aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/py/compile.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--circuitpython/py/compile.c3611
1 files changed, 3611 insertions, 0 deletions
diff --git a/circuitpython/py/compile.c b/circuitpython/py/compile.c
new file mode 100644
index 0000000..e5f341a
--- /dev/null
+++ b/circuitpython/py/compile.c
@@ -0,0 +1,3611 @@
+/*
+ * This file is part of the MicroPython project, http://micropython.org/
+ *
+ * The MIT License (MIT)
+ *
+ * SPDX-FileCopyrightText: Copyright (c) 2013-2020 Damien P. George
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <string.h>
+#include <assert.h>
+
+#include "py/scope.h"
+#include "py/emit.h"
+#include "py/compile.h"
+#include "py/runtime.h"
+#include "py/asmbase.h"
+#include "py/persistentcode.h"
+
+#include "supervisor/shared/translate.h"
+
+#if MICROPY_ENABLE_COMPILER
+
+// TODO need to mangle __attr names
+
+#define INVALID_LABEL (0xffff)
+
+typedef enum {
+// define rules with a compile function
+#define DEF_RULE(rule, comp, kind, ...) PN_##rule,
+#define DEF_RULE_NC(rule, kind, ...)
+ #include "py/grammar.h"
+#undef DEF_RULE
+#undef DEF_RULE_NC
+ PN_const_object, // special node for a constant, generic Python object
+// define rules without a compile function
+#define DEF_RULE(rule, comp, kind, ...)
+#define DEF_RULE_NC(rule, kind, ...) PN_##rule,
+ #include "py/grammar.h"
+#undef DEF_RULE
+#undef DEF_RULE_NC
+} pn_kind_t;
+
+// Whether a mp_parse_node_struct_t that has pns->kind == PN_testlist_comp
+// corresponds to a list comprehension or generator.
+#define MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns) \
+ (MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2 && \
+ MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for))
+
+#define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE
+
+#if NEED_METHOD_TABLE
+
+// we need a method table to do the lookup for the emitter functions
+#define EMIT(fun) (comp->emit_method_table->fun(comp->emit))
+#define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__))
+#define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.local(comp->emit, qst, local_num, MP_EMIT_IDOP_LOCAL_FAST))
+#define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst, MP_EMIT_IDOP_GLOBAL_GLOBAL))
+
+#else
+
+// if we only have the bytecode emitter enabled then we can do a direct call to the functions
+#define EMIT(fun) (mp_emit_bc_##fun(comp->emit))
+#define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__))
+#define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_local(comp->emit, qst, local_num, MP_EMIT_IDOP_LOCAL_FAST))
+#define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst, MP_EMIT_IDOP_GLOBAL_GLOBAL))
+
+#endif
+
+#if MICROPY_EMIT_NATIVE && MICROPY_DYNAMIC_COMPILER
+
+#define NATIVE_EMITTER(f) emit_native_table[mp_dynamic_compiler.native_arch]->emit_##f
+#define NATIVE_EMITTER_TABLE emit_native_table[mp_dynamic_compiler.native_arch]
+
+STATIC const emit_method_table_t *emit_native_table[] = {
+ NULL,
+ &emit_native_x86_method_table,
+ &emit_native_x64_method_table,
+ &emit_native_arm_method_table,
+ &emit_native_thumb_method_table,
+ &emit_native_thumb_method_table,
+ &emit_native_thumb_method_table,
+ &emit_native_thumb_method_table,
+ &emit_native_thumb_method_table,
+ &emit_native_xtensa_method_table,
+ &emit_native_xtensawin_method_table,
+};
+
+#elif MICROPY_EMIT_NATIVE
+// define a macro to access external native emitter
+#if MICROPY_EMIT_X64
+#define NATIVE_EMITTER(f) emit_native_x64_##f
+#elif MICROPY_EMIT_X86
+#define NATIVE_EMITTER(f) emit_native_x86_##f
+#elif MICROPY_EMIT_THUMB
+#define NATIVE_EMITTER(f) emit_native_thumb_##f
+#elif MICROPY_EMIT_ARM
+#define NATIVE_EMITTER(f) emit_native_arm_##f
+#elif MICROPY_EMIT_XTENSA
+#define NATIVE_EMITTER(f) emit_native_xtensa_##f
+#elif MICROPY_EMIT_XTENSAWIN
+#define NATIVE_EMITTER(f) emit_native_xtensawin_##f
+#else
+#error "unknown native emitter"
+#endif
+#define NATIVE_EMITTER_TABLE &NATIVE_EMITTER(method_table)
+#endif
+
+#if MICROPY_EMIT_INLINE_ASM && MICROPY_DYNAMIC_COMPILER
+
+#define ASM_EMITTER(f) emit_asm_table[mp_dynamic_compiler.native_arch]->asm_##f
+#define ASM_EMITTER_TABLE emit_asm_table[mp_dynamic_compiler.native_arch]
+
+STATIC const emit_inline_asm_method_table_t *emit_asm_table[] = {
+ NULL,
+ NULL,
+ NULL,
+ &emit_inline_thumb_method_table,
+ &emit_inline_thumb_method_table,
+ &emit_inline_thumb_method_table,
+ &emit_inline_thumb_method_table,
+ &emit_inline_thumb_method_table,
+ &emit_inline_thumb_method_table,
+ &emit_inline_xtensa_method_table,
+ NULL,
+};
+
+#elif MICROPY_EMIT_INLINE_ASM
+// define macros for inline assembler
+#if MICROPY_EMIT_INLINE_THUMB
+#define ASM_DECORATOR_QSTR MP_QSTR_asm_thumb
+#define ASM_EMITTER(f) emit_inline_thumb_##f
+#elif MICROPY_EMIT_INLINE_XTENSA
+#define ASM_DECORATOR_QSTR MP_QSTR_asm_xtensa
+#define ASM_EMITTER(f) emit_inline_xtensa_##f
+#else
+#error "unknown asm emitter"
+#endif
+#define ASM_EMITTER_TABLE &ASM_EMITTER(method_table)
+#endif
+
+#define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm))
+#define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__))
+
+// elements in this struct are ordered to make it compact
+typedef struct _compiler_t {
+ qstr source_file;
+
+ uint8_t is_repl;
+ uint8_t pass; // holds enum type pass_kind_t
+ uint8_t have_star;
+
+ // try to keep compiler clean from nlr
+ mp_obj_t compile_error; // set to an exception object if there's an error
+ size_t compile_error_line; // set to best guess of line of error
+
+ uint next_label;
+
+ uint16_t num_dict_params;
+ uint16_t num_default_params;
+
+ uint16_t break_label; // highest bit set indicates we are breaking out of a for loop
+ uint16_t continue_label;
+ uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT
+ uint16_t break_continue_except_level;
+
+ scope_t *scope_head;
+ scope_t *scope_cur;
+
+ emit_t *emit; // current emitter
+ #if NEED_METHOD_TABLE
+ const emit_method_table_t *emit_method_table; // current emit method table
+ #endif
+
+ #if MICROPY_EMIT_INLINE_ASM
+ emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm
+ const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm
+ #endif
+} compiler_t;
+
+STATIC void compile_error_set_line(compiler_t *comp, mp_parse_node_t pn) {
+ // if the line of the error is unknown then try to update it from the pn
+ if (comp->compile_error_line == 0 && MP_PARSE_NODE_IS_STRUCT(pn)) {
+ comp->compile_error_line = ((mp_parse_node_struct_t *)pn)->source_line;
+ }
+}
+
+STATIC void compile_syntax_error(compiler_t *comp, mp_parse_node_t pn, const compressed_string_t *msg) {
+ // only register the error if there has been no other error
+ if (comp->compile_error == MP_OBJ_NULL) {
+ comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg);
+ compile_error_set_line(comp, pn);
+ }
+}
+
+STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra);
+STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind);
+STATIC void compile_atom_brace_helper(compiler_t *comp, mp_parse_node_struct_t *pns, bool create_map);
+STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn);
+
+STATIC uint comp_next_label(compiler_t *comp) {
+ return comp->next_label++;
+}
+
+#if MICROPY_EMIT_NATIVE
+STATIC void reserve_labels_for_native(compiler_t *comp, int n) {
+ if (comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) {
+ comp->next_label += n;
+ }
+}
+#else
+#define reserve_labels_for_native(comp, n)
+#endif
+
+STATIC void compile_increase_except_level(compiler_t *comp, uint label, int kind) {
+ EMIT_ARG(setup_block, label, kind);
+ comp->cur_except_level += 1;
+ if (comp->cur_except_level > comp->scope_cur->exc_stack_size) {
+ comp->scope_cur->exc_stack_size = comp->cur_except_level;
+ }
+}
+
+STATIC void compile_decrease_except_level(compiler_t *comp) {
+ assert(comp->cur_except_level > 0);
+ comp->cur_except_level -= 1;
+ EMIT(end_finally);
+ reserve_labels_for_native(comp, 1);
+}
+
+STATIC scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) {
+ scope_t *scope = scope_new(kind, pn, comp->source_file, emit_options);
+ scope->parent = comp->scope_cur;
+ scope->next = NULL;
+ if (comp->scope_head == NULL) {
+ comp->scope_head = scope;
+ } else {
+ scope_t *s = comp->scope_head;
+ while (s->next != NULL) {
+ s = s->next;
+ }
+ s->next = scope;
+ }
+ return scope;
+}
+
+typedef void (*apply_list_fun_t)(compiler_t *comp, mp_parse_node_t pn);
+
+STATIC void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_list_kind, apply_list_fun_t f) {
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, pn_list_kind)) {
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+ int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
+ for (int i = 0; i < num_nodes; i++) {
+ f(comp, pns->nodes[i]);
+ }
+ } else if (!MP_PARSE_NODE_IS_NULL(pn)) {
+ f(comp, pn);
+ }
+}
+
+STATIC void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
+ for (int i = 0; i < num_nodes; i++) {
+ compile_node(comp, pns->nodes[i]);
+ if (comp->compile_error != MP_OBJ_NULL) {
+ // add line info for the error in case it didn't have a line number
+ compile_error_set_line(comp, pns->nodes[i]);
+ return;
+ }
+ }
+}
+
+STATIC void compile_load_id(compiler_t *comp, qstr qst) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ mp_emit_common_get_id_for_load(comp->scope_cur, qst);
+ } else {
+ #if NEED_METHOD_TABLE
+ mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst);
+ #else
+ mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst);
+ #endif
+ }
+}
+
+STATIC void compile_store_id(compiler_t *comp, qstr qst) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
+ } else {
+ #if NEED_METHOD_TABLE
+ mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst);
+ #else
+ mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst);
+ #endif
+ }
+}
+
+STATIC void compile_delete_id(compiler_t *comp, qstr qst) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
+ } else {
+ #if NEED_METHOD_TABLE
+ mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst);
+ #else
+ mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst);
+ #endif
+ }
+}
+
+STATIC void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ // a simple tuple expression
+ size_t num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
+ for (size_t i = 0; i < num_nodes; i++) {
+ compile_node(comp, pns->nodes[i]);
+ }
+ EMIT_ARG(build, num_nodes, MP_EMIT_BUILD_TUPLE);
+}
+
+STATIC void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) {
+ if (mp_parse_node_is_const_false(pn)) {
+ if (jump_if == false) {
+ EMIT_ARG(jump, label);
+ }
+ return;
+ } else if (mp_parse_node_is_const_true(pn)) {
+ if (jump_if == true) {
+ EMIT_ARG(jump, label);
+ }
+ return;
+ } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+ int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
+ if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) {
+ if (jump_if == false) {
+ and_or_logic1:;
+ uint label2 = comp_next_label(comp);
+ for (int i = 0; i < n - 1; i++) {
+ c_if_cond(comp, pns->nodes[i], !jump_if, label2);
+ }
+ c_if_cond(comp, pns->nodes[n - 1], jump_if, label);
+ EMIT_ARG(label_assign, label2);
+ } else {
+ and_or_logic2:
+ for (int i = 0; i < n; i++) {
+ c_if_cond(comp, pns->nodes[i], jump_if, label);
+ }
+ }
+ return;
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) {
+ if (jump_if == false) {
+ goto and_or_logic2;
+ } else {
+ goto and_or_logic1;
+ }
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) {
+ c_if_cond(comp, pns->nodes[0], !jump_if, label);
+ return;
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_atom_paren) {
+ // cond is something in parenthesis
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
+ // empty tuple, acts as false for the condition
+ if (jump_if == false) {
+ EMIT_ARG(jump, label);
+ }
+ } else {
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
+ // non-empty tuple, acts as true for the condition
+ if (jump_if == true) {
+ EMIT_ARG(jump, label);
+ }
+ }
+ return;
+ }
+ }
+
+ // nothing special, fall back to default compiling for node and jump
+ compile_node(comp, pn);
+ EMIT_ARG(pop_jump_if, jump_if, label);
+}
+
+typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t;
+STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind);
+
+STATIC void c_assign_atom_expr(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) {
+ if (assign_kind != ASSIGN_AUG_STORE) {
+ compile_node(comp, pns->nodes[0]);
+ }
+
+ if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
+ mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1];
+ if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
+ int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
+ if (assign_kind != ASSIGN_AUG_STORE) {
+ for (int i = 0; i < n - 1; i++) {
+ compile_node(comp, pns1->nodes[i]);
+ }
+ }
+ assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
+ pns1 = (mp_parse_node_struct_t *)pns1->nodes[n - 1];
+ }
+ if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
+ if (assign_kind == ASSIGN_AUG_STORE) {
+ EMIT(rot_three);
+ EMIT_ARG(subscr, MP_EMIT_SUBSCR_STORE);
+ } else {
+ compile_node(comp, pns1->nodes[0]);
+ if (assign_kind == ASSIGN_AUG_LOAD) {
+ EMIT(dup_top_two);
+ EMIT_ARG(subscr, MP_EMIT_SUBSCR_LOAD);
+ } else {
+ EMIT_ARG(subscr, MP_EMIT_SUBSCR_STORE);
+ }
+ }
+ return;
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
+ assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
+ if (assign_kind == ASSIGN_AUG_LOAD) {
+ EMIT(dup_top);
+ EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_LOAD);
+ } else {
+ if (assign_kind == ASSIGN_AUG_STORE) {
+ EMIT(rot_two);
+ }
+ EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_STORE);
+ }
+ return;
+ }
+ }
+
+ compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("can't assign to expression"));
+}
+
+STATIC void c_assign_tuple(compiler_t *comp, uint num_tail, mp_parse_node_t *nodes_tail) {
+ // look for star expression
+ uint have_star_index = -1;
+ for (uint i = 0; i < num_tail; i++) {
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes_tail[i], PN_star_expr)) {
+ if (have_star_index == (uint)-1) {
+ EMIT_ARG(unpack_ex, i, num_tail - i - 1);
+ have_star_index = i;
+ } else {
+ compile_syntax_error(comp, nodes_tail[i], MP_ERROR_TEXT("multiple *x in assignment"));
+ return;
+ }
+ }
+ }
+ if (have_star_index == (uint)-1) {
+ EMIT_ARG(unpack_sequence, num_tail);
+ }
+ for (uint i = 0; i < num_tail; i++) {
+ if (i == have_star_index) {
+ c_assign(comp, ((mp_parse_node_struct_t *)nodes_tail[i])->nodes[0], ASSIGN_STORE);
+ } else {
+ c_assign(comp, nodes_tail[i], ASSIGN_STORE);
+ }
+ }
+}
+
+// assigns top of stack to pn
+STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) {
+ assert(!MP_PARSE_NODE_IS_NULL(pn));
+ if (MP_PARSE_NODE_IS_LEAF(pn)) {
+ if (MP_PARSE_NODE_IS_ID(pn)) {
+ qstr arg = MP_PARSE_NODE_LEAF_ARG(pn);
+ switch (assign_kind) {
+ case ASSIGN_STORE:
+ case ASSIGN_AUG_STORE:
+ compile_store_id(comp, arg);
+ break;
+ case ASSIGN_AUG_LOAD:
+ default:
+ compile_load_id(comp, arg);
+ break;
+ }
+ } else {
+ goto cannot_assign;
+ }
+ } else {
+ // pn must be a struct
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+ switch (MP_PARSE_NODE_STRUCT_KIND(pns)) {
+ case PN_atom_expr_normal:
+ // lhs is an index or attribute
+ c_assign_atom_expr(comp, pns, assign_kind);
+ break;
+
+ case PN_testlist_star_expr:
+ case PN_exprlist:
+ // lhs is a tuple
+ if (assign_kind != ASSIGN_STORE) {
+ goto cannot_assign;
+ }
+ c_assign_tuple(comp, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes);
+ break;
+
+ case PN_atom_paren:
+ // lhs is something in parenthesis
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
+ // empty tuple
+ goto cannot_assign;
+ } else {
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
+ if (assign_kind != ASSIGN_STORE) {
+ goto cannot_assign;
+ }
+ pns = (mp_parse_node_struct_t *)pns->nodes[0];
+ goto testlist_comp;
+ }
+ break;
+
+ case PN_atom_bracket:
+ // lhs is something in brackets
+ if (assign_kind != ASSIGN_STORE) {
+ goto cannot_assign;
+ }
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
+ // empty list, assignment allowed
+ c_assign_tuple(comp, 0, NULL);
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
+ pns = (mp_parse_node_struct_t *)pns->nodes[0];
+ goto testlist_comp;
+ } else {
+ // brackets around 1 item
+ c_assign_tuple(comp, 1, pns->nodes);
+ }
+ break;
+
+ default:
+ goto cannot_assign;
+ }
+ return;
+
+ testlist_comp:
+ // lhs is a sequence
+ if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns)) {
+ goto cannot_assign;
+ }
+ c_assign_tuple(comp, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes);
+ return;
+ }
+ return;
+
+cannot_assign:
+ compile_syntax_error(comp, pn, MP_ERROR_TEXT("can't assign to expression"));
+}
+
+// stuff for lambda and comprehensions and generators:
+// if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults
+// if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults
+// if both exist, the tuple is above the dictionary (ie the first pop gets the tuple)
+STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) {
+ assert(n_pos_defaults >= 0);
+ assert(n_kw_defaults >= 0);
+
+ // set flags
+ if (n_kw_defaults > 0) {
+ this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS;
+ }
+ this_scope->num_def_pos_args = n_pos_defaults;
+
+ #if MICROPY_EMIT_NATIVE
+ // When creating a function/closure it will take a reference to the current globals
+ comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_REFGLOBALS | MP_SCOPE_FLAG_HASCONSTS;
+ #endif
+
+ // make closed over variables, if any
+ // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython)
+ int nfree = 0;
+ if (comp->scope_cur->kind != SCOPE_MODULE) {
+ for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
+ id_info_t *id = &comp->scope_cur->id_info[i];
+ if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
+ for (int j = 0; j < this_scope->id_info_len; j++) {
+ id_info_t *id2 = &this_scope->id_info[j];
+ if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
+ // in MicroPython we load closures using LOAD_FAST
+ EMIT_LOAD_FAST(id->qst, id->local_num);
+ nfree += 1;
+ }
+ }
+ }
+ }
+ }
+
+ // make the function/closure
+ if (nfree == 0) {
+ EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults);
+ } else {
+ EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults);
+ }
+}
+
+STATIC void compile_funcdef_lambdef_param(compiler_t *comp, mp_parse_node_t pn) {
+ // For efficiency of the code below we extract the parse-node kind here
+ int pn_kind;
+ if (MP_PARSE_NODE_IS_ID(pn)) {
+ pn_kind = -1;
+ } else {
+ assert(MP_PARSE_NODE_IS_STRUCT(pn));
+ pn_kind = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn);
+ }
+
+ if (pn_kind == PN_typedargslist_star || pn_kind == PN_varargslist_star) {
+ comp->have_star = true;
+ /* don't need to distinguish bare from named star
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
+ // bare star
+ } else {
+ // named star
+ }
+ */
+
+ } else if (pn_kind == PN_typedargslist_dbl_star || pn_kind == PN_varargslist_dbl_star) {
+ // named double star
+ // TODO do we need to do anything with this?
