QSTR___module__); + EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // 0 is class name + compile_store_id(comp, MP_QSTR___qualname__); + + check_for_doc_string(comp, pns->nodes[2]); + compile_node(comp, pns->nodes[2]); // 2 is class body + + id_info_t *id = scope_find(scope, MP_QSTR___class__); + assert(id != NULL); + if (id->kind == ID_INFO_KIND_LOCAL) { + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + } else { + EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num); + } + EMIT(return_value); + } + + EMIT(end_pass); + + // make sure we match all the exception levels + assert(comp->cur_except_level == 0); +} + +#if MICROPY_EMIT_INLINE_ASM +// requires 3 passes: SCOPE, CODE_SIZE, EMIT +STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) { + comp->pass = pass; + comp->scope_cur = scope; + comp->next_label = 0; + + if (scope->kind != SCOPE_FUNCTION) { + compile_syntax_error(comp, MP_PARSE_NODE_NULL, MP_ERROR_TEXT("inline assembler must be a function")); + return; + } + + if (comp->pass > MP_PASS_SCOPE) { + EMIT_INLINE_ASM_ARG(start_pass, comp->pass, &comp->compile_error); + } + + // get the function definition parse node + assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn; + assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef); + + // qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name + + // parameters are in pns->nodes[1] + if (comp->pass == MP_PASS_CODE_SIZE) { + mp_parse_node_t *pn_params; + size_t n_params = mp_parse_node_extract_list(&pns->nodes[1], PN_typedargslist, &pn_params); + scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params); + if (comp->compile_error != MP_OBJ_NULL) { + goto inline_asm_error; + } + } + + // pns->nodes[2] is function return annotation + mp_uint_t type_sig = MP_NATIVE_TYPE_INT; + mp_parse_node_t pn_annotation = pns->nodes[2]; + if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) { + // nodes[2] can be null or a test-expr + if (MP_PARSE_NODE_IS_ID(pn_annotation)) { + qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation); + switch (ret_type) { + case MP_QSTR_object: + type_sig = MP_NATIVE_TYPE_OBJ; + break; + case MP_QSTR_bool: + type_sig = MP_NATIVE_TYPE_BOOL; + break; + case MP_QSTR_int: + type_sig = MP_NATIVE_TYPE_INT; + break; + case MP_QSTR_uint: + type_sig = MP_NATIVE_TYPE_UINT; + break; + default: + compile_syntax_error(comp, pn_annotation, MP_ERROR_TEXT("unknown type")); + return; + } + } else { + compile_syntax_error(comp, pn_annotation, MP_ERROR_TEXT("return annotation must be an identifier")); + } + } + + mp_parse_node_t pn_body = pns->nodes[3]; // body + mp_parse_node_t *nodes; + size_t num = mp_parse_node_extract_list(&pn_body, PN_suite_block_stmts, &nodes); + + for (size_t i = 0; i < num; i++) { + assert(MP_PARSE_NODE_IS_STRUCT(nodes[i])); + mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)nodes[i]; + if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_pass_stmt) { + // no instructions + continue; + } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_expr_stmt) { + // not an instruction; error + not_an_instruction: + compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("expecting an assembler instruction")); + return; + } + + // check structure of parse node + assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0])); + if (!MP_PARSE_NODE_IS_NULL(pns2->nodes[1])) { + goto not_an_instruction; + } + pns2 = (mp_parse_node_struct_t *)pns2->nodes[0]; + if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_atom_expr_normal) { + goto not_an_instruction; + } + if (!MP_PARSE_NODE_IS_ID(pns2->nodes[0])) { + goto not_an_instruction; + } + if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)) { + goto not_an_instruction; + } + + // parse node looks like an instruction + // get instruction name and args + qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]); + pns2 = (mp_parse_node_struct_t *)pns2->nodes[1]; // PN_trailer_paren + mp_parse_node_t *pn_arg; + size_t n_args = mp_parse_node_extract_list(&pns2->nodes[0], PN_arglist, &pn_arg); + + // emit instructions + if (op == MP_QSTR_label) { + if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) { + compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'label' requires 1 argument")); + return; + } + uint lab = comp_next_label(comp); + if (pass > MP_PASS_SCOPE) { + if (!EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]))) { + compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("label redefined")); + return; + } + } + } else if (op == MP_QSTR_align) { + if (!(n_args == 1 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) { + compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'align' requires 1 argument")); + return; + } + if (pass > MP_PASS_SCOPE) { + mp_asm_base_align((mp_asm_base_t *)comp->emit_inline_asm, + MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0])); + } + } else if (op == MP_QSTR_data) { + if (!