diff options
Diffstat (limited to 'circuitpython/lib/adafruit_floppy/src/Adafruit_Floppy.cpp')
-rw-r--r-- | circuitpython/lib/adafruit_floppy/src/Adafruit_Floppy.cpp | 524 |
1 files changed, 524 insertions, 0 deletions
diff --git a/circuitpython/lib/adafruit_floppy/src/Adafruit_Floppy.cpp b/circuitpython/lib/adafruit_floppy/src/Adafruit_Floppy.cpp new file mode 100644 index 0000000..eef1aa0 --- /dev/null +++ b/circuitpython/lib/adafruit_floppy/src/Adafruit_Floppy.cpp @@ -0,0 +1,524 @@ +#include "Adafruit_Floppy.h" + +#define DEBUG_FLOPPY (0) + +// We need to read and write some pins at optimized speeds - use raw registers +// or native SDK API! +#ifdef BUSIO_USE_FAST_PINIO +#define read_index() (*indexPort & indexMask) +#define read_data() (*dataPort & dataMask) +#define set_debug_led() (*ledPort |= ledMask) +#define clr_debug_led() (*ledPort &= ~ledMask) +#elif defined(ARDUINO_ARCH_RP2040) +#define read_index() gpio_get(_indexpin) +#define read_data() gpio_get(_rddatapin) +#define set_debug_led() gpio_put(led_pin, 1) +#define clr_debug_led() gpio_put(led_pin, 0) +#endif + +uint32_t T2_5 = T2_5_IBMPC_HD; +uint32_t T3_5 = T3_5_IBMPC_HD; + +#if !DEBUG_FLOPPY +#undef set_debug_led +#undef clr_debug_led +#define set_debug_led() ((void)0) +#define clr_debug_led() ((void)0) +#endif + +#define MFM_IO_MMIO (1) +#include "mfm_impl.h" + +/**************************************************************************/ +/*! + @brief Create a hardware interface to a floppy drive + @param densitypin A pin connected to the floppy Density Select input + @param indexpin A pin connected to the floppy Index Sensor output + @param selectpin A pin connected to the floppy Drive Select input + @param motorpin A pin connected to the floppy Motor Enable input + @param directionpin A pin connected to the floppy Stepper Direction input + @param steppin A pin connected to the floppy Stepper input + @param wrdatapin A pin connected to the floppy Write Data input + @param wrgatepin A pin connected to the floppy Write Gate input + @param track0pin A pin connected to the floppy Track 00 Sensor output + @param protectpin A pin connected to the floppy Write Protect Sensor output + @param rddatapin A pin connected to the floppy Read Data output + @param sidepin A pin connected to the floppy Side Select input + @param readypin A pin connected to the floppy Ready/Disk Change output + +*/ +/**************************************************************************/ + +Adafruit_Floppy::Adafruit_Floppy(int8_t densitypin, int8_t indexpin, + int8_t selectpin, int8_t motorpin, + int8_t directionpin, int8_t steppin, + int8_t wrdatapin, int8_t wrgatepin, + int8_t track0pin, int8_t protectpin, + int8_t rddatapin, int8_t sidepin, + int8_t readypin) { + _densitypin = densitypin; + _indexpin = indexpin; + _selectpin = selectpin; + _motorpin = motorpin; + _directionpin = directionpin; + _steppin = steppin; + _wrdatapin = wrdatapin; + _wrgatepin = wrgatepin; + _track0pin = track0pin; + _protectpin = protectpin; + _rddatapin = rddatapin; + _sidepin = sidepin; + _readypin = readypin; +} + +/**************************************************************************/ +/*! + @brief Initializes the GPIO pins but do not start the motor or anything +*/ +/**************************************************************************/ +void Adafruit_Floppy::begin(void) { soft_reset(); } + +/**************************************************************************/ +/*! + @brief Set back the object and pins to initial state +*/ +/**************************************************************************/ +void Adafruit_Floppy::soft_reset(void) { + // deselect drive + pinMode(_selectpin, OUTPUT); + digitalWrite(_selectpin, HIGH); + + // motor enable pin, drive low to turn on motor + pinMode(_motorpin, OUTPUT); + digitalWrite(_motorpin, HIGH); + + // set motor direction (low is in, high is out) + pinMode(_directionpin, OUTPUT); + digitalWrite(_directionpin, LOW); // move inwards to start + + // step track pin, pulse low for 3us min, 3ms max per pulse + pinMode(_steppin, OUTPUT); + digitalWrite(_steppin, HIGH); + + // side selector + pinMode(_sidepin, OUTPUT); + digitalWrite(_sidepin, HIGH); // side 0 to start + + pinMode(_indexpin, INPUT_PULLUP); + pinMode(_track0pin, INPUT_PULLUP); + pinMode(_protectpin, INPUT_PULLUP); + pinMode(_readypin, INPUT_PULLUP); + pinMode(_rddatapin, INPUT_PULLUP); + + // set high density + pinMode(_densitypin, OUTPUT); + digitalWrite(_densitypin, LOW); + + // set write OFF + if (_wrdatapin >= 0) { + pinMode(_wrdatapin, OUTPUT); + digitalWrite(_wrdatapin, HIGH); + } + if (_wrgatepin >= 0) { + pinMode(_wrgatepin, OUTPUT); + digitalWrite(_wrgatepin, HIGH); + } + +#ifdef BUSIO_USE_FAST_PINIO + indexPort = (BusIO_PortReg *)portInputRegister(digitalPinToPort(_indexpin)); + indexMask = digitalPinToBitMask(_indexpin); +#endif + + select_delay_us = 10; + step_delay_us = 10000; + settle_delay_ms = 15; + motor_delay_ms = 1000; + watchdog_delay_ms = 1000; + bus_type = BUSTYPE_IBMPC; + + if (led_pin >= 0) { + pinMode(led_pin, OUTPUT); + digitalWrite(led_pin, LOW); + } +} + +/**************************************************************************/ +/*! + @brief Whether to select this drive + @param selected True to select/enable +*/ +/**************************************************************************/ +void Adafruit_Floppy::select(bool selected) { + digitalWrite(_selectpin, !selected); // Selected logic level 0! + // Select drive + delayMicroseconds(select_delay_us); +} + +/**************************************************************************/ +/*! + @brief Which head/side to read from + @param head Head 0 or 1 +*/ +/**************************************************************************/ +void Adafruit_Floppy::side(uint8_t head) { + digitalWrite(_sidepin, !head); // Head 0 is logic level 1, head 1 is logic 0! +} + +/**************************************************************************/ +/*! + @brief Turn on or off the floppy motor, if on we wait till we get an index + pulse! + @param motor_on True to turn on motor, False to turn it off + @returns False if turning motor on and no index pulse found, true otherwise +*/ +/**************************************************************************/ +bool Adafruit_Floppy::spin_motor(bool motor_on) { + digitalWrite(_motorpin, !motor_on); // Motor on is logic level 0! + if (!motor_on) + return true; // we're done, easy! + + delay(motor_delay_ms); // Main motor turn on + + uint32_t index_stamp = millis(); + bool timedout = false; + + if (debug_serial) + debug_serial->print("Waiting for index pulse..."); + + while (digitalRead(_indexpin)) { + if ((millis() - index_stamp) > 10000) { + timedout = true; // its been 10 seconds? + break; + } + } + + if (timedout) { + if (debug_serial) + debug_serial->println("Didn't find an index pulse!"); + return false; + } + if (debug_serial) + debug_serial->println("Found!"); + return true; +} + +/**************************************************************************/ +/*! + @brief Seek to the desired track, requires the motor to be spun up! + @param track_num The track to step to + @return True If we were able to get to the track location +*/ +/**************************************************************************/ +bool Adafruit_Floppy::goto_track(uint8_t track_num) { + // track 0 is a very special case because its the only one we actually know we + // got to. if we dont know where we are, or we're going to track zero, step + // back till we get there. + if ((_track < 0) || track_num == 0) { + if (debug_serial) + debug_serial->println("Going to track 0"); + + // step back a lil more than expected just in case we really seeked out + uint8_t max_steps = 100; + while (max_steps--) { + if (!digitalRead(_track0pin)) { + _track = 0; + break; + } + step(STEP_OUT, 1); + } + + if (digitalRead(_track0pin)) { + // we never got a track 0 indicator :( + // what if we try stepping in a bit?? + + max_steps = 20; + while (max_steps--) { + if (!digitalRead(_track0pin)) { + _track = 0; + break; + } + step(STEP_IN, 1); + } + + if (digitalRead(_track0pin)) { + // STILL not found! + if (debug_serial) + debug_serial->println("Could not find track 0"); + return false; // we 'timed' out, were not able to locate track 0 + } + } + } + delay(settle_delay_ms); + + // ok its a non-track 0 step, first, we cant go past 79 ok? + track_num = min(track_num, FLOPPY_IBMPC_HD_TRACKS - 1); + if (debug_serial) + debug_serial->printf("Going to track %d\n\r", track_num); + + if (_track == track_num) { // we are there already + return true; + } + + int8_t steps = (int8_t)track_num - (int8_t)_track; + if (steps > 0) { + if (debug_serial) + debug_serial->printf("Step in %d times\n\r", steps); + step(STEP_IN, steps); + } else { + steps = abs(steps); + if (debug_serial) + debug_serial->printf("Step out %d times\n\r", steps); + step(STEP_OUT, steps); + } + delay(settle_delay_ms); + _track = track_num; + + return true; +} + +/**************************************************************************/ +/*! + @brief Step the track motor + @param dir STEP_OUT or STEP_IN depending on desired direction + @param times How many steps to take +*/ +/**************************************************************************/ +void Adafruit_Floppy::step(bool dir, uint8_t times) { + digitalWrite(_directionpin, dir); + delayMicroseconds(10); // 1 microsecond, but we're generous + + while (times--) { + digitalWrite(_steppin, HIGH); + delay((step_delay_us / 1000UL) + 1); // round up to at least 1ms + digitalWrite(_steppin, LOW); + delay((step_delay_us / 1000UL) + 1); + digitalWrite(_steppin, HIGH); // end high + yield(); + } + // one more for good measure (5.25" drives seemed to like this) + delay((step_delay_us / 1000UL) + 1); +} + +/**************************************************************************/ +/*! + @brief The current track location, based on internal caching + @return The cached track location +*/ +/**************************************************************************/ +int8_t Adafruit_Floppy::track(void) { return _track; } + +/**************************************************************************/ +/*! + @brief Capture and decode one track of MFM data + @param sectors A pointer to an array of memory we can use to store into, + 512*n_sectors bytes + @param n_sectors The number of sectors (e.g., 18 for a + standard 3.5", 1.44MB format) + @param sector_validity An array of values set to 1 if the sector was + captured, 0 if not captured (no IDAM, CRC error, etc) + @return Number of sectors we actually captured +*/ +/**************************************************************************/ +uint32_t Adafruit_Floppy::read_track_mfm(uint8_t *sectors, size_t n_sectors, + uint8_t *sector_validity) { + mfm_io_t io; +#ifdef BUSIO_USE_FAST_PINIO + BusIO_PortReg *dataPort, *ledPort; + BusIO_PortMask dataMask, ledMask; + dataPort = (BusIO_PortReg *)portInputRegister(digitalPinToPort(_rddatapin)); + dataMask = digitalPinToBitMask(_rddatapin); + ledPort = (BusIO_PortReg *)portOutputRegister(digitalPinToPort(led_pin)); + ledMask = digitalPinToBitMask(led_pin); + (void)ledPort; + (void)ledMask; + io.index_port = indexPort; + io.index_mask = indexMask; + io.data_port = dataPort; + io.data_mask = dataMask; +#elif defined(ARDUINO_ARCH_RP2040) + io.index_port = &sio_hw->gpio_in; + io.index_mask = 1u << _indexpin; + io.data_port = &sio_hw->gpio_in; + io.data_mask = 1u << _rddatapin; +#endif + + noInterrupts(); + int result = read_track(io, n_sectors, sectors, sector_validity); + interrupts(); + + return result; +} + +/**************************************************************************/ +/*! + @brief Capture one track's worth of flux transitions, between two falling + index pulses + @param pulses A pointer to an array of memory we can use to store into + @param max_pulses The size of the allocated pulses array + @return Number of pulses we actually captured +*/ +/**************************************************************************/ +uint32_t Adafruit_Floppy::capture_track(uint8_t *pulses, uint32_t max_pulses) { + unsigned pulse_count; + uint8_t *pulses_ptr = pulses; + uint8_t *pulses_end = pulses + max_pulses; + +#ifdef BUSIO_USE_FAST_PINIO + BusIO_PortReg *dataPort, *ledPort; + BusIO_PortMask dataMask, ledMask; + dataPort = (BusIO_PortReg *)portInputRegister(digitalPinToPort(_rddatapin)); + dataMask = digitalPinToBitMask(_rddatapin); + ledPort = (BusIO_PortReg *)portOutputRegister(digitalPinToPort(led_pin)); + ledMask = digitalPinToBitMask(led_pin); + (void)ledPort; + (void)ledMask; +#endif + + memset(pulses, 