+
+ } else {
+ mp_parse_node_t pn_id;
+ mp_parse_node_t pn_equal;
+ if (pn_kind == -1) {
+ // this parameter is just an id
+
+ pn_id = pn;
+ pn_equal = MP_PARSE_NODE_NULL;
+
+ } else if (pn_kind == PN_typedargslist_name) {
+ // this parameter has a colon and/or equal specifier
+
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+ pn_id = pns->nodes[0];
+ // pn_colon = pns->nodes[1]; // unused
+ pn_equal = pns->nodes[2];
+
+ } else {
+ assert(pn_kind == PN_varargslist_name); // should be
+ // this parameter has an equal specifier
+
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+ pn_id = pns->nodes[0];
+ pn_equal = pns->nodes[1];
+ }
+
+ if (MP_PARSE_NODE_IS_NULL(pn_equal)) {
+ // this parameter does not have a default value
+
+ // check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid)
+ if (!comp->have_star && comp->num_default_params != 0) {
+ compile_syntax_error(comp, pn, MP_ERROR_TEXT("non-default argument follows default argument"));
+ return;
+ }
+
+ } else {
+ // this parameter has a default value
+ // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why
+
+ if (comp->have_star) {
+ comp->num_dict_params += 1;
+ // in MicroPython we put the default dict parameters into a dictionary using the bytecode
+ if (comp->num_dict_params == 1) {
+ // in MicroPython we put the default positional parameters into a tuple using the bytecode
+ // we need to do this here before we start building the map for the default keywords
+ if (comp->num_default_params > 0) {
+ EMIT_ARG(build, comp->num_default_params, MP_EMIT_BUILD_TUPLE);
+ } else {
+ EMIT(load_null); // sentinel indicating empty default positional args
+ }
+ // first default dict param, so make the map
+ EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP);
+ }
+
+ // compile value then key, then store it to the dict
+ compile_node(comp, pn_equal);
+ EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pn_id));
+ EMIT(store_map);
+ } else {
+ comp->num_default_params += 1;
+ compile_node(comp, pn_equal);
+ }
+ }
+ }
+}
+
+STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, mp_parse_node_t pn_params, pn_kind_t pn_list_kind) {
+ // When we call compile_funcdef_lambdef_param below it can compile an arbitrary
+ // expression for default arguments, which may contain a lambda. The lambda will
+ // call here in a nested way, so we must save and restore the relevant state.
+ bool orig_have_star = comp->have_star;
+ uint16_t orig_num_dict_params = comp->num_dict_params;
+ uint16_t orig_num_default_params = comp->num_default_params;
+
+ // compile default parameters
+ comp->have_star = false;
+ comp->num_dict_params = 0;
+ comp->num_default_params = 0;
+ apply_to_single_or_list(comp, pn_params, pn_list_kind, compile_funcdef_lambdef_param);
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ return;
+ }
+
+ // in MicroPython we put the default positional parameters into a tuple using the bytecode
+ // the default keywords args may have already made the tuple; if not, do it now
+ if (comp->num_default_params > 0 && comp->num_dict_params == 0) {
+ EMIT_ARG(build, comp->num_default_params, MP_EMIT_BUILD_TUPLE);
+ EMIT(load_null); // sentinel indicating empty default keyword args
+ }
+
+ // make the function
+ close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params);
+
+ // restore state
+ comp->have_star = orig_have_star;
+ comp->num_dict_params = orig_num_dict_params;
+ comp->num_default_params = orig_num_default_params;
+}
+
+// leaves function object on stack
+// returns function name
+STATIC qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ // create a new scope for this function
+ scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options);
+ // store the function scope so the compiling function can use it at each pass
+ pns->nodes[4] = (mp_parse_node_t)s;
+ }
+
+ // get the scope for this function
+ scope_t *fscope = (scope_t *)pns->nodes[4];
+
+ // compile the function definition
+ compile_funcdef_lambdef(comp, fscope, pns->nodes[1], PN_typedargslist);
+
+ // return its name (the 'f' in "def f(...):")
+ return fscope->simple_name;
+}
+
+// leaves class object on stack
+// returns class name
+STATIC qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ // create a new scope for this class
+ scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options);
+ // store the class scope so the compiling function can use it at each pass
+ pns->nodes[3] = (mp_parse_node_t)s;
+ }
+
+ EMIT(load_build_class);
+
+ // scope for this class
+ scope_t *cscope = (scope_t *)pns->nodes[3];
+
+ // compile the class
+ close_over_variables_etc(comp, cscope, 0, 0);
+
+ // get its name
+ EMIT_ARG(load_const_str, cscope->simple_name);
+
+ // nodes[1] has parent classes, if any
+ // empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling
+ mp_parse_node_t parents = pns->nodes[1];
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(parents, PN_classdef_2)) {
+ parents = MP_PARSE_NODE_NULL;
+ }
+ compile_trailer_paren_helper(comp, parents, false, 2);
+
+ // return its name (the 'C' in class C(...):")
+ return cscope->simple_name;
+}
+
+// returns true if it was a built-in decorator (even if the built-in had an error)
+STATIC bool compile_built_in_decorator(compiler_t *comp, size_t name_len, mp_parse_node_t *name_nodes, uint *emit_options) {
+ if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) {
+ return false;
+ }
+
+ if (name_len != 2) {
+ compile_syntax_error(comp, name_nodes[0], MP_ERROR_TEXT("invalid micropython decorator"));
+ return true;
+ }
+
+ qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]);
+ if (attr == MP_QSTR_bytecode) {
+ *emit_options = MP_EMIT_OPT_BYTECODE;
+ // @micropython.native decorator.
+ } else if (attr == MP_QSTR_native) {
+ // Different from MicroPython: native doesn't raise SyntaxError if native support isn't
+ // compiled, it just passes through the function unmodified.
+ #if MICROPY_EMIT_NATIVE
+ *emit_options = MP_EMIT_OPT_NATIVE_PYTHON;
+ #else
+ return true;
+ #endif
+ #if MICROPY_EMIT_NATIVE
+ // @micropython.viper decorator.
+ } else if (attr == MP_QSTR_viper) {
+ *emit_options = MP_EMIT_OPT_VIPER;
+ #endif
+ #if MICROPY_EMIT_INLINE_ASM
+ #if MICROPY_DYNAMIC_COMPILER
+ } else if (attr == MP_QSTR_asm_thumb) {
+ *emit_options = MP_EMIT_OPT_ASM;
+ } else if (attr == MP_QSTR_asm_xtensa) {
+ *emit_options = MP_EMIT_OPT_ASM;
+ #else
+ } else if (attr == ASM_DECORATOR_QSTR) {
+ *emit_options = MP_EMIT_OPT_ASM;
+ #endif
+ #endif
+ } else {
+ compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid micropython decorator"));
+ }
+
+ #if MICROPY_DYNAMIC_COMPILER
+ if (*emit_options == MP_EMIT_OPT_NATIVE_PYTHON || *emit_options == MP_EMIT_OPT_VIPER) {
+ if (emit_native_table[mp_dynamic_compiler.native_arch] == NULL) {
+ compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid architecture"));
+ }
+ } else if (*emit_options == MP_EMIT_OPT_ASM) {
+ if (emit_asm_table[mp_dynamic_compiler.native_arch] == NULL) {
+ compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid architecture"));
+ }
+ }
+ #endif
+
+ return true;
+}
+
+STATIC void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ // get the list of decorators
+ mp_parse_node_t *nodes;
+ size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_decorators, &nodes);
+
+ // inherit emit options for this function/class definition
+ uint emit_options = comp->scope_cur->emit_options;
+
+ // compile each decorator
+ size_t num_built_in_decorators = 0;
+ for (size_t i = 0; i < n; i++) {
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be
+ mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t *)nodes[i];
+
+ // nodes[0] contains the decorator function, which is a dotted name
+ mp_parse_node_t *name_nodes;
+ size_t name_len = mp_parse_node_extract_list(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes);
+
+ // check for built-in decorators
+ if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) {
+ // this was a built-in
+ num_built_in_decorators += 1;
+
+ } else {
+ // not a built-in, compile normally
+
+ // compile the decorator function
+ compile_node(comp, name_nodes[0]);
+ for (size_t j = 1; j < name_len; j++) {
+ assert(MP_PARSE_NODE_IS_ID(name_nodes[j])); // should be
+ EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[j]), MP_EMIT_ATTR_LOAD);
+ }
+
+ // nodes[1] contains arguments to the decorator function, if any
+ if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) {
+ // call the decorator function with the arguments in nodes[1]
+ compile_node(comp, pns_decorator->nodes[1]);
+ }
+ }
+ }
+
+ // compile the body (funcdef, async funcdef or classdef) and get its name
+ mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t *)pns->nodes[1];
+ qstr body_name = 0;
+ if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) {
+ body_name = compile_funcdef_helper(comp, pns_body, emit_options);
+ #if MICROPY_PY_ASYNC_AWAIT
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_async_funcdef) {
+ assert(MP_PARSE_NODE_IS_STRUCT(pns_body->nodes[0]));
+ mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t *)pns_body->nodes[0];
+ body_name = compile_funcdef_helper(comp, pns0, emit_options);
+ scope_t *fscope = (scope_t *)pns0->nodes[4];
+ fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR | MP_SCOPE_FLAG_ASYNC;
+ #endif
+ } else {
+ assert(MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef); // should be
+ body_name = compile_classdef_helper(comp, pns_body, emit_options);
+ }
+
+ // call each decorator
+ for (size_t i = 0; i < n - num_built_in_decorators; i++) {
+ EMIT_ARG(call_function, 1, 0, 0);
+ }
+
+ // store func/class object into name
+ compile_store_id(comp, body_name);
+}
+
+STATIC void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options);
+ // store function object into function name
+ compile_store_id(comp, fname);
+}
+
+STATIC void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) {
+ if (MP_PARSE_NODE_IS_ID(pn)) {
+ compile_delete_id(comp, MP_PARSE_NODE_LEAF_ARG(pn));
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_expr_normal)) {
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+
+ compile_node(comp, pns->nodes[0]); // base of the atom_expr_normal node
+
+ if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
+ mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1];
+ if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
+ int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
+ for (int i = 0; i < n - 1; i++) {
+ compile_node(comp, pns1->nodes[i]);
+ }
+ assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
+ pns1 = (mp_parse_node_struct_t *)pns1->nodes[n - 1];
+ }
+ if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
+ compile_node(comp, pns1->nodes[0]);
+ EMIT_ARG(subscr, MP_EMIT_SUBSCR_DELETE);
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
+ assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
+ EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_DELETE);
+ } else {
+ goto cannot_delete;
+ }
+ } else {
+ goto cannot_delete;
+ }
+
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) {
+ pn = ((mp_parse_node_struct_t *)pn)->nodes[0];
+ if (MP_PARSE_NODE_IS_NULL(pn)) {
+ goto cannot_delete;
+ } else {
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp));
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+ if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns)) {
+ goto cannot_delete;
+ }
+ for (size_t i = 0; i < MP_PARSE_NODE_STRUCT_NUM_NODES(pns); ++i) {
+ c_del_stmt(comp, pns->nodes[i]);
+ }
+ }
+ } else {
+ // some arbitrary statement that we can't delete (eg del 1)
+ goto cannot_delete;
+ }
+
+ return;
+
+cannot_delete:
+ compile_syntax_error(comp, (mp_parse_node_t)pn, MP_ERROR_TEXT("can't delete expression"));
+}
+
+STATIC void compile_del_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ apply_to_single_or_list(comp, pns->nodes[0], PN_exprlist, c_del_stmt);
+}
+
+STATIC void compile_break_cont_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ uint16_t label;
+ const compressed_string_t *error_msg;
+ if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_break_stmt) {
+ label = comp->break_label;
+ error_msg = MP_ERROR_TEXT("'break' outside loop");
+ } else {
+ label = comp->continue_label;
+ error_msg = MP_ERROR_TEXT("'continue' outside loop");
+ }
+ if (label == INVALID_LABEL) {
+ compile_syntax_error(comp, (mp_parse_node_t)pns, error_msg);
+ }
+ assert(comp->cur_except_level >= comp->break_continue_except_level);
+ EMIT_ARG(unwind_jump, label, comp->cur_except_level - comp->break_continue_except_level);
+}
+
+STATIC void compile_return_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ #if MICROPY_CPYTHON_COMPAT
+ if (comp->scope_cur->kind != SCOPE_FUNCTION) {
+ compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'return' outside function"));
+ return;
+ }
+ #endif
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
+ // no argument to 'return', so return None
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ } else if (MICROPY_COMP_RETURN_IF_EXPR
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_test_if_expr)) {