(n_args >= 2 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) { + compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'data' requires at least 2 arguments")); + return; + } + if (pass > MP_PASS_SCOPE) { + mp_int_t bytesize = MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]); + for (uint j = 1; j < n_args; j++) { + if (!MP_PARSE_NODE_IS_SMALL_INT(pn_arg[j])) { + compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'data' requires integer arguments")); + return; + } + mp_asm_base_data((mp_asm_base_t *)comp->emit_inline_asm, + bytesize, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[j])); + } + } + } else { + if (pass > MP_PASS_SCOPE) { + EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg); + } + } + + if (comp->compile_error != MP_OBJ_NULL) { + pns = pns2; // this is the parse node that had the error + goto inline_asm_error; + } + } + + if (comp->pass > MP_PASS_SCOPE) { + EMIT_INLINE_ASM_ARG(end_pass, type_sig); + + if (comp->pass == MP_PASS_EMIT) { + void *f = mp_asm_base_get_code((mp_asm_base_t *)comp->emit_inline_asm); + mp_emit_glue_assign_native(comp->scope_cur->raw_code, MP_CODE_NATIVE_ASM, + f, mp_asm_base_get_code_size((mp_asm_base_t *)comp->emit_inline_asm), + NULL, + #if MICROPY_PERSISTENT_CODE_SAVE + 0, 0, 0, 0, NULL, + #endif + comp->scope_cur->num_pos_args, 0, type_sig); + } + } + + if (comp->compile_error != MP_OBJ_NULL) { + // inline assembler had an error; set line for its exception + inline_asm_error: + comp->compile_error_line = pns->source_line; + } +} +#endif + +STATIC void scope_compute_things(scope_t *scope) { + // in MicroPython we put the *x parameter after all other parameters (except **y) + if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) { + id_info_t *id_param = NULL; + for (int i = scope->id_info_len - 1; i >= 0; i--) { + id_info_t *id = &scope->id_info[i]; + if (id->flags & ID_FLAG_IS_STAR_PARAM) { + if (id_param != NULL) { + // swap star param with last param + id_info_t temp = *id_param; + *id_param = *id; + *id = temp; + } + break; + } else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) { + id_param = id; + } + } + } + + // in functions, turn implicit globals into explicit globals + // compute the index of each local + scope->num_locals = 0; + for (int i = 0; i < scope->id_info_len; i++) { + id_info_t *id = &scope->id_info[i]; + if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) { + // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL + continue; + } + if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { + id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; + } + #if MICROPY_EMIT_NATIVE + if (id->kind == ID_INFO_KIND_GLOBAL_EXPLICIT) { + // This function makes a reference to a global variable + if (scope->emit_options == MP_EMIT_OPT_VIPER + && mp_native_type_from_qstr(id->qst) >= MP_NATIVE_TYPE_INT) { + // A casting operator in viper mode, not a real global reference + } else { + scope->scope_flags |= MP_SCOPE_FLAG_REFGLOBALS; + } + } + #endif + // params always count for 1 local, even if they are a cell + if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) { + id->local_num = scope->num_locals++; + } + } + + // compute the index of cell vars + for (int i = 0; i < scope->id_info_len; i++) { + id_info_t *id = &scope->id_info[i]; + // in MicroPython the cells come right after the fast locals + // parameters are not counted here, since they remain at the start + // of the locals, even if they are cell vars + if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) { + id->local_num = scope->num_locals; + scope->num_locals += 1; + } + } + + // compute the index of free vars + // make sure they are in the order of the parent scope + if (scope->parent != NULL) { + int num_free = 0; + for (int i = 0; i < scope->parent->id_info_len; i++) { + id_info_t *id = &scope->parent->id_info[i]; + if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { + for (int j = 0; j < scope->id_info_len; j++) { + id_info_t *id2 = &scope->id_info[j]; + if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) { + assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params + // in MicroPython the frees come first, before the params + id2->local_num = num_free; + num_free += 1; + } + } + } + } + // in MicroPython shift all other locals after the free locals + if (num_free > 0) { + for (int i = 0; i < scope->id_info_len; i++) { + id_info_t *id = &scope->id_info[i]; + if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) { + id->local_num += num_free; + } + } + scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function + scope->num_locals += num_free; + } + } +} + +#if !MICROPY_PERSISTENT_CODE_SAVE +STATIC +#endif +mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_file, bool is_repl) { + // put compiler state on the stack, it's relatively small + compiler_t comp_state = {0}; + compiler_t *comp = &comp_state; + + comp->source_file = source_file; + comp->is_repl = is_repl; + comp->break_label = INVALID_LABEL; + comp->continue_label = INVALID_LABEL; + + // create the module scope + #if MICROPY_EMIT_NATIVE + const uint emit_opt = MP_STATE_VM(default_emit_opt); + #else + const uint emit_opt = MP_EMIT_OPT_NONE; + #endif + scope_t *module_scope = scope_new_and_link(comp, SCOPE_MODULE, parse_tree->root, emit_opt); + + // create standard emitter; it's used at least for MP_PASS_SCOPE + emit_t *emit_bc = emit_bc_new(); + + // compile pass 1 + comp->emit = emit_bc; + #if MICROPY_EMIT_NATIVE + comp->emit_method_table = &emit_bc_method_table; + #endif + uint max_num_labels = 0; + for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) { + #if MICROPY_EMIT_INLINE_ASM + if (s->emit_options == MP_EMIT_OPT_ASM) { + compile_scope_inline_asm(comp, s, MP_PASS_SCOPE); + } else + #endif + { + compile_scope(comp, s, MP_PASS_SCOPE); + + // Check if any implicitly declared variables should be closed over + for (size_t i = 0; i < s->id_info_len; ++i) { + id_info_t *id = &s->id_info[i]; + if (id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { + scope_check_to_close_over(s, id); + } + } + } + + // update maximim number of labels needed + if (comp->next_label > max_num_labels) { + max_num_labels = comp->next_label; + } + } + + // compute some things related to scope and identifiers + for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) { + scope_compute_things(s); + } + + // set max number of labels now that it's calculated + emit_bc_set_max_num_labels(emit_bc, max_num_labels); + + // compile pass 2 and 3 + #if MICROPY_EMIT_NATIVE + emit_t *emit_native = NULL; + #endif + for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) { + #if MICROPY_EMIT_INLINE_ASM + if (s->emit_options == MP_EMIT_OPT_ASM) { + // inline assembly + if (comp->emit_inline_asm == NULL) { + comp->emit_inline_asm = ASM_EMITTER(new)(max_num_labels); + } + comp->emit = NULL; + comp->emit_inline_asm_method_table = ASM_EMITTER_TABLE; + compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE); + #if MICROPY_EMIT_INLINE_XTENSA + // Xtensa requires an extra pass to compute size of l32r const table + // TODO this can be improved by calculating it during SCOPE pass + // but that requires some other structural changes to the asm emitters + #if MICROPY_DYNAMIC_COMPILER + if (mp_dynamic_compiler.native_arch == MP_NATIVE_ARCH_XTENSA) + #endif + { + compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE); + } + #endif + if (comp->compile_error == MP_OBJ_NULL) { + compile_scope_inline_asm(comp, s, MP_PASS_EMIT); + } + } else + #endif + { + + // choose the emit type + + switch (s->emit_options) { + + #if MICROPY_EMIT_NATIVE + case MP_EMIT_OPT_NATIVE_PYTHON: + case MP_EMIT_OPT_VIPER: + if (emit_native == NULL) { + emit_native = NATIVE_EMITTER(new)(&comp->compile_error, &comp->next_label, max_num_labels); + } + comp->emit_method_table = NATIVE_EMITTER_TABLE; + comp->emit = emit_native; + break; + #endif // MICROPY_EMIT_NATIVE + + default: + comp->emit = emit_bc; + #if MICROPY_EMIT_NATIVE + comp->emit_method_table = &emit_bc_method_table; + #endif + break; + } + + // need a pass to compute stack size + compile_scope(comp, s, MP_PASS_STACK_SIZE); + + // second last pass: compute code size + if (comp->compile_error == MP_OBJ_NULL) { + compile_scope(comp, s, MP_PASS_CODE_SIZE); + } + + // final pass: emit code + if (comp->compile_error == MP_OBJ_NULL) { + compile_scope(comp, s, MP_PASS_EMIT); + } + } + } + + if (comp->compile_error != MP_OBJ_NULL) { + // if there is no line number for the error then use the line + // number for the start of this scope + compile_error_set_line(comp, comp->scope_cur->pn); + // add a traceback to the exception using relevant source info + mp_obj_exception_add_traceback(comp->compile_error, comp->source_file, + comp->compile_error_line, comp->scope_cur->simple_name); + } + + // free the emitters + + emit_bc_free(emit_bc); + #if MICROPY_EMIT_NATIVE + if (emit_native != NULL) { + NATIVE_EMITTER(free)(emit_native); + } + #endif + #if MICROPY_EMIT_INLINE_ASM + if (comp->emit_inline_asm != NULL) { + ASM_EMITTER(free)(comp->emit_inline_asm); + } + #endif + + // free the parse tree + mp_parse_tree_clear(parse_tree); + + // free the scopes + mp_raw_code_t *outer_raw_code = module_scope->raw_code; + for (scope_t *s = module_scope; s;) { + scope_t *next = s->next; + scope_free(s); + s = next; + } + + if (comp->compile_error != MP_OBJ_NULL) { + nlr_raise(comp->compile_error); + } else { + return outer_raw_code; + } +} + +mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, bool is_repl) { + mp_raw_code_t *rc = mp_compile_to_raw_code(parse_tree, source_file, is_repl); + // return function that executes the outer module + return mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL); +} + +#endif // MICROPY_ENABLE_COMPILER |