0, max_pulses); // zero zem out + + noInterrupts(); + wait_for_index_pulse_low(); + + // wait for one clean flux pulse so we dont get cut off. + // don't worry about losing this pulse, we'll get it on our + // overlap run! + + // ok we have a h-to-l transition so... + bool last_index_state = read_index(); + uint8_t index_transitions = 0; + + // if data line is low, wait till it rises + if (!read_data()) { + while (!read_data()) + ; + } + // if data line is high, wait till it drops down + if (read_data()) { + while (read_data()) + ; + } + + while (true) { + bool index_state = read_index(); + // ahh a L to H transition + if (!last_index_state && index_state) { + index_transitions++; + if (index_transitions == + 2) // and its the second one, so we're done with this track! + break; + } + last_index_state = index_state; + + // muahaha, now we can read track data! + // Don't start counting at zero because we lost some time checking for + // index. Empirically, at 180MHz and -O3 on M4, this gives the most 'even' + // timings, moving the bins from 41/63/83 to 44/66/89 + pulse_count = 3; + + // while pulse is in the low pulse, count up + while (!read_data()) { + pulse_count++; + } + set_debug_led(); + + // while pulse is high, keep counting up + while (read_data()) + pulse_count++; + clr_debug_led(); + + pulses_ptr[0] = min(255u, pulse_count); + pulses_ptr++; + if (pulses_ptr == pulses_end) { + break; + } + } + // whew done + interrupts(); + return pulses_ptr - pulses; +} + +/**************************************************************************/ +/*! + @brief Busy wait until the index line goes from high to low +*/ +/**************************************************************************/ +void Adafruit_Floppy::wait_for_index_pulse_low(void) { + // initial state + bool index_state = read_index(); + bool last_index_state = index_state; + + // wait until last index state is H and current state is L + while (true) { + index_state = read_index(); + if (last_index_state && !index_state) { + return; + } + last_index_state = index_state; + } +} + +/**************************************************************************/ +/*! + @brief Pretty print the counts in a list of flux transitions + @param pulses A pointer to an array of memory containing pulse counts + @param num_pulses The size of the pulses in the array +*/ +/**************************************************************************/ +void Adafruit_Floppy::print_pulses(uint8_t *pulses, uint32_t num_pulses) { + if (!debug_serial) + return; + + for (uint32_t i = 0; i < num_pulses; i++) { + debug_serial->print(pulses[i]); + debug_serial->print(", "); + } + debug_serial->println(); +} +/**************************************************************************/ +/*! + @brief Pretty print a simple histogram of flux transitions + @param pulses A pointer to an array of memory containing pulse counts + @param num_pulses The size of the pulses in the array + @param max_bins The maximum number of histogram bins to use (default 64) +*/ +/**************************************************************************/ +void Adafruit_Floppy::print_pulse_bins(uint8_t *pulses, uint32_t num_pulses, + uint8_t max_bins) { + if (!debug_serial) + return; + + // lets bin em! + uint32_t bins[max_bins][2]; + memset(bins, 0, max_bins * 2 * sizeof(uint32_t)); + // we'll add each pulse to a bin so we can figure out the 3 buckets + for (uint32_t i = 0; i < num_pulses; i++) { + uint8_t p = pulses[i]; + // find a bin for this pulse + uint8_t bin = 0; + for (bin = 0; bin < max_bins; bin++) { + // bin already exists? increment the count! + if (bins[bin][0] == p) { + bins[bin][1]++; + break; + } + if (bins[bin][0] == 0) { + // ok we never found the bin, so lets make it this one! + bins[bin][0] = p; + bins[bin][1] = 1; + break; + } + } + if (bin == max_bins) + debug_serial->println("oof we ran out of bins but we'll keep going"); + } + // this is a very lazy way to print the bins sorted + for (uint8_t pulse_w = 1; pulse_w < 255; pulse_w++) { + for (uint8_t b = 0; b < max_bins; b++) { + if (bins[b][0] == pulse_w) { + debug_serial->print(bins[b][0]); + debug_serial->print(": "); + debug_serial->println(bins[b][1]); + } + } + } +} |