+ // special case when returning an if-expression; to match CPython optimisation
+ mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t *)pns->nodes[0];
+ mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t *)pns_test_if_expr->nodes[1];
+
+ uint l_fail = comp_next_label(comp);
+ c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
+ compile_node(comp, pns_test_if_expr->nodes[0]); // success value
+ EMIT(return_value);
+ EMIT_ARG(label_assign, l_fail);
+ compile_node(comp, pns_test_if_else->nodes[1]); // failure value
+ } else {
+ compile_node(comp, pns->nodes[0]);
+ }
+ EMIT(return_value);
+}
+
+STATIC void compile_yield_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ compile_node(comp, pns->nodes[0]);
+ EMIT(pop_top);
+}
+
+STATIC void compile_raise_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
+ // raise
+ EMIT_ARG(raise_varargs, 0);
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_raise_stmt_arg)) {
+ // raise x from y
+ pns = (mp_parse_node_struct_t *)pns->nodes[0];
+ compile_node(comp, pns->nodes[0]);
+ compile_node(comp, pns->nodes[1]);
+ EMIT_ARG(raise_varargs, 2);
+ } else {
+ // raise x
+ compile_node(comp, pns->nodes[0]);
+ EMIT_ARG(raise_varargs, 1);
+ }
+}
+
+// q_base holds the base of the name
+// eg a -> q_base=a
+// a.b.c -> q_base=a
+STATIC void do_import_name(compiler_t *comp, mp_parse_node_t pn, qstr *q_base) {
+ bool is_as = false;
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_as_name)) {
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+ // a name of the form x as y; unwrap it
+ *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
+ pn = pns->nodes[0];
+ is_as = true;
+ }
+ if (MP_PARSE_NODE_IS_NULL(pn)) {
+ // empty name (eg, from . import x)
+ *q_base = MP_QSTR_;
+ EMIT_ARG(import, MP_QSTR_, MP_EMIT_IMPORT_NAME); // import the empty string
+ } else if (MP_PARSE_NODE_IS_ID(pn)) {
+ // just a simple name
+ qstr q_full = MP_PARSE_NODE_LEAF_ARG(pn);
+ if (!is_as) {
+ *q_base = q_full;
+ }
+ EMIT_ARG(import, q_full, MP_EMIT_IMPORT_NAME);
+ } else {
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_name)); // should be
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+ {
+ // a name of the form a.b.c
+ if (!is_as) {
+ *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
+ }
+ int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
+ int len = n - 1;
+ for (int i = 0; i < n; i++) {
+ len += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
+ }
+ char *q_ptr = mp_local_alloc(len);
+ char *str_dest = q_ptr;
+ for (int i = 0; i < n; i++) {
+ if (i > 0) {
+ *str_dest++ = '.';
+ }
+ size_t str_src_len;
+ const byte *str_src = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &str_src_len);
+ memcpy(str_dest, str_src, str_src_len);
+ str_dest += str_src_len;
+ }
+ qstr q_full = qstr_from_strn(q_ptr, len);
+ mp_local_free(q_ptr);
+ EMIT_ARG(import, q_full, MP_EMIT_IMPORT_NAME);
+ if (is_as) {
+ for (int i = 1; i < n; i++) {
+ EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), MP_EMIT_ATTR_LOAD);
+ }
+ }
+ }
+ }
+}
+
+STATIC void compile_dotted_as_name(compiler_t *comp, mp_parse_node_t pn) {
+ EMIT_ARG(load_const_small_int, 0); // level 0 import
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything
+ qstr q_base;
+ do_import_name(comp, pn, &q_base);
+ compile_store_id(comp, q_base);
+}
+
+STATIC void compile_import_name(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ apply_to_single_or_list(comp, pns->nodes[0], PN_dotted_as_names, compile_dotted_as_name);
+}
+
+STATIC void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ mp_parse_node_t pn_import_source = pns->nodes[0];
+
+ // extract the preceding .'s (if any) for a relative import, to compute the import level
+ uint import_level = 0;
+ do {
+ mp_parse_node_t pn_rel;
+ if (MP_PARSE_NODE_IS_TOKEN(pn_import_source) || MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_one_or_more_period_or_ellipsis)) {
+ // This covers relative imports with dots only like "from .. import"
+ pn_rel = pn_import_source;
+ pn_import_source = MP_PARSE_NODE_NULL;
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_import_from_2b)) {
+ // This covers relative imports starting with dot(s) like "from .foo import"
+ mp_parse_node_struct_t *pns_2b = (mp_parse_node_struct_t *)pn_import_source;
+ pn_rel = pns_2b->nodes[0];
+ pn_import_source = pns_2b->nodes[1];
+ assert(!MP_PARSE_NODE_IS_NULL(pn_import_source)); // should not be
+ } else {
+ // Not a relative import
+ break;
+ }
+
+ // get the list of . and/or ...'s
+ mp_parse_node_t *nodes;
+ size_t n = mp_parse_node_extract_list(&pn_rel, PN_one_or_more_period_or_ellipsis, &nodes);
+
+ // count the total number of .'s
+ for (size_t i = 0; i < n; i++) {
+ if (MP_PARSE_NODE_IS_TOKEN_KIND(nodes[i], MP_TOKEN_DEL_PERIOD)) {
+ import_level++;
+ } else {
+ // should be an MP_TOKEN_ELLIPSIS
+ import_level += 3;
+ }
+ }
+ } while (0);
+
+ if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) {
+ #if MICROPY_CPYTHON_COMPAT
+ if (comp->scope_cur->kind != SCOPE_MODULE) {
+ compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("import * not at module level"));
+ return;
+ }
+ #endif
+
+ EMIT_ARG(load_const_small_int, import_level);
+
+ // build the "fromlist" tuple
+ EMIT_ARG(load_const_str, MP_QSTR__star_);
+ EMIT_ARG(build, 1, MP_EMIT_BUILD_TUPLE);
+
+ // do the import
+ qstr dummy_q;
+ do_import_name(comp, pn_import_source, &dummy_q);
+ EMIT_ARG(import, MP_QSTRnull, MP_EMIT_IMPORT_STAR);
+
+ } else {
+ EMIT_ARG(load_const_small_int, import_level);
+
+ // build the "fromlist" tuple
+ mp_parse_node_t *pn_nodes;
+ size_t n = mp_parse_node_extract_list(&pns->nodes[1], PN_import_as_names, &pn_nodes);
+ for (size_t i = 0; i < n; i++) {
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
+ mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t *)pn_nodes[i];
+ qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
+ EMIT_ARG(load_const_str, id2);
+ }
+ EMIT_ARG(build, n, MP_EMIT_BUILD_TUPLE);
+
+ // do the import
+ qstr dummy_q;
+ do_import_name(comp, pn_import_source, &dummy_q);
+ for (size_t i = 0; i < n; i++) {
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
+ mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t *)pn_nodes[i];
+ qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
+ EMIT_ARG(import, id2, MP_EMIT_IMPORT_FROM);
+ if (MP_PARSE_NODE_IS_NULL(pns3->nodes[1])) {
+ compile_store_id(comp, id2);
+ } else {
+ compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]));
+ }
+ }
+ EMIT(pop_top);
+ }
+}
+
+STATIC void compile_declare_global(compiler_t *comp, mp_parse_node_t pn, id_info_t *id_info) {
+ if (id_info->kind != ID_INFO_KIND_UNDECIDED && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) {
+ compile_syntax_error(comp, pn, MP_ERROR_TEXT("identifier redefined as global"));
+ return;
+ }
+ id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
+
+ // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL
+ id_info = scope_find_global(comp->scope_cur, id_info->qst);
+ if (id_info != NULL) {
+ id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
+ }
+}
+
+STATIC void compile_declare_nonlocal(compiler_t *comp, mp_parse_node_t pn, id_info_t *id_info) {
+ if (id_info->kind == ID_INFO_KIND_UNDECIDED) {
+ id_info->kind = ID_INFO_KIND_GLOBAL_IMPLICIT;
+ scope_check_to_close_over(comp->scope_cur, id_info);
+ if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
+ compile_syntax_error(comp, pn, MP_ERROR_TEXT("no binding for nonlocal found"));
+ }
+ } else if (id_info->kind != ID_INFO_KIND_FREE) {
+ compile_syntax_error(comp, pn, MP_ERROR_TEXT("identifier redefined as nonlocal"));
+ }
+}
+
+STATIC void compile_global_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ bool is_global = MP_PARSE_NODE_STRUCT_KIND(pns) == PN_global_stmt;
+
+ if (!is_global && comp->scope_cur->kind == SCOPE_MODULE) {
+ compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("can't declare nonlocal in outer code"));
+ return;
+ }
+
+ mp_parse_node_t *nodes;
+ size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes);
+ for (size_t i = 0; i < n; i++) {
+ qstr qst = MP_PARSE_NODE_LEAF_ARG(nodes[i]);
+ id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, ID_INFO_KIND_UNDECIDED);
+ if (is_global) {
+ compile_declare_global(comp, (mp_parse_node_t)pns, id_info);
+ } else {
+ compile_declare_nonlocal(comp, (mp_parse_node_t)pns, id_info);
+ }
+ }
+ }
+}
+
+STATIC void compile_assert_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ // with optimisations enabled we don't compile assertions
+ if (MP_STATE_VM(mp_optimise_value) != 0) {
+ return;
+ }
+
+ uint l_end = comp_next_label(comp);
+ c_if_cond(comp, pns->nodes[0], true, l_end);
+ EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython
+ if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
+ // assertion message
+ compile_node(comp, pns->nodes[1]);
+ EMIT_ARG(call_function, 1, 0, 0);
+ }
+ EMIT_ARG(raise_varargs, 1);
+ EMIT_ARG(label_assign, l_end);
+}
+
+STATIC void compile_if_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ uint l_end = comp_next_label(comp);
+
+ // optimisation: don't emit anything when "if False"
+ if (!mp_parse_node_is_const_false(pns->nodes[0])) {
+ uint l_fail = comp_next_label(comp);
+ c_if_cond(comp, pns->nodes[0], false, l_fail); // if condition
+
+ compile_node(comp, pns->nodes[1]); // if block
+
+ // optimisation: skip everything else when "if True"
+ if (mp_parse_node_is_const_true(pns->nodes[0])) {
+ goto done;
+ }
+
+ if (
+ // optimisation: don't jump over non-existent elif/else blocks
+ !(MP_PARSE_NODE_IS_NULL(pns->nodes[2]) && MP_PARSE_NODE_IS_NULL(pns->nodes[3]))
+ // optimisation: don't jump if last instruction was return
+ && !EMIT(last_emit_was_return_value)
+ ) {
+ // jump over elif/else blocks
+ EMIT_ARG(jump, l_end);
+ }
+
+ EMIT_ARG(label_assign, l_fail);
+ }
+
+ // compile elif blocks (if any)
+ mp_parse_node_t *pn_elif;
+ size_t n_elif = mp_parse_node_extract_list(&pns->nodes[2], PN_if_stmt_elif_list, &pn_elif);
+ for (size_t i = 0; i < n_elif; i++) {
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_elif[i], PN_if_stmt_elif)); // should be
+ mp_parse_node_struct_t *pns_elif = (mp_parse_node_struct_t *)pn_elif[i];
+
+ // optimisation: don't emit anything when "if False"
+ if (!mp_parse_node_is_const_false(pns_elif->nodes[0])) {
+ uint l_fail = comp_next_label(comp);
+ c_if_cond(comp, pns_elif->nodes[0], false, l_fail); // elif condition
+
+ compile_node(comp, pns_elif->nodes[1]); // elif block
+
+ // optimisation: skip everything else when "elif True"
+ if (mp_parse_node_is_const_true(pns_elif->nodes[0])) {
+ goto done;
+ }
+
+ // optimisation: don't jump if last instruction was return
+ if (!EMIT(last_emit_was_return_value)) {
+ EMIT_ARG(jump, l_end);
+ }
+ EMIT_ARG(label_assign, l_fail);
+ }
+ }
+
+ // compile else block
+ compile_node(comp, pns->nodes[3]); // can be null
+
+done:
+ EMIT_ARG(label_assign, l_end);
+}
+
+#define START_BREAK_CONTINUE_BLOCK \
+ uint16_t old_break_label = comp->break_label; \
+ uint16_t old_continue_label = comp->continue_label; \
+ uint16_t old_break_continue_except_level = comp->break_continue_except_level; \
+ uint break_label = comp_next_label(comp); \
+ uint continue_label = comp_next_label(comp); \
+ comp->break_label = break_label; \
+ comp->continue_label = continue_label; \
+ comp->break_continue_except_level = comp->cur_except_level;
+
+#define END_BREAK_CONTINUE_BLOCK \
+ comp->break_label = old_break_label; \
+ comp->continue_label = old_continue_label; \
+ comp->break_continue_except_level = old_break_continue_except_level;
+
+STATIC void compile_while_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ START_BREAK_CONTINUE_BLOCK
+
+ if (!mp_parse_node_is_const_false(pns->nodes[0])) { // optimisation: don't emit anything for "while False"
+ uint top_label = comp_next_label(comp);
+ if (!mp_parse_node_is_const_true(pns->nodes[0])) { // optimisation: don't jump to cond for "while True"
+ EMIT_ARG(jump, continue_label);
+ }
+ EMIT_ARG(label_assign, top_label);
+ compile_node(comp, pns->nodes[1]); // body
+ EMIT_ARG(label_assign, continue_label);
+ c_if_cond(comp, pns->nodes[0], true, top_label); // condition
+ }
+
+ // break/continue apply to outer loop (if any) in the else block
+ END_BREAK_CONTINUE_BLOCK
+
+ compile_node(comp, pns->nodes[2]); // else
+
+ EMIT_ARG(label_assign, break_label);
+}
+
+// This function compiles an optimised for-loop of the form:
+// for <var> in range(<start>, <end>, <step>):
+// <body>
+// else:
+// <else>
+// <var> must be an identifier and <step> must be a small-int.
+//
+// Semantics of for-loop require:
+// - final failing value should not be stored in the loop variable
+// - if the loop never runs, the loop variable should never be assigned
+// - assignments to <var>, <end> or <step> in the body do not alter the loop
+// (<step> is a constant for us, so no need to worry about it changing)
+//
+// If <end> is a small-int, then the stack during the for-loop contains just
+// the current value of <var>. Otherwise, the stack contains <end> then the
+// current value of <var>.
+STATIC void compile_for_stmt_optimised_range(compiler_t *comp, mp_parse_node_t pn_var, mp_parse_node_t pn_start, mp_parse_node_t pn_end, mp_parse_node_t pn_step, mp_parse_node_t pn_body, mp_parse_node_t pn_else) {
+ START_BREAK_CONTINUE_BLOCK
+
+ uint top_label = comp_next_label(comp);
+ uint entry_label = comp_next_label(comp);
+
+ // put the end value on the stack if it's not a small-int constant
+ bool end_on_stack = !MP_PARSE_NODE_IS_SMALL_INT(pn_end);
+ if (end_on_stack) {
+ compile_node(comp, pn_end);
+ }
+
+ // compile: start
+ compile_node(comp, pn_start);
+
+ EMIT_ARG(jump, entry_label);
+ EMIT_ARG(label_assign, top_label);
+
+ // duplicate next value and store it to var
+ EMIT(dup_top);
+ c_assign(comp, pn_var, ASSIGN_STORE);
+
+ // compile body
+ compile_node(comp, pn_body);
+
+ EMIT_ARG(label_assign, continue_label);
+
+ // compile: var + step
+ compile_node(comp, pn_step);
+ EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD);
+
+ EMIT_ARG(label_assign, entry_label);
+
+ // compile: if var <cond> end: goto top
+ if (end_on_stack) {
+ EMIT(dup_top_two);
+ EMIT(rot_two);
+ } else {
+ EMIT(dup_top);
+ compile_node(comp, pn_end);
+ }
+ assert(MP_PARSE_NODE_IS_SMALL_INT(pn_step));
+ if (MP_PARSE_NODE_LEAF_SMALL_INT(pn_step) >= 0) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_LESS);
+ } else {
+ EMIT_ARG(binary_op, MP_BINARY_OP_MORE);
+ }
+ EMIT_ARG(pop_jump_if, true, top_label);
+
+ // break/continue apply to outer loop (if any) in the else block
+ END_BREAK_CONTINUE_BLOCK
+
+ // Compile the else block. We must pop the iterator variables before
+ // executing the else code because it may contain break/continue statements.
+ uint end_label = 0;
+ if (!MP_PARSE_NODE_IS_NULL(pn_else)) {
+ // discard final value of "var", and possible "end" value
+ EMIT(pop_top);
+ if (end_on_stack) {
+ EMIT(pop_top);
+ }
+ compile_node(comp, pn_else);
+ end_label = comp_next_label(comp);
+ EMIT_ARG(jump, end_label);
+ EMIT_ARG(adjust_stack_size, 1 + end_on_stack);
+ }
+
+ EMIT_ARG(label_assign, break_label);
+
+ // discard final value of var that failed the loop condition
+ EMIT(pop_top);
+
+ // discard <end> value if it's on the stack
+ if (end_on_stack) {
+ EMIT(pop_top);
+ }
+
+ if (!MP_PARSE_NODE_IS_NULL(pn_else)) {
+ EMIT_ARG(label_assign, end_label);
+ }
+}
+
+STATIC void compile_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ // this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable
+ // this is actually slower, but uses no heap memory
+ // for viper it will be much, much faster
+ if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_atom_expr_normal)) {
+ mp_parse_node_struct_t *pns_it = (mp_parse_node_struct_t *)pns->nodes[1];
+ if (MP_PARSE_NODE_IS_ID(pns_it->nodes[0])
+ && MP_PARSE_NODE_LEAF_ARG(pns_it->nodes[0]) == MP_QSTR_range
+ && MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pns_it->nodes[1]) == PN_trailer_paren) {
+ mp_parse_node_t pn_range_args = ((mp_parse_node_struct_t *)pns_it->nodes[1])->nodes[0];
+ mp_parse_node_t *args;
+ size_t n_args = mp_parse_node_extract_list(&pn_range_args, PN_arglist, &args);
+ mp_parse_node_t pn_range_start;
+ mp_parse_node_t pn_range_end;
+ mp_parse_node_t pn_range_step;
+ bool optimize = false;
+ if (1 <= n_args && n_args <= 3) {
+ optimize = true;
+ if (n_args == 1) {
+ pn_range_start = mp_parse_node_new_small_int(0);
+ pn_range_end = args[0];
+ pn_range_step = mp_parse_node_new_small_int(1);
+ } else if (n_args == 2) {
+ pn_range_start = args[0];
+ pn_range_end = args[1];
+ pn_range_step = mp_parse_node_new_small_int(1);
+ } else {
+ pn_range_start = args[0];
+ pn_range_end = args[1];
+ pn_range_step = args[2];
+ // the step must be a non-zero constant integer to do the optimisation
+ if (!MP_PARSE_NODE_IS_SMALL_INT(pn_range_step)
+ || MP_PARSE_NODE_LEAF_SMALL_INT(pn_range_step) == 0) {
+ optimize = false;
+ }
+ }
+ // arguments must be able to be compiled as standard expressions
+ if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_start)) {
+ int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_range_start);
+ if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
+ optimize = false;
+ }
+ }
+ if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_end)) {
+ int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_range_end);
+ if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
+ optimize = false;
+ }
+ }
+ }
+ if (optimize) {
+ compile_for_stmt_optimised_range(comp, pns->nodes[0], pn_range_start, pn_range_end, pn_range_step, pns->nodes[2], pns->nodes[3]);
+ return;
+ }
+ }
+ }
+
+ START_BREAK_CONTINUE_BLOCK
+ comp->break_label |= MP_EMIT_BREAK_FROM_FOR;
+
+ uint pop_label = comp_next_label(comp);
+
+ compile_node(comp, pns->nodes[1]); // iterator
+ EMIT_ARG(get_iter, true);
+ EMIT_ARG(label_assign, continue_label);
+ EMIT_ARG(for_iter, pop_label);
+ c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
+ compile_node(comp, pns->nodes[2]); // body
+ if (!EMIT(last_emit_was_return_value)) {
+ EMIT_ARG(jump, continue_label);
+ }
+ EMIT_ARG(label_assign, pop_label);
+ EMIT(for_iter_end);
+
+ // break/continue apply to outer loop (if any) in the else block
+ END_BREAK_CONTINUE_BLOCK
+
+ compile_node(comp, pns->nodes[3]); // else (may be empty)
+
+ EMIT_ARG(label_assign, break_label);
+}
+
+STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_excepts, mp_parse_node_t pn_else) {
+ // setup code
+ uint l1 = comp_next_label(comp);
+ uint success_label = comp_next_label(comp);
+
+ compile_increase_except_level(comp, l1, MP_EMIT_SETUP_BLOCK_EXCEPT);
+
+ compile_node(comp, pn_body); // body
+ EMIT_ARG(pop_except_jump, success_label, false); // jump over exception handler
+
+ EMIT_ARG(label_assign, l1); // start of exception handler
+ EMIT(start_except_handler);
+
+ // at this point the top of the stack contains the exception instance that was raised
+
+ uint l2 = comp_next_label(comp);
+
+ for (int i = 0; i < n_except; i++) {
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_excepts[i], PN_try_stmt_except)); // should be
+ mp_parse_node_struct_t *pns_except = (mp_parse_node_struct_t *)pn_excepts[i];
+
+ qstr qstr_exception_local = 0;
+ uint end_finally_label = comp_next_label(comp);
+ #if MICROPY_PY_SYS_SETTRACE
+ EMIT_ARG(set_source_line, pns_except->source_line);
+ #endif
+
+ if (MP_PARSE_NODE_IS_NULL(pns_except->nodes[0])) {
+ // this is a catch all exception handler
+ if (i + 1 != n_except) {
+ compile_syntax_error(comp, pn_excepts[i], MP_ERROR_TEXT("default 'except' must be last"));
+ compile_decrease_except_level(comp);
+ return;
+ }
+ } else {
+ // this exception handler requires a match to a certain type of exception
+ mp_parse_node_t pns_exception_expr = pns_except->nodes[0];
+ if (MP_PARSE_NODE_IS_STRUCT(pns_exception_expr)) {
+ mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t *)pns_exception_expr;
+ if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_try_stmt_as_name) {
+ // handler binds the exception to a local
+ pns_exception_expr = pns3->nodes[0];
+ qstr_exception_local = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]);
+ }
+ }
+ EMIT(dup_top);
+ compile_node(comp, pns_exception_expr);
+ EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
+ EMIT_ARG(pop_jump_if, false, end_finally_label);
+ }
+
+ // either discard or store the exception instance
+ if (qstr_exception_local == 0) {
+ EMIT(pop_top);
+ } else {
+ compile_store_id(comp, qstr_exception_local);
+ }
+
+ // If the exception is bound to a variable <e> then the <body> of the
+ // exception handler is wrapped in a try-finally so that the name <e> can
+ // be deleted (per Python semantics) even if the <body> has an exception.
+ // In such a case the generated code for the exception handler is:
+ // try:
+ // <body>
+ // finally:
+ // <e> = None
+ // del <e>
+ uint l3 = 0;
+ if (qstr_exception_local != 0) {
+ l3 = comp_next_label(comp);
+ compile_increase_except_level(comp, l3, MP_EMIT_SETUP_BLOCK_FINALLY);
+ }
+ compile_node(comp, pns_except->nodes[1]); // the <body>
+ if (qstr_exception_local != 0) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT_ARG(label_assign, l3);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ compile_store_id(comp, qstr_exception_local);
+ compile_delete_id(comp, qstr_exception_local);
+ compile_decrease_except_level(comp);
+ }
+
+ EMIT_ARG(pop_except_jump, l2, true);
+ EMIT_ARG(label_assign, end_finally_label);
+ EMIT_ARG(adjust_stack_size, 1); // stack adjust for the exception instance
+ }
+
+ compile_decrease_except_level(comp);
+ EMIT(end_except_handler);
+
+ EMIT_ARG(label_assign, success_label);
+ compile_node(comp, pn_else); // else block, can be null
+ EMIT_ARG(label_assign, l2);
+}
+
+STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) {
+ uint l_finally_block = comp_next_label(comp);
+
+ compile_increase_except_level(comp, l_finally_block, MP_EMIT_SETUP_BLOCK_FINALLY);
+
+ if (n_except == 0) {
+ assert(MP_PARSE_NODE_IS_NULL(pn_else));
+ EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
+ compile_node(comp, pn_body);
+ EMIT_ARG(adjust_stack_size, -3);
+ } else {
+ compile_try_except(comp, pn_body, n_except, pn_except, pn_else);
+ }
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT_ARG(label_assign, l_finally_block);
+ compile_node(comp, pn_finally);
+
+ compile_decrease_except_level(comp);
+}
+
+STATIC void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should be
+ {
+ mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[1];
+ if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_finally) {
+ // just try-finally
+ compile_try_finally(comp, pns->nodes[0], 0, NULL, MP_PARSE_NODE_NULL, pns2->nodes[0]);
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_except_and_more) {
+ // try-except and possibly else and/or finally
+ mp_parse_node_t *pn_excepts;
+ size_t n_except = mp_parse_node_extract_list(&pns2->nodes[0], PN_try_stmt_except_list, &pn_excepts);
+ if (MP_PARSE_NODE_IS_NULL(pns2->nodes[2])) {
+ // no finally
+ compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1]);
+ } else {
+ // have finally
+ compile_try_finally(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1], ((mp_parse_node_struct_t *)pns2->nodes[2])->nodes[0]);
+ }
+ } else {
+ // just try-except
+ mp_parse_node_t *pn_excepts;
+ size_t n_except = mp_parse_node_extract_list(&pns->nodes[1], PN_try_stmt_except_list, &pn_excepts);
+ compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, MP_PARSE_NODE_NULL);
+ }
+ }
+}
+
+STATIC void compile_with_stmt_helper(compiler_t *comp, size_t n, mp_parse_node_t *nodes, mp_parse_node_t body) {
+ if (n == 0) {
+ // no more pre-bits, compile the body of the with
+ compile_node(comp, body);
+ } else {
+ uint l_end = comp_next_label(comp);
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
+ // this pre-bit is of the form "a as b"
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)nodes[0];
+ compile_node(comp, pns->nodes[0]);
+ compile_increase_except_level(comp, l_end, MP_EMIT_SETUP_BLOCK_WITH);
+ c_assign(comp, pns->nodes[1], ASSIGN_STORE);
+ } else {
+ // this pre-bit is just an expression
+ compile_node(comp, nodes[0]);
+ compile_increase_except_level(comp, l_end, MP_EMIT_SETUP_BLOCK_WITH);
+ EMIT(pop_top);
+ }
+ // compile additional pre-bits and the body
+ compile_with_stmt_helper(comp, n - 1, nodes + 1, body);
+ // finish this with block
+ EMIT_ARG(with_cleanup, l_end);
+ reserve_labels_for_native(comp, 3); // used by native's with_cleanup
+ compile_decrease_except_level(comp);
+ }
+}
+
+STATIC void compile_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
+ mp_parse_node_t *nodes;
+ size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
+ assert(n > 0);
+
+ // compile in a nested fashion
+ compile_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
+}
+
+STATIC void compile_yield_from(compiler_t *comp) {
+ EMIT_ARG(get_iter, false);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT_ARG(yield, MP_EMIT_YIELD_FROM);
+ reserve_labels_for_native(comp, 3);
+}
+
+#if MICROPY_PY_ASYNC_AWAIT
+STATIC void compile_await_object_method(compiler_t *comp, qstr method) {
+ EMIT_ARG(load_method, method, false);
+ EMIT_ARG(call_method, 0, 0, 0);
+ compile_yield_from(comp);
+}
+
+STATIC void compile_async_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ // comp->break_label |= MP_EMIT_BREAK_FROM_FOR;
+ qstr context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
+ uint while_else_label = comp_next_label(comp);
+ uint try_exception_label = comp_next_label(comp);
+ uint try_else_label = comp_next_label(comp);
+ uint try_finally_label = comp_next_label(comp);
+
+ compile_node(comp, pns->nodes[1]); // iterator
+ EMIT_ARG(load_method, MP_QSTR___aiter__, false);
+ EMIT_ARG(call_method, 0, 0, 0);
+ compile_store_id(comp, context);
+
+ START_BREAK_CONTINUE_BLOCK
+
+ EMIT_ARG(label_assign, continue_label);
+
+ compile_increase_except_level(comp, try_exception_label, MP_EMIT_SETUP_BLOCK_EXCEPT);
+
+ compile_load_id(comp, context);
+ compile_await_object_method(comp, MP_QSTR___anext__);
+ c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
+ EMIT_ARG(pop_except_jump, try_else_label, false);
+
+ EMIT_ARG(label_assign, try_exception_label);
+ EMIT(start_except_handler);
+ EMIT(dup_top);
+ EMIT_LOAD_GLOBAL(MP_QSTR_StopAsyncIteration);
+ EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
+ EMIT_ARG(pop_jump_if, false, try_finally_label);
+ EMIT(pop_top); // pop exception instance
+ EMIT_ARG(pop_except_jump, while_else_label, true);
+
+ EMIT_ARG(label_assign, try_finally_label);
+ EMIT_ARG(adjust_stack_size, 1); // if we jump here, the exc is on the stack
+ compile_decrease_except_level(comp);
+ EMIT(end_except_handler);
+
+ EMIT_ARG(label_assign, try_else_label);
+ compile_node(comp, pns->nodes[2]); // body
+
+ EMIT_ARG(jump, continue_label);
+ // break/continue apply to outer loop (if any) in the else block
+ END_BREAK_CONTINUE_BLOCK
+
+ EMIT_ARG(label_assign, while_else_label);
+ compile_node(comp, pns->nodes[3]); // else
+
+ EMIT_ARG(label_assign, break_label);
+}
+
+STATIC void compile_async_with_stmt_helper(compiler_t *comp, size_t n, mp_parse_node_t *nodes, mp_parse_node_t body) {
+ if (n == 0) {
+ // no more pre-bits, compile the body of the with
+ compile_node(comp, body);
+ } else {
+ uint l_finally_block = comp_next_label(comp);
+ uint l_aexit_no_exc = comp_next_label(comp);
+ uint l_ret_unwind_jump = comp_next_label(comp);
+ uint l_end = comp_next_label(comp);
+
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
+ // this pre-bit is of the form "a as b"
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)nodes[0];
+ compile_node(comp, pns->nodes[0]);
+ EMIT(dup_top);
+ compile_await_object_method(comp, MP_QSTR___aenter__);
+ c_assign(comp, pns->nodes[1], ASSIGN_STORE);
+ } else {
+ // this pre-bit is just an expression
+ compile_node(comp, nodes[0]);
+ EMIT(dup_top);
+ compile_await_object_method(comp, MP_QSTR___aenter__);
+ EMIT(pop_top);
+ }
+
+ // To keep the Python stack size down, and because we can't access values on
+ // this stack further down than 3 elements (via rot_three), we don't preload
+ // __aexit__ (as per normal with) but rather wait until we need it below.
+
+ // Start the try-finally statement
+ compile_increase_except_level(comp, l_finally_block, MP_EMIT_SETUP_BLOCK_FINALLY);
+
+ // Compile any additional pre-bits of the "async with", and also the body
+ EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
+ compile_async_with_stmt_helper(comp, n - 1, nodes + 1, body);
+ EMIT_ARG(adjust_stack_size, -3);
+
+ // We have now finished the "try" block and fall through to the "finally"
+
+ // At this point, after the with body has executed, we have 3 cases:
+ // 1. no exception, we just fall through to this point; stack: (..., ctx_mgr)
+ // 2. exception propagating out, we get to the finally block; stack: (..., ctx_mgr, exc)
+ // 3. return or unwind jump, we get to the finally block; stack: (..., ctx_mgr, X, INT)
+
+ // Handle case 1: call __aexit__
+ // Stack: (..., ctx_mgr)
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // to tell end_finally there's no exception
+ EMIT(rot_two);
+ EMIT_ARG(jump, l_aexit_no_exc); // jump to code below to call __aexit__
+
+ // Start of "finally" block
+ // At this point we have case 2 or 3, we detect which one by the TOS being an exception or not
+ EMIT_ARG(label_assign, l_finally_block);
+
+ // Detect if TOS an exception or not
+ EMIT(dup_top);
+ EMIT_LOAD_GLOBAL(MP_QSTR_BaseException);
+ EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
+ EMIT_ARG(pop_jump_if, false, l_ret_unwind_jump); // if not an exception then we have case 3
+
+ // Handle case 2: call __aexit__ and either swallow or re-raise the exception
+ // Stack: (..., ctx_mgr, exc)
+ EMIT(dup_top);
+ EMIT(rot_three);
+ EMIT(rot_two);
+ EMIT_ARG(load_method, MP_QSTR___aexit__, false);
+ EMIT(rot_three);
+ EMIT(rot_three);
+ EMIT(dup_top);
+ #if MICROPY_CPYTHON_COMPAT
+ EMIT_ARG(attr, MP_QSTR___class__, MP_EMIT_ATTR_LOAD); // get type(exc)
+ #else
+ compile_load_id(comp, MP_QSTR_type);
+ EMIT(rot_two);
+ EMIT_ARG(call_function, 1, 0, 0); // get type(exc)
+ #endif
+ EMIT(rot_two);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // dummy traceback value
+ // Stack: (..., exc, __aexit__, ctx_mgr, type(exc), exc, None)
+ EMIT_ARG(call_method, 3, 0, 0);
+ compile_yield_from(comp);
+ EMIT_ARG(pop_jump_if, false, l_end);
+ EMIT(pop_top); // pop exception
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // replace with None to swallow exception
+ EMIT_ARG(jump, l_end);
+ EMIT_ARG(adjust_stack_size, 2);
+
+ // Handle case 3: call __aexit__
+ // Stack: (..., ctx_mgr, X, INT)
+ EMIT_ARG(label_assign, l_ret_unwind_jump);
+ EMIT(rot_three);
+ EMIT(rot_three);
+ EMIT_ARG(label_assign, l_aexit_no_exc);
+ EMIT_ARG(load_method, MP_QSTR___aexit__, false);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT(dup_top);
+ EMIT(dup_top);
+ EMIT_ARG(call_method, 3, 0, 0);
+ compile_yield_from(comp);
+ EMIT(pop_top);
+ EMIT_ARG(adjust_stack_size, -1);
+
+ // End of "finally" block
+ // Stack can have one of three configurations:
+ // a. (..., None) - from either case 1, or case 2 with swallowed exception
+ // b. (..., exc) - from case 2 with re-raised exception
+ // c. (..., X, INT) - from case 3
+ EMIT_ARG(label_assign, l_end);
+ compile_decrease_except_level(comp);
+ }
+}
+
+STATIC void compile_async_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
+ mp_parse_node_t *nodes;
+ size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
+ assert(n > 0);
+
+ // compile in a nested fashion
+ compile_async_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
+}
+
+STATIC void compile_async_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[0]));
+ mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t *)pns->nodes[0];
+ if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_funcdef) {
+ // async def
+ compile_funcdef(comp, pns0);
+ scope_t *fscope = (scope_t *)pns0->nodes[4];
+ fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR | MP_SCOPE_FLAG_ASYNC;
+ } else {
+ // async for/with; first verify the scope is a generator
+ int scope_flags = comp->scope_cur->scope_flags;
+ if (!(scope_flags & MP_SCOPE_FLAG_GENERATOR)) {
+ compile_syntax_error(comp, (mp_parse_node_t)pns0,
+ MP_ERROR_TEXT("'await', 'async for' or 'async with' outside async function"));
+ return;
+ }
+
+ if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_for_stmt) {
+ // async for
+ compile_async_for_stmt(comp, pns0);
+ } else {
+ // async with
+ assert(MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_with_stmt);
+ compile_async_with_stmt(comp, pns0);
+ }
+ }
+}
+#endif
+
+STATIC void compile_expr_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ mp_parse_node_t pn_rhs = pns->nodes[1];
+ if (MP_PARSE_NODE_IS_NULL(pn_rhs)) {
+ if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) {
+ // for REPL, evaluate then print the expression
+ compile_load_id(comp, MP_QSTR___repl_print__);
+ compile_node(comp, pns->nodes[0]);
+ EMIT_ARG(call_function, 1, 0, 0);
+ EMIT(pop_top);
+
+ } else {
+ // for non-REPL, evaluate then discard the expression
+ if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0]))
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) {
+ // do nothing with a lonely constant
+ } else {
+ compile_node(comp, pns->nodes[0]); // just an expression
+ EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack
+ }
+ }
+ } else if (MP_PARSE_NODE_IS_STRUCT(pn_rhs)) {
+ mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pn_rhs;
+ int kind = MP_PARSE_NODE_STRUCT_KIND(pns1);
+ if (kind == PN_annassign) {
+ // the annotation is in pns1->nodes[0] and is ignored
+ if (MP_PARSE_NODE_IS_NULL(pns1->nodes[1])) {
+ // an annotation of the form "x: y"
+ // inside a function this declares "x" as a local
+ if (comp->scope_cur->kind == SCOPE_FUNCTION) {
+ if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
+ qstr lhs = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
+ scope_find_or_add_id(comp->scope_cur, lhs, ID_INFO_KIND_LOCAL);
+ }
+ }
+ } else {
+ // an assigned annotation of the form "x: y = z"
+ pn_rhs = pns1->nodes[1];
+ goto plain_assign;
+ }
+ } else if (kind == PN_expr_stmt_augassign) {
+ c_assign(comp, pns->nodes[0], ASSIGN_AUG_LOAD); // lhs load for aug assign
+ compile_node(comp, pns1->nodes[1]); // rhs
+ assert(MP_PARSE_NODE_IS_TOKEN(pns1->nodes[0]));
+ mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]);
+ mp_binary_op_t op = MP_BINARY_OP_INPLACE_OR + (tok - MP_TOKEN_DEL_PIPE_EQUAL);
+ EMIT_ARG(binary_op, op);
+ c_assign(comp, pns->nodes[0], ASSIGN_AUG_STORE); // lhs store for aug assign
+ } else if (kind == PN_expr_stmt_assign_list) {
+ int rhs = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) - 1;
+ compile_node(comp, pns1->nodes[rhs]); // rhs
+ // following CPython, we store left-most first
+ if (rhs > 0) {
+ EMIT(dup_top);
+ }
+ c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
+ for (int i = 0; i < rhs; i++) {
+ if (i + 1 < rhs) {
+ EMIT(dup_top);
+ }
+ c_assign(comp, pns1->nodes[i], ASSIGN_STORE); // middle store
+ }
+ } else {
+ plain_assign:
+ #if MICROPY_COMP_DOUBLE_TUPLE_ASSIGN
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_rhs, PN_testlist_star_expr)
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)) {
+ mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t *)pns->nodes[0];
+ pns1 = (mp_parse_node_struct_t *)pn_rhs;
+ uint32_t n_pns0 = MP_PARSE_NODE_STRUCT_NUM_NODES(pns0);
+ // Can only optimise a tuple-to-tuple assignment when all of the following hold:
+ // - equal number of items in LHS and RHS tuples
+ // - 2 or 3 items in the tuples
+ // - there are no star expressions in the LHS tuple
+ if (n_pns0 == MP_PARSE_NODE_STRUCT_NUM_NODES(pns1)
+ && (n_pns0 == 2
+ #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
+ || n_pns0 == 3
+ #endif
+ )
+ && !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
+ && !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)
+ #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
+ && (n_pns0 == 2 || !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr))
+ #endif
+ ) {
+ // Optimisation for a, b = c, d or a, b, c = d, e, f
+ compile_node(comp, pns1->nodes[0]); // rhs
+ compile_node(comp, pns1->nodes[1]); // rhs
+ #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
+ if (n_pns0 == 3) {
+ compile_node(comp, pns1->nodes[2]); // rhs
+ EMIT(rot_three);
+ }
+ #endif
+ EMIT(rot_two);
+ c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
+ c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
+ #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
+ if (n_pns0 == 3) {
+ c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store
+ }
+ #endif
+ return;
+ }
+ }
+ #endif
+
+ compile_node(comp, pn_rhs); // rhs
+ c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
+ }
+ } else {
+ goto plain_assign;
+ }
+}
+
+STATIC void compile_test_if_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_test_if_else));
+ mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t *)pns->nodes[1];
+
+ uint l_fail = comp_next_label(comp);
+ uint l_end = comp_next_label(comp);
+ c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
+ compile_node(comp, pns->nodes[0]); // success value
+ EMIT_ARG(jump, l_end);
+ EMIT_ARG(label_assign, l_fail);
+ EMIT_ARG(adjust_stack_size, -1); // adjust stack size
+ compile_node(comp, pns_test_if_else->nodes[1]); // failure value
+ EMIT_ARG(label_assign, l_end);
+}
+
+STATIC void compile_lambdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ // create a new scope for this lambda
+ scope_t *s = scope_new_and_link(comp, SCOPE_LAMBDA, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
+ // store the lambda scope so the compiling function (this one) can use it at each pass
+ pns->nodes[2] = (mp_parse_node_t)s;
+ }
+
+ // get the scope for this lambda
+ scope_t *this_scope = (scope_t *)pns->nodes[2];
+
+ // compile the lambda definition
+ compile_funcdef_lambdef(comp, this_scope, pns->nodes[0], PN_varargslist);
+}
+
+#if MICROPY_PY_ASSIGN_EXPR
+STATIC void compile_namedexpr_helper(compiler_t *comp, mp_parse_node_t pn_name, mp_parse_node_t pn_expr) {
+ if (!MP_PARSE_NODE_IS_ID(pn_name)) {
+ compile_syntax_error(comp, (mp_parse_node_t)pn_name, MP_ERROR_TEXT("can't assign to expression"));
+ }
+ compile_node(comp, pn_expr);
+ EMIT(dup_top);
+ scope_t *old_scope = comp->scope_cur;
+ if (SCOPE_IS_COMP_LIKE(comp->scope_cur->kind)) {
+ // Use parent's scope for assigned value so it can "escape"
+ comp->scope_cur = comp->scope_cur->parent;
+ }
+ compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pn_name));
+ comp->scope_cur = old_scope;
+}
+
+STATIC void compile_namedexpr(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ compile_namedexpr_helper(comp, pns->nodes[0], pns->nodes[1]);
+}
+#endif
+
+STATIC void compile_or_and_test(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ bool cond = MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test;
+ uint l_end = comp_next_label(comp);
+ int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
+ for (int i = 0; i < n; i += 1) {
+ compile_node(comp, pns->nodes[i]);
+ if (i + 1 < n) {
+ EMIT_ARG(jump_if_or_pop, cond, l_end);
+ }
+ }
+ EMIT_ARG(label_assign, l_end);
+}
+
+STATIC void compile_not_test_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ compile_node(comp, pns->nodes[0]);
+ EMIT_ARG(unary_op, MP_UNARY_OP_NOT);
+}
+
+STATIC void compile_comparison(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
+ compile_node(comp, pns->nodes[0]);
+ bool multi = (num_nodes > 3);
+ uint l_fail = 0;
+ if (multi) {
+ l_fail = comp_next_label(comp);
+ }
+ for (int i = 1; i + 1 < num_nodes; i += 2) {
+ compile_node(comp, pns->nodes[i + 1]);
+ if (i + 2 < num_nodes) {
+ EMIT(dup_top);
+ EMIT(rot_three);
+ }
+ if (MP_PARSE_NODE_IS_TOKEN(pns->nodes[i])) {
+ mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]);
+ mp_binary_op_t op;
+ if (tok == MP_TOKEN_KW_IN) {
+ op = MP_BINARY_OP_IN;
+ } else {
+ op = MP_BINARY_OP_LESS + (tok - MP_TOKEN_OP_LESS);
+ }
+ EMIT_ARG(binary_op, op);
+ } else {
+ assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])); // should be
+ mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[i];
+ int kind = MP_PARSE_NODE_STRUCT_KIND(pns2);
+ if (kind == PN_comp_op_not_in) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_NOT_IN);
+ } else {
+ assert(kind == PN_comp_op_is); // should be
+ if (MP_PARSE_NODE_IS_NULL(pns2->nodes[0])) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_IS);
+ } else {
+ EMIT_ARG(binary_op, MP_BINARY_OP_IS_NOT);
+ }
+ }
+ }
+ if (i + 2 < num_nodes) {
+ EMIT_ARG(jump_if_or_pop, false, l_fail);
+ }
+ }
+ if (multi) {
+ uint l_end = comp_next_label(comp);
+ EMIT_ARG(jump, l_end);
+ EMIT_ARG(label_assign, l_fail);
+ EMIT_ARG(adjust_stack_size, 1);
+ EMIT(rot_two);
+ EMIT(pop_top);
+ EMIT_ARG(label_assign, l_end);
+ }
+}
+
+STATIC void compile_star_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("*x must be assignment target"));
+}
+
+STATIC void compile_binary_op(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ MP_STATIC_ASSERT(MP_BINARY_OP_OR + PN_xor_expr - PN_expr == MP_BINARY_OP_XOR);
+ MP_STATIC_ASSERT(MP_BINARY_OP_OR + PN_and_expr - PN_expr == MP_BINARY_OP_AND);
+ mp_binary_op_t binary_op = MP_BINARY_OP_OR + MP_PARSE_NODE_STRUCT_KIND(pns) - PN_expr;
+ int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
+ compile_node(comp, pns->nodes[0]);
+ for (int i = 1; i < num_nodes; ++i) {
+ compile_node(comp, pns->nodes[i]);
+ EMIT_ARG(binary_op, binary_op);
+ }
+}
+
+STATIC void compile_term(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
+ compile_node(comp, pns->nodes[0]);
+ for (int i = 1; i + 1 < num_nodes; i += 2) {
+ compile_node(comp, pns->nodes[i + 1]);
+ mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]);
+ mp_binary_op_t op = MP_BINARY_OP_LSHIFT + (tok - MP_TOKEN_OP_DBL_LESS);
+ EMIT_ARG(binary_op, op);
+ }
+}
+
+STATIC void compile_factor_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ compile_node(comp, pns->nodes[1]);
+ mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
+ mp_unary_op_t op;
+ if (tok == MP_TOKEN_OP_TILDE) {
+ op = MP_UNARY_OP_INVERT;
+ } else {
+ assert(tok == MP_TOKEN_OP_PLUS || tok == MP_TOKEN_OP_MINUS);
+ op = MP_UNARY_OP_POSITIVE + (tok - MP_TOKEN_OP_PLUS);
+ }
+ EMIT_ARG(unary_op, op);
+}
+
+STATIC void compile_atom_expr_normal(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ // compile the subject of the expression
+ compile_node(comp, pns->nodes[0]);
+
+ // compile_atom_expr_await may call us with a NULL node
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
+ return;
+ }
+
+ // get the array of trailers (known to be an array of PARSE_NODE_STRUCT)
+ size_t num_trail = 1;
+ mp_parse_node_struct_t **pns_trail = (mp_parse_node_struct_t **)&pns->nodes[1];
+ if (MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_atom_expr_trailers) {
+ num_trail = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_trail[0]);
+ pns_trail = (mp_parse_node_struct_t **)&pns_trail[0]->nodes[0];
+ }
+
+ // the current index into the array of trailers
+ size_t i = 0;
+
+ // handle special super() call
+ if (comp->scope_cur->kind == SCOPE_FUNCTION
+ && MP_PARSE_NODE_IS_ID(pns->nodes[0])
+ && MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_super
+ && MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_trailer_paren
+ && MP_PARSE_NODE_IS_NULL(pns_trail[0]->nodes[0])) {
+ // at this point we have matched "super()" within a function
+
+ // load the class for super to search for a parent
+ compile_load_id(comp, MP_QSTR___class__);
+
+ // look for first argument to function (assumes it's "self")
+ bool found = false;
+ id_info_t *id = &comp->scope_cur->id_info[0];
+ for (size_t n = comp->scope_cur->id_info_len; n > 0; --n, ++id) {
+ if (id->flags & ID_FLAG_IS_PARAM) {
+ // first argument found; load it
+ compile_load_id(comp, id->qst);
+ found = true;
+ break;
+ }
+ }
+ if (!found) {
+ compile_syntax_error(comp, (mp_parse_node_t)pns_trail[0],
+ MP_ERROR_TEXT("super() can't find self")); // really a TypeError
+ return;
+ }
+
+ if (num_trail >= 3
+ && MP_PARSE_NODE_STRUCT_KIND(pns_trail[1]) == PN_trailer_period
+ && MP_PARSE_NODE_STRUCT_KIND(pns_trail[2]) == PN_trailer_paren) {
+ // optimisation for method calls super().f(...), to eliminate heap allocation
+ mp_parse_node_struct_t *pns_period = pns_trail[1];
+ mp_parse_node_struct_t *pns_paren = pns_trail[2];
+ EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), true);
+ compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0);
+ i = 3;
+ } else {
+ // a super() call
+ EMIT_ARG(call_function, 2, 0, 0);
+ i = 1;
+ }
+
+ #if MICROPY_COMP_CONST_LITERAL && MICROPY_PY_COLLECTIONS_ORDEREDDICT
+ // handle special OrderedDict constructor
+ } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])
+ && MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_OrderedDict
+ && MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_trailer_paren
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pns_trail[0]->nodes[0], PN_atom_brace)) {
+ // at this point we have matched "OrderedDict({...})"
+
+ EMIT_ARG(call_function, 0, 0, 0);
+ mp_parse_node_struct_t *pns_dict = (mp_parse_node_struct_t *)pns_trail[0]->nodes[0];
+ compile_atom_brace_helper(comp, pns_dict, false);
+ i = 1;
+ #endif
+ }
+
+ // compile the remaining trailers
+ for (; i < num_trail; i++) {
+ if (i + 1 < num_trail
+ && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i]) == PN_trailer_period
+ && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i + 1]) == PN_trailer_paren) {
+ // optimisation for method calls a.f(...), following PyPy
+ mp_parse_node_struct_t *pns_period = pns_trail[i];
+ mp_parse_node_struct_t *pns_paren = pns_trail[i + 1];
+ EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), false);
+ compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0);
+ i += 1;
+ } else {
+ // node is one of: trailer_paren, trailer_bracket, trailer_period
+ compile_node(comp, (mp_parse_node_t)pns_trail[i]);
+ }
+ }
+}
+
+STATIC void compile_power(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ compile_generic_all_nodes(comp, pns); // 2 nodes, arguments of power
+ EMIT_ARG(binary_op, MP_BINARY_OP_POWER);
+}
+
+STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra) {
+ // function to call is on top of stack
+
+ // get the list of arguments
+ mp_parse_node_t *args;
+ size_t n_args = mp_parse_node_extract_list(&pn_arglist, PN_arglist, &args);
+
+ // compile the arguments
+ // Rather than calling compile_node on the list, we go through the list of args
+ // explicitly here so that we can count the number of arguments and give sensible
+ // error messages.
+ int n_positional = n_positional_extra;
+ uint n_keyword = 0;
+ uint star_flags = 0;
+ mp_parse_node_struct_t *star_args_node = NULL, *dblstar_args_node = NULL;
+ for (size_t i = 0; i < n_args; i++) {
+ if (MP_PARSE_NODE_IS_STRUCT(args[i])) {
+ mp_parse_node_struct_t *pns_arg = (mp_parse_node_struct_t *)args[i];
+ if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_star) {
+ if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) {
+ compile_syntax_error(comp, (mp_parse_node_t)pns_arg, MP_ERROR_TEXT("can't have multiple *x"));
+ return;
+ }
+ star_flags |= MP_EMIT_STAR_FLAG_SINGLE;
+ star_args_node = pns_arg;
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_dbl_star) {
+ if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) {
+ compile_syntax_error(comp, (mp_parse_node_t)pns_arg, MP_ERROR_TEXT("can't have multiple **x"));
+ return;
+ }
+ star_flags |= MP_EMIT_STAR_FLAG_DOUBLE;
+ dblstar_args_node = pns_arg;
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_argument) {
+ #if MICROPY_PY_ASSIGN_EXPR
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_argument_3)) {
+ compile_namedexpr_helper(comp, pns_arg->nodes[0], ((mp_parse_node_struct_t *)pns_arg->nodes[1])->nodes[0]);
+ n_positional++;
+ } else
+ #endif
+ if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_comp_for)) {
+ if (!MP_PARSE_NODE_IS_ID(pns_arg->nodes[0])) {
+ compile_syntax_error(comp, (mp_parse_node_t)pns_arg, MP_ERROR_TEXT("LHS of keyword arg must be an id"));
+ return;
+ }
+ EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns_arg->nodes[0]));
+ compile_node(comp, pns_arg->nodes[1]);
+ n_keyword += 1;
+ } else {
+ compile_comprehension(comp, pns_arg, SCOPE_GEN_EXPR);
+ n_positional++;
+ }
+ } else {
+ goto normal_argument;
+ }
+ } else {
+ normal_argument:
+ if (star_flags) {
+ compile_syntax_error(comp, args[i], MP_ERROR_TEXT("non-keyword arg after */**"));
+ return;
+ }
+ if (n_keyword > 0) {
+ compile_syntax_error(comp, args[i], MP_ERROR_TEXT("non-keyword arg after keyword arg"));
+ return;
+ }
+ compile_node(comp, args[i]);
+ n_positional++;
+ }
+ }
+
+ // compile the star/double-star arguments if we had them
+ // if we had one but not the other then we load "null" as a place holder
+ if (star_flags != 0) {
+ if (star_args_node == NULL) {
+ EMIT(load_null);
+ } else {
+ compile_node(comp, star_args_node->nodes[0]);
+ }
+ if (dblstar_args_node == NULL) {
+ EMIT(load_null);
+ } else {
+ compile_node(comp, dblstar_args_node->nodes[0]);
+ }
+ }
+
+ // emit the function/method call
+ if (is_method_call) {
+ EMIT_ARG(call_method, n_positional, n_keyword, star_flags);
+ } else {
+ EMIT_ARG(call_function, n_positional, n_keyword, star_flags);
+ }
+}
+
+// pns needs to have 2 nodes, first is lhs of comprehension, second is PN_comp_for node
+STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind) {
+ assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
+ mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t *)pns->nodes[1];
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ // create a new scope for this comprehension
+ scope_t *s = scope_new_and_link(comp, kind, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
+ // store the comprehension scope so the compiling function (this one) can use it at each pass
+ pns_comp_for->nodes[3] = (mp_parse_node_t)s;
+ }
+
+ // get the scope for this comprehension
+ scope_t *this_scope = (scope_t *)pns_comp_for->nodes[3];
+
+ // compile the comprehension
+ close_over_variables_etc(comp, this_scope, 0, 0);
+
+ compile_node(comp, pns_comp_for->nodes[1]); // source of the iterator
+ if (kind == SCOPE_GEN_EXPR) {
+ EMIT_ARG(get_iter, false);
+ }
+ EMIT_ARG(call_function, 1, 0, 0);
+}
+
+STATIC void compile_atom_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
+ // an empty tuple
+ EMIT_ARG(build, 0, MP_EMIT_BUILD_TUPLE);
+ } else {
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
+ pns = (mp_parse_node_struct_t *)pns->nodes[0];
+ if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns)) {
+ // generator expression
+ compile_comprehension(comp, pns, SCOPE_GEN_EXPR);
+ } else {
+ // tuple with N items
+ compile_generic_tuple(comp, pns);
+ }
+ }
+}
+
+STATIC void compile_atom_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
+ // empty list
+ EMIT_ARG(build, 0, MP_EMIT_BUILD_LIST);
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
+ mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[0];
+ if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns2)) {
+ // list comprehension
+ compile_comprehension(comp, pns2, SCOPE_LIST_COMP);
+ } else {
+ // list with N items
+ compile_generic_all_nodes(comp, pns2);
+ EMIT_ARG(build, MP_PARSE_NODE_STRUCT_NUM_NODES(pns2), MP_EMIT_BUILD_LIST);
+ }
+ } else {
+ // list with 1 item
+ compile_node(comp, pns->nodes[0]);
+ EMIT_ARG(build, 1, MP_EMIT_BUILD_LIST);
+ }
+}
+
+STATIC void compile_atom_brace_helper(compiler_t *comp, mp_parse_node_struct_t *pns, bool create_map) {
+ mp_parse_node_t pn = pns->nodes[0];
+ if (MP_PARSE_NODE_IS_NULL(pn)) {
+ // empty dict
+ if (create_map) {
+ EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP);
+ }
+ } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
+ pns = (mp_parse_node_struct_t *)pn;
+ if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker_item) {
+ // dict with one element
+ if (create_map) {
+ EMIT_ARG(build, 1, MP_EMIT_BUILD_MAP);
+ }
+ compile_node(comp, pn);
+ EMIT(store_map);
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) {
+ assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed
+ mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1];
+ if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) {
+ // dict/set with multiple elements
+
+ // get tail elements (2nd, 3rd, ...)
+ mp_parse_node_t *nodes;
+ size_t n = mp_parse_node_extract_list(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes);
+
+ // first element sets whether it's a dict or set
+ bool is_dict;
+ if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
+ // a dictionary
+ if (create_map) {
+ EMIT_ARG(build, 1 + n, MP_EMIT_BUILD_MAP);
+ }
+ compile_node(comp, pns->nodes[0]);
+ EMIT(store_map);
+ is_dict = true;
+ } else {
+ // a set
+ compile_node(comp, pns->nodes[0]); // 1st value of set
+ is_dict = false;
+ }
+
+ // process rest of elements
+ for (size_t i = 0; i < n; i++) {
+ mp_parse_node_t pn_i = nodes[i];
+ bool is_key_value = MP_PARSE_NODE_IS_STRUCT_KIND(pn_i, PN_dictorsetmaker_item);
+ compile_node(comp, pn_i);
+ if (is_dict) {
+ if (!is_key_value) {
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("invalid syntax"));
+ #else
+ compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("expecting key:value for dict"));
+ #endif
+ return;
+ }
+ EMIT(store_map);
+ } else {
+ if (is_key_value) {
+ #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
+ compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("invalid syntax"));
+ #else
+ compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("expecting just a value for set"));
+ #endif
+ return;
+ }
+ }
+ }
+
+ #if MICROPY_PY_BUILTINS_SET
+ // if it's a set, build it
+ if (!is_dict) {
+ EMIT_ARG(build, 1 + n, MP_EMIT_BUILD_SET);
+ }
+ #endif
+ } else {
+ assert(MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for); // should be
+ // dict/set comprehension
+ if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
+ // a dictionary comprehension
+ compile_comprehension(comp, pns, SCOPE_DICT_COMP);
+ } else {
+ // a set comprehension
+ compile_comprehension(comp, pns, SCOPE_SET_COMP);
+ }
+ }
+ } else {
+ // set with one element
+ goto set_with_one_element;
+ }
+ } else {
+ // set with one element
+ set_with_one_element:
+ #if MICROPY_PY_BUILTINS_SET
+ compile_node(comp, pn);
+ EMIT_ARG(build, 1, MP_EMIT_BUILD_SET);
+ #else
+ assert(0);
+ #endif
+ }
+}
+
+STATIC void compile_atom_brace(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ compile_atom_brace_helper(comp, pns, true);
+}
+
+STATIC void compile_trailer_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ compile_trailer_paren_helper(comp, pns->nodes[0], false, 0);
+}
+
+STATIC void compile_trailer_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ // object who's index we want is on top of stack
+ compile_node(comp, pns->nodes[0]); // the index
+ EMIT_ARG(subscr, MP_EMIT_SUBSCR_LOAD);
+}
+
+STATIC void compile_trailer_period(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ // object who's attribute we want is on top of stack
+ EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]), MP_EMIT_ATTR_LOAD); // attribute to get
+}
+
+#if MICROPY_PY_BUILTINS_SLICE
+STATIC void compile_subscript(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_2) {
+ compile_node(comp, pns->nodes[0]); // start of slice
+ assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
+ pns = (mp_parse_node_struct_t *)pns->nodes[1];
+ } else {
+ // pns is a PN_subscript_3, load None for start of slice
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ }
+
+ assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3); // should always be
+ mp_parse_node_t pn = pns->nodes[0];
+ if (MP_PARSE_NODE_IS_NULL(pn)) {
+ // [?:]
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
+ } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
+ pns = (mp_parse_node_struct_t *)pn;
+ if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3c) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ pn = pns->nodes[0];
+ if (MP_PARSE_NODE_IS_NULL(pn)) {
+ // [?::]
+ EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
+ } else {
+ // [?::x]
+ compile_node(comp, pn);
+ EMIT_ARG(build, 3, MP_EMIT_BUILD_SLICE);
+ }
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3d) {
+ compile_node(comp, pns->nodes[0]);
+ assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
+ pns = (mp_parse_node_struct_t *)pns->nodes[1];
+ assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_sliceop); // should always be
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
+ // [?:x:]
+ EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
+ } else {
+ // [?:x:x]
+ compile_node(comp, pns->nodes[0]);
+ EMIT_ARG(build, 3, MP_EMIT_BUILD_SLICE);
+ }
+ } else {
+ // [?:x]
+ compile_node(comp, pn);
+ EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
+ }
+ } else {
+ // [?:x]
+ compile_node(comp, pn);
+ EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
+ }
+}
+#endif // MICROPY_PY_BUILTINS_SLICE
+
+STATIC void compile_dictorsetmaker_item(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ // if this is called then we are compiling a dict key:value pair
+ compile_node(comp, pns->nodes[1]); // value
+ compile_node(comp, pns->nodes[0]); // key
+}
+
+STATIC void compile_classdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ qstr cname = compile_classdef_helper(comp, pns, comp->scope_cur->emit_options);
+ // store class object into class name
+ compile_store_id(comp, cname);
+}
+
+STATIC void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
+ compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'yield' outside function"));
+ return;
+ }
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT_ARG(yield, MP_EMIT_YIELD_VALUE);
+ reserve_labels_for_native(comp, 1);
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) {
+ pns = (mp_parse_node_struct_t *)pns->nodes[0];
+ #if MICROPY_PY_ASYNC_AWAIT
+ if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_ASYNC) != 0) {
+ compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'yield from' inside async function"));
+ return;
+ }
+ #endif
+ compile_node(comp, pns->nodes[0]);
+ compile_yield_from(comp);
+ } else {
+ compile_node(comp, pns->nodes[0]);
+ EMIT_ARG(yield, MP_EMIT_YIELD_VALUE);
+ reserve_labels_for_native(comp, 1);
+ }
+}
+
+#if MICROPY_PY_ASYNC_AWAIT
+STATIC void compile_atom_expr_await(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
+ compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'await' outside function"));
+ return;
+ }
+ compile_atom_expr_normal(comp, pns);
+
+ // If it's an awaitable thing, need to reach for the __await__ method for the coroutine.
+ // async def functions' __await__ return themselves, which are able to receive a send(),
+ // while other types with custom __await__ implementations return async generators.
+ EMIT_ARG(load_method, MP_QSTR___await__, false);
+ EMIT_ARG(call_method, 0, 0, 0);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT_ARG(yield, MP_EMIT_YIELD_FROM);
+ reserve_labels_for_native(comp, 3);
+}
+#endif
+
+STATIC mp_obj_t get_const_object(mp_parse_node_struct_t *pns) {
+ #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
+ // nodes are 32-bit pointers, but need to extract 64-bit object
+ return (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32);
+ #else
+ return (mp_obj_t)pns->nodes[0];
+ #endif
+}
+
+STATIC void compile_const_object(compiler_t *comp, mp_parse_node_struct_t *pns) {
+ EMIT_ARG(load_const_obj, get_const_object(pns));
+}
+
+typedef void (*compile_function_t)(compiler_t *, mp_parse_node_struct_t *);
+STATIC const compile_function_t compile_function[] = {
+// only define rules with a compile function
+#define c(f) compile_##f
+#define DEF_RULE(rule, comp, kind, ...) comp,
+#define DEF_RULE_NC(rule, kind, ...)
+ #include "py/grammar.h"
+#undef c
+#undef DEF_RULE
+#undef DEF_RULE_NC
+ compile_const_object,
+};
+
+STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) {
+ if (MP_PARSE_NODE_IS_NULL(pn)) {
+ // pass
+ } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
+ mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
+ #if MICROPY_DYNAMIC_COMPILER
+ mp_uint_t sign_mask = -((mp_uint_t)1 << (mp_dynamic_compiler.small_int_bits - 1));
+ if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) {
+ // integer fits in target runtime's small-int
+ EMIT_ARG(load_const_small_int, arg);
+ } else {
+ // integer doesn't fit, so create a multi-precision int object
+ // (but only create the actual object on the last pass)
+ if (comp->pass != MP_PASS_EMIT) {
+ EMIT_ARG(load_const_obj, mp_const_none);
+ } else {
+ EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg));
+ }
+ }
+ #else
+ EMIT_ARG(load_const_small_int, arg);
+ #endif
+ } else if (MP_PARSE_NODE_IS_LEAF(pn)) {
+ uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
+ switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
+ case MP_PARSE_NODE_ID:
+ compile_load_id(comp, arg);
+ break;
+ case MP_PARSE_NODE_STRING:
+ EMIT_ARG(load_const_str, arg);
+ break;
+ case MP_PARSE_NODE_BYTES:
+ // only create and load the actual bytes object on the last pass
+ if (comp->pass != MP_PASS_EMIT) {
+ EMIT_ARG(load_const_obj, mp_const_none);
+ } else {
+ size_t len;
+ const byte *data = qstr_data(arg, &len);
+ EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len));
+ }
+ break;
+ case MP_PARSE_NODE_TOKEN:
+ default:
+ if (arg == MP_TOKEN_NEWLINE) {
+ // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline)
+ // or when single_input lets through a NEWLINE (user enters a blank line)
+ // do nothing
+ } else {
+ EMIT_ARG(load_const_tok, arg);
+ }
+ break;
+ }
+ } else {
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+ EMIT_ARG(set_source_line, pns->source_line);
+ assert(MP_PARSE_NODE_STRUCT_KIND(pns) <= PN_const_object);
+ compile_function_t f = compile_function[MP_PARSE_NODE_STRUCT_KIND(pns)];
+ f(comp, pns);
+ }
+}
+
+#if MICROPY_EMIT_NATIVE
+STATIC int compile_viper_type_annotation(compiler_t *comp, mp_parse_node_t pn_annotation) {
+ int native_type = MP_NATIVE_TYPE_OBJ;
+ if (MP_PARSE_NODE_IS_NULL(pn_annotation)) {
+ // No annotation, type defaults to object
+ } else if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
+ qstr type_name = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
+ native_type = mp_native_type_from_qstr(type_name);
+ if (native_type < 0) {
+ comp->compile_error = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, MP_ERROR_TEXT("unknown type '%q'"), type_name);
+ native_type = 0;
+ }
+ } else {
+ compile_syntax_error(comp, pn_annotation, MP_ERROR_TEXT("annotation must be an identifier"));
+ }
+ return native_type;
+}
+#endif
+
+STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) {
+ (void)pn_dbl_star;
+
+ // check that **kw is last
+ if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
+ compile_syntax_error(comp, pn, MP_ERROR_TEXT("invalid syntax"));
+ return;
+ }
+
+ qstr param_name = MP_QSTRnull;
+ uint param_flag = ID_FLAG_IS_PARAM;
+ mp_parse_node_struct_t *pns = NULL;
+ if (MP_PARSE_NODE_IS_ID(pn)) {
+ param_name = MP_PARSE_NODE_LEAF_ARG(pn);
+ if (comp->have_star) {
+ // comes after a star, so counts as a keyword-only parameter
+ comp->scope_cur->num_kwonly_args += 1;
+ } else {
+ // comes before a star, so counts as a positional parameter
+ comp->scope_cur->num_pos_args += 1;
+ }
+ } else {
+ assert(MP_PARSE_NODE_IS_STRUCT(pn));
+ pns = (mp_parse_node_struct_t *)pn;
+ if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) {
+ // named parameter with possible annotation
+ param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
+ if (comp->have_star) {
+ // comes after a star, so counts as a keyword-only parameter
+ comp->scope_cur->num_kwonly_args += 1;
+ } else {
+ // comes before a star, so counts as a positional parameter
+ comp->scope_cur->num_pos_args += 1;
+ }
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_star) {
+ if (comp->have_star) {
+ // more than one star
+ compile_syntax_error(comp, pn, MP_ERROR_TEXT("invalid syntax"));
+ return;
+ }
+ comp->have_star = true;
+ param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM;
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
+ // bare star
+ // TODO see http://www.python.org/dev/peps/pep-3102/
+ // assert(comp->scope_cur->num_dict_params == 0);
+ pns = NULL;
+ } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
+ // named star
+ comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
+ param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
+ pns = NULL;
+ } else {
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)); // should be
+ // named star with possible annotation
+ comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
+ pns = (mp_parse_node_struct_t *)pns->nodes[0];
+ param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
+ }
+ } else {
+ // double star with possible annotation
+ assert(MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star); // should be
+ param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
+ param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM;
+ comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS;
+ }
+ }
+
+ if (param_name != MP_QSTRnull) {
+ id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, ID_INFO_KIND_UNDECIDED);
+ if (id_info->kind != ID_INFO_KIND_UNDECIDED) {
+ compile_syntax_error(comp, pn, MP_ERROR_TEXT("argument name reused"));
+ return;
+ }
+ id_info->kind = ID_INFO_KIND_LOCAL;
+ id_info->flags = param_flag;
+
+ #if MICROPY_EMIT_NATIVE
+ if (comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER && pn_name == PN_typedargslist_name && pns != NULL) {
+ id_info->flags |= compile_viper_type_annotation(comp, pns->nodes[1]) << ID_FLAG_VIPER_TYPE_POS;
+ }
+ #else
+ (void)pns;
+ #endif
+ }
+}
+
+STATIC void compile_scope_func_param(compiler_t *comp, mp_parse_node_t pn) {
+ compile_scope_func_lambda_param(comp, pn, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star);
+}
+
+STATIC void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) {
+ compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star);
+}
+
+STATIC void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_struct_t *pns_comp_for, mp_parse_node_t pn_inner_expr, int for_depth) {
+ uint l_top = comp_next_label(comp);
+ uint l_end = comp_next_label(comp);
+ EMIT_ARG(label_assign, l_top);
+ EMIT_ARG(for_iter, l_end);
+ c_assign(comp, pns_comp_for->nodes[0], ASSIGN_STORE);
+ mp_parse_node_t pn_iter = pns_comp_for->nodes[2];
+
+tail_recursion:
+ if (MP_PARSE_NODE_IS_NULL(pn_iter)) {
+ // no more nested if/for; compile inner expression
+ compile_node(comp, pn_inner_expr);
+ if (comp->scope_cur->kind == SCOPE_GEN_EXPR) {
+ EMIT_ARG(yield, MP_EMIT_YIELD_VALUE);
+ reserve_labels_for_native(comp, 1);
+ EMIT(pop_top);
+ } else {
+ EMIT_ARG(store_comp, comp->scope_cur->kind, 4 * for_depth + 5);
+ }
+ } else if (MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_iter) == PN_comp_if) {
+ // if condition
+ mp_parse_node_struct_t *pns_comp_if = (mp_parse_node_struct_t *)pn_iter;
+ c_if_cond(comp, pns_comp_if->nodes[0], false, l_top);
+ pn_iter = pns_comp_if->nodes[1];
+ goto tail_recursion;
+ } else {
+ assert(MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_iter) == PN_comp_for); // should be
+ // for loop
+ mp_parse_node_struct_t *pns_comp_for2 = (mp_parse_node_struct_t *)pn_iter;
+ compile_node(comp, pns_comp_for2->nodes[1]);
+ EMIT_ARG(get_iter, true);
+ compile_scope_comp_iter(comp, pns_comp_for2, pn_inner_expr, for_depth + 1);
+ }
+
+ EMIT_ARG(jump, l_top);
+ EMIT_ARG(label_assign, l_end);
+ EMIT(for_iter_end);
+}
+
+STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) {
+ #if MICROPY_ENABLE_DOC_STRING
+ // see http://www.python.org/dev/peps/pep-0257/
+
+ // look for the first statement
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
+ // a statement; fall through
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) {
+ // file input; find the first non-newline node
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+ int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
+ for (int i = 0; i < num_nodes; i++) {
+ pn = pns->nodes[i];
+ if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) {
+ // not a newline, so this is the first statement; finish search
+ break;
+ }
+ }
+ // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) {
+ // a list of statements; get the first one
+ pn = ((mp_parse_node_struct_t *)pn)->nodes[0];
+ } else {
+ return;
+ }
+
+ // check the first statement for a doc string
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+ if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0])
+ && MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING)
+ || (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)
+ && mp_obj_is_str(get_const_object((mp_parse_node_struct_t *)pns->nodes[0])))) {
+ // compile the doc string
+ compile_node(comp, pns->nodes[0]);
+ // store the doc string
+ compile_store_id(comp, MP_QSTR___doc__);
+ }
+ }
+ #else
+ (void)comp;
+ (void)pn;
+ #endif
+}
+
+STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
+ comp->pass = pass;
+ comp->scope_cur = scope;
+ comp->next_label = 0;
+ EMIT_ARG(start_pass, pass, scope);
+ reserve_labels_for_native(comp, 6); // used by native's start_pass
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ // reset maximum stack sizes in scope
+ // they will be computed in this first pass
+ scope->stack_size = 0;
+ scope->exc_stack_size = 0;
+ }
+
+ // compile
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(scope->pn, PN_eval_input)) {
+ assert(scope->kind == SCOPE_MODULE);
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
+ compile_node(comp, pns->nodes[0]); // compile the expression
+ EMIT(return_value);
+ } else if (scope->kind == SCOPE_MODULE) {
+ if (!comp->is_repl) {
+ check_for_doc_string(comp, scope->pn);
+ }
+ compile_node(comp, scope->pn);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT(return_value);
+ } else if (scope->kind == SCOPE_FUNCTION) {
+ assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
+ assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);
+
+ // work out number of parameters, keywords and default parameters, and add them to the id_info array
+ // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
+ if (comp->pass == MP_PASS_SCOPE) {
+ comp->have_star = false;
+ apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param);
+
+ #if MICROPY_EMIT_NATIVE
+ if (scope->emit_options == MP_EMIT_OPT_VIPER) {
+ // Compile return type; pns->nodes[2] is return/whole function annotation
+ scope->scope_flags |= compile_viper_type_annotation(comp, pns->nodes[2]) << MP_SCOPE_FLAG_VIPERRET_POS;
+ }
+ #endif // MICROPY_EMIT_NATIVE
+ }
+
+ compile_node(comp, pns->nodes[3]); // 3 is function body
+ // emit return if it wasn't the last opcode
+ if (!EMIT(last_emit_was_return_value)) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT(return_value);
+ }
+ } else if (scope->kind == SCOPE_LAMBDA) {
+ assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
+ assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 3);
+
+ // Set the source line number for the start of the lambda
+ EMIT_ARG(set_source_line, pns->source_line);
+
+ // work out number of parameters, keywords and default parameters, and add them to the id_info array
+ // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
+ if (comp->pass == MP_PASS_SCOPE) {
+ comp->have_star = false;
+ apply_to_single_or_list(comp, pns->nodes[0], PN_varargslist, compile_scope_lambda_param);
+ }
+
+ compile_node(comp, pns->nodes[1]); // 1 is lambda body
+
+ // if the lambda is a generator, then we return None, not the result of the expression of the lambda
+ if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
+ EMIT(pop_top);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ }
+ EMIT(return_value);
+ } else if (SCOPE_IS_COMP_LIKE(scope->kind)) {
+ // a bit of a hack at the moment
+
+ assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
+ assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
+ assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
+ mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t *)pns->nodes[1];
+
+ // We need a unique name for the comprehension argument (the iterator).
+ // CPython uses .0, but we should be able to use anything that won't
+ // clash with a user defined variable. Best to use an existing qstr,
+ // so we use the blank qstr.
+ qstr qstr_arg = MP_QSTR_;
+ if (comp->pass == MP_PASS_SCOPE) {
+ scope_find_or_add_id(comp->scope_cur, qstr_arg, ID_INFO_KIND_LOCAL);
+ scope->num_pos_args = 1;
+ }
+
+ // Set the source line number for the start of the comprehension
+ EMIT_ARG(set_source_line, pns->source_line);
+
+ if (scope->kind == SCOPE_LIST_COMP) {
+ EMIT_ARG(build, 0, MP_EMIT_BUILD_LIST);
+ } else if (scope->kind == SCOPE_DICT_COMP) {
+ EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP);
+ #if MICROPY_PY_BUILTINS_SET
+ } else if (scope->kind == SCOPE_SET_COMP) {
+ EMIT_ARG(build, 0, MP_EMIT_BUILD_SET);
+ #endif
+ }
+
+ // There are 4 slots on the stack for the iterator, and the first one is
+ // NULL to indicate that the second one points to the iterator object.
+ if (scope->kind == SCOPE_GEN_EXPR) {
+ MP_STATIC_ASSERT(MP_OBJ_ITER_BUF_NSLOTS == 4);
+ EMIT(load_null);
+ compile_load_id(comp, qstr_arg);
+ EMIT(load_null);
+ EMIT(load_null);
+ } else {
+ compile_load_id(comp, qstr_arg);
+ EMIT_ARG(get_iter, true);
+ }
+
+ compile_scope_comp_iter(comp, pns_comp_for, pns->nodes[0], 0);
+
+ if (scope->kind == SCOPE_GEN_EXPR) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ }
+ EMIT(return_value);
+ } else {
+ assert(scope->kind == SCOPE_CLASS);
+ assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
+ assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef);
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ scope_find_or_add_id(scope, MP_QSTR___class__, ID_INFO_KIND_LOCAL);
+ }
+
+ #if MICROPY_PY_SYS_SETTRACE
+ EMIT_ARG(set_source_line, pns->source_line);
+ #endif
+ compile_load_id(comp, MP_QSTR___name__);
+ compile_store_id(comp, MP_QSTR___module__);
+ EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // 0 is class name
+ compile_store_id(comp, MP_QSTR___qualname__);
+
+ check_for_doc_string(comp, pns->nodes[2]);
+ compile_node(comp, pns->nodes[2]); // 2 is class body
+
+ id_info_t *id = scope_find(scope, MP_QSTR___class__);
+ assert(id != NULL);
+ if (id->kind == ID_INFO_KIND_LOCAL) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ } else {
+ EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num);
+ }
+ EMIT(return_value);
+ }
+
+ EMIT(end_pass);
+
+ // make sure we match all the exception levels
+ assert(comp->cur_except_level == 0);
+}
+
+#if MICROPY_EMIT_INLINE_ASM
+// requires 3 passes: SCOPE, CODE_SIZE, EMIT
+STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
+ comp->pass = pass;
+ comp->scope_cur = scope;
+ comp->next_label = 0;
+
+ if (scope->kind != SCOPE_FUNCTION) {
+ compile_syntax_error(comp, MP_PARSE_NODE_NULL, MP_ERROR_TEXT("inline assembler must be a function"));
+ return;
+ }
+
+ if (comp->pass > MP_PASS_SCOPE) {
+ EMIT_INLINE_ASM_ARG(start_pass, comp->pass, &comp->compile_error);
+ }
+
+ // get the function definition parse node
+ assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
+ assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);
+
+ // qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name
+
+ // parameters are in pns->nodes[1]
+ if (comp->pass == MP_PASS_CODE_SIZE) {
+ mp_parse_node_t *pn_params;
+ size_t n_params = mp_parse_node_extract_list(&pns->nodes[1], PN_typedargslist, &pn_params);
+ scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params);
+ if (comp->compile_error != MP_OBJ_NULL) {
+ goto inline_asm_error;
+ }
+ }
+
+ // pns->nodes[2] is function return annotation
+ mp_uint_t type_sig = MP_NATIVE_TYPE_INT;
+ mp_parse_node_t pn_annotation = pns->nodes[2];
+ if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
+ // nodes[2] can be null or a test-expr
+ if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
+ qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
+ switch (ret_type) {
+ case MP_QSTR_object:
+ type_sig = MP_NATIVE_TYPE_OBJ;
+ break;
+ case MP_QSTR_bool:
+ type_sig = MP_NATIVE_TYPE_BOOL;
+ break;
+ case MP_QSTR_int:
+ type_sig = MP_NATIVE_TYPE_INT;
+ break;
+ case MP_QSTR_uint:
+ type_sig = MP_NATIVE_TYPE_UINT;
+ break;
+ default:
+ compile_syntax_error(comp, pn_annotation, MP_ERROR_TEXT("unknown type"));
+ return;
+ }
+ } else {
+ compile_syntax_error(comp, pn_annotation, MP_ERROR_TEXT("return annotation must be an identifier"));
+ }
+ }
+
+ mp_parse_node_t pn_body = pns->nodes[3]; // body
+ mp_parse_node_t *nodes;
+ size_t num = mp_parse_node_extract_list(&pn_body, PN_suite_block_stmts, &nodes);
+
+ for (size_t i = 0; i < num; i++) {
+ assert(MP_PARSE_NODE_IS_STRUCT(nodes[i]));
+ mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)nodes[i];
+ if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_pass_stmt) {
+ // no instructions
+ continue;
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_expr_stmt) {
+ // not an instruction; error
+ not_an_instruction:
+ compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("expecting an assembler instruction"));
+ return;
+ }
+
+ // check structure of parse node
+ assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0]));
+ if (!MP_PARSE_NODE_IS_NULL(pns2->nodes[1])) {
+ goto not_an_instruction;
+ }
+ pns2 = (mp_parse_node_struct_t *)pns2->nodes[0];
+ if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_atom_expr_normal) {
+ goto not_an_instruction;
+ }
+ if (!MP_PARSE_NODE_IS_ID(pns2->nodes[0])) {
+ goto not_an_instruction;
+ }
+ if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)) {
+ goto not_an_instruction;
+ }
+
+ // parse node looks like an instruction
+ // get instruction name and args
+ qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]);
+ pns2 = (mp_parse_node_struct_t *)pns2->nodes[1]; // PN_trailer_paren
+ mp_parse_node_t *pn_arg;
+ size_t n_args = mp_parse_node_extract_list(&pns2->nodes[0], PN_arglist, &pn_arg);
+
+ // emit instructions
+ if (op == MP_QSTR_label) {
+ if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) {
+ compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'label' requires 1 argument"));
+ return;
+ }
+ uint lab = comp_next_label(comp);
+ if (pass > MP_PASS_SCOPE) {
+ if (!EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]))) {
+ compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("label redefined"));
+ return;
+ }
+ }
+ } else if (op == MP_QSTR_align) {
+ if (!(n_args == 1 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
+ compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'align' requires 1 argument"));
+ return;
+ }
+ if (pass > MP_PASS_SCOPE) {
+ mp_asm_base_align((mp_asm_base_t *)comp->emit_inline_asm,
+ MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]));
+ }
+ } else if (op == MP_QSTR_data) {
+ if (!(n_args >= 2 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
+ compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'data' requires at least 2 arguments"));
+ return;
+ }
+ if (pass > MP_PASS_SCOPE) {
+ mp_int_t bytesize = MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]);
+ for (uint j = 1; j < n_args; j++) {
+ if (!MP_PARSE_NODE_IS_SMALL_INT(pn_arg[j])) {
+ compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'data' requires integer arguments"));
+ return;
+ }
+ mp_asm_base_data((mp_asm_base_t *)comp->emit_inline_asm,
+ bytesize, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[j]));
+ }
+ }
+ } else {
+ if (pass > MP_PASS_SCOPE) {
+ EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg);
+ }
+ }
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ pns = pns2; // this is the parse node that had the error
+ goto inline_asm_error;
+ }
+ }
+
+ if (comp->pass > MP_PASS_SCOPE) {
+ EMIT_INLINE_ASM_ARG(end_pass, type_sig);
+
+ if (comp->pass == MP_PASS_EMIT) {
+ void *f = mp_asm_base_get_code((mp_asm_base_t *)comp->emit_inline_asm);
+ mp_emit_glue_assign_native(comp->scope_cur->raw_code, MP_CODE_NATIVE_ASM,
+ f, mp_asm_base_get_code_size((mp_asm_base_t *)comp->emit_inline_asm),
+ NULL,
+ #if MICROPY_PERSISTENT_CODE_SAVE
+ 0, 0, 0, 0, NULL,
+ #endif
+ comp->scope_cur->num_pos_args, 0, type_sig);
+ }
+ }
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ // inline assembler had an error; set line for its exception
+ inline_asm_error:
+ comp->compile_error_line = pns->source_line;
+ }
+}
+#endif
+
+STATIC void scope_compute_things(scope_t *scope) {
+ // in MicroPython we put the *x parameter after all other parameters (except **y)
+ if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
+ id_info_t *id_param = NULL;
+ for (int i = scope->id_info_len - 1; i >= 0; i--) {
+ id_info_t *id = &scope->id_info[i];
+ if (id->flags & ID_FLAG_IS_STAR_PARAM) {
+ if (id_param != NULL) {
+ // swap star param with last param
+ id_info_t temp = *id_param;
+ *id_param = *id;
+ *id = temp;
+ }
+ break;
+ } else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) {
+ id_param = id;
+ }
+ }
+ }
+
+ // in functions, turn implicit globals into explicit globals
+ // compute the index of each local
+ scope->num_locals = 0;
+ for (int i = 0; i < scope->id_info_len; i++) {
+ id_info_t *id = &scope->id_info[i];
+ if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) {
+ // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL
+ continue;
+ }
+ if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
+ id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
+ }
+ #if MICROPY_EMIT_NATIVE
+ if (id->kind == ID_INFO_KIND_GLOBAL_EXPLICIT) {
+ // This function makes a reference to a global variable
+ if (scope->emit_options == MP_EMIT_OPT_VIPER
+ && mp_native_type_from_qstr(id->qst) >= MP_NATIVE_TYPE_INT) {
+ // A casting operator in viper mode, not a real global reference
+ } else {
+ scope->scope_flags |= MP_SCOPE_FLAG_REFGLOBALS;
+ }
+ }
+ #endif
+ // params always count for 1 local, even if they are a cell
+ if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) {
+ id->local_num = scope->num_locals++;
+ }
+ }
+
+ // compute the index of cell vars
+ for (int i = 0; i < scope->id_info_len; i++) {
+ id_info_t *id = &scope->id_info[i];
+ // in MicroPython the cells come right after the fast locals
+ // parameters are not counted here, since they remain at the start
+ // of the locals, even if they are cell vars
+ if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) {
+ id->local_num = scope->num_locals;
+ scope->num_locals += 1;
+ }
+ }
+
+ // compute the index of free vars
+ // make sure they are in the order of the parent scope
+ if (scope->parent != NULL) {
+ int num_free = 0;
+ for (int i = 0; i < scope->parent->id_info_len; i++) {
+ id_info_t *id = &scope->parent->id_info[i];
+ if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
+ for (int j = 0; j < scope->id_info_len; j++) {
+ id_info_t *id2 = &scope->id_info[j];
+ if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
+ assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params
+ // in MicroPython the frees come first, before the params
+ id2->local_num = num_free;
+ num_free += 1;
+ }
+ }
+ }
+ }
+ // in MicroPython shift all other locals after the free locals
+ if (num_free > 0) {
+ for (int i = 0; i < scope->id_info_len; i++) {
+ id_info_t *id = &scope->id_info[i];
+ if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) {
+ id->local_num += num_free;
+ }
+ }
+ scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function
+ scope->num_locals += num_free;
+ }
+ }
+}
+
+#if !MICROPY_PERSISTENT_CODE_SAVE
+STATIC
+#endif
+mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_file, bool is_repl) {
+ // put compiler state on the stack, it's relatively small
+ compiler_t comp_state = {0};
+ compiler_t *comp = &comp_state;
+
+ comp->source_file = source_file;
+ comp->is_repl = is_repl;
+ comp->break_label = INVALID_LABEL;
+ comp->continue_label = INVALID_LABEL;
+
+ // create the module scope
+ #if MICROPY_EMIT_NATIVE
+ const uint emit_opt = MP_STATE_VM(default_emit_opt);
+ #else
+ const uint emit_opt = MP_EMIT_OPT_NONE;
+ #endif
+ scope_t *module_scope = scope_new_and_link(comp, SCOPE_MODULE, parse_tree->root, emit_opt);
+
+ // create standard emitter; it's used at least for MP_PASS_SCOPE
+ emit_t *emit_bc = emit_bc_new();
+
+ // compile pass 1
+ comp->emit = emit_bc;
+ #if MICROPY_EMIT_NATIVE
+ comp->emit_method_table = &emit_bc_method_table;
+ #endif
+ uint max_num_labels = 0;
+ for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
+ #if MICROPY_EMIT_INLINE_ASM
+ if (s->emit_options == MP_EMIT_OPT_ASM) {
+ compile_scope_inline_asm(comp, s, MP_PASS_SCOPE);
+ } else
+ #endif
+ {
+ compile_scope(comp, s, MP_PASS_SCOPE);
+
+ // Check if any implicitly declared variables should be closed over
+ for (size_t i = 0; i < s->id_info_len; ++i) {
+ id_info_t *id = &s->id_info[i];
+ if (id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
+ scope_check_to_close_over(s, id);
+ }
+ }
+ }
+
+ // update maximim number of labels needed
+ if (comp->next_label > max_num_labels) {
+ max_num_labels = comp->next_label;
+ }
+ }
+
+ // compute some things related to scope and identifiers
+ for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
+ scope_compute_things(s);
+ }
+
+ // set max number of labels now that it's calculated
+ emit_bc_set_max_num_labels(emit_bc, max_num_labels);
+
+ // compile pass 2 and 3
+ #if MICROPY_EMIT_NATIVE
+ emit_t *emit_native = NULL;
+ #endif
+ for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
+ #if MICROPY_EMIT_INLINE_ASM
+ if (s->emit_options == MP_EMIT_OPT_ASM) {
+ // inline assembly
+ if (comp->emit_inline_asm == NULL) {
+ comp->emit_inline_asm = ASM_EMITTER(new)(max_num_labels);
+ }
+ comp->emit = NULL;
+ comp->emit_inline_asm_method_table = ASM_EMITTER_TABLE;
+ compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
+ #if MICROPY_EMIT_INLINE_XTENSA
+ // Xtensa requires an extra pass to compute size of l32r const table
+ // TODO this can be improved by calculating it during SCOPE pass
+ // but that requires some other structural changes to the asm emitters
+ #if MICROPY_DYNAMIC_COMPILER
+ if (mp_dynamic_compiler.native_arch == MP_NATIVE_ARCH_XTENSA)
+ #endif
+ {
+ compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
+ }
+ #endif
+ if (comp->compile_error == MP_OBJ_NULL) {
+ compile_scope_inline_asm(comp, s, MP_PASS_EMIT);
+ }
+ } else
+ #endif
+ {
+
+ // choose the emit type
+
+ switch (s->emit_options) {
+
+ #if MICROPY_EMIT_NATIVE
+ case MP_EMIT_OPT_NATIVE_PYTHON:
+ case MP_EMIT_OPT_VIPER:
+ if (emit_native == NULL) {
+ emit_native = NATIVE_EMITTER(new)(&comp->compile_error, &comp->next_label, max_num_labels);
+ }
+ comp->emit_method_table = NATIVE_EMITTER_TABLE;
+ comp->emit = emit_native;
+ break;
+ #endif // MICROPY_EMIT_NATIVE
+
+ default:
+ comp->emit = emit_bc;
+ #if MICROPY_EMIT_NATIVE
+ comp->emit_method_table = &emit_bc_method_table;
+ #endif
+ break;
+ }
+
+ // need a pass to compute stack size
+ compile_scope(comp, s, MP_PASS_STACK_SIZE);
+
+ // second last pass: compute code size
+ if (comp->compile_error == MP_OBJ_NULL) {
+ compile_scope(comp, s, MP_PASS_CODE_SIZE);
+ }
+
+ // final pass: emit code
+ if (comp->compile_error == MP_OBJ_NULL) {
+ compile_scope(comp, s, MP_PASS_EMIT);
+ }
+ }
+ }
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ // if there is no line number for the error then use the line
+ // number for the start of this scope
+ compile_error_set_line(comp, comp->scope_cur->pn);
+ // add a traceback to the exception using relevant source info
+ mp_obj_exception_add_traceback(comp->compile_error, comp->source_file,
+ comp->compile_error_line, comp->scope_cur->simple_name);
+ }
+
+ // free the emitters
+
+ emit_bc_free(emit_bc);
+ #if MICROPY_EMIT_NATIVE
+ if (emit_native != NULL) {
+ NATIVE_EMITTER(free)(emit_native);
+ }
+ #endif
+ #if MICROPY_EMIT_INLINE_ASM
+ if (comp->emit_inline_asm != NULL) {
+ ASM_EMITTER(free)(comp->emit_inline_asm);
+ }
+ #endif
+
+ // free the parse tree
+ mp_parse_tree_clear(parse_tree);
+
+ // free the scopes
+ mp_raw_code_t *outer_raw_code = module_scope->raw_code;
+ for (scope_t *s = module_scope; s;) {
+ scope_t *next = s->next;
+ scope_free(s);
+ s = next;
+ }
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ nlr_raise(comp->compile_error);
+ } else {
+ return outer_raw_code;
+ }
+}
+
+mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, bool is_repl) {
+ mp_raw_code_t *rc = mp_compile_to_raw_code(parse_tree, source_file, is_repl);
+ // return function that executes the outer module
+ return mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL);
+}
+
+#endif // MICROPY_ENABLE_COMPILER