aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/extmod/ulab/code/numpy/create.c
diff options
context:
space:
mode:
Diffstat (limited to 'circuitpython/extmod/ulab/code/numpy/create.c')
-rw-r--r--circuitpython/extmod/ulab/code/numpy/create.c783
1 files changed, 783 insertions, 0 deletions
diff --git a/circuitpython/extmod/ulab/code/numpy/create.c b/circuitpython/extmod/ulab/code/numpy/create.c
new file mode 100644
index 0000000..5777070
--- /dev/null
+++ b/circuitpython/extmod/ulab/code/numpy/create.c
@@ -0,0 +1,783 @@
+/*
+ * This file is part of the micropython-ulab project,
+ *
+ * https://github.com/v923z/micropython-ulab
+ *
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2020 Jeff Epler for Adafruit Industries
+ * 2019-2021 Zoltán Vörös
+ * 2020 Taku Fukada
+*/
+
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "py/obj.h"
+#include "py/runtime.h"
+
+#include "../ulab.h"
+#include "create.h"
+#include "../ulab_tools.h"
+
+#if ULAB_NUMPY_HAS_ONES | ULAB_NUMPY_HAS_ZEROS | ULAB_NUMPY_HAS_FULL | ULAB_NUMPY_HAS_EMPTY
+static mp_obj_t create_zeros_ones_full(mp_obj_t oshape, uint8_t dtype, mp_obj_t value) {
+ if(!mp_obj_is_int(oshape) && !mp_obj_is_type(oshape, &mp_type_tuple) && !mp_obj_is_type(oshape, &mp_type_list)) {
+ mp_raise_TypeError(translate("input argument must be an integer, a tuple, or a list"));
+ }
+ ndarray_obj_t *ndarray = NULL;
+ if(mp_obj_is_int(oshape)) {
+ size_t n = mp_obj_get_int(oshape);
+ ndarray = ndarray_new_linear_array(n, dtype);
+ } else if(mp_obj_is_type(oshape, &mp_type_tuple) || mp_obj_is_type(oshape, &mp_type_list)) {
+ uint8_t len = (uint8_t)mp_obj_get_int(mp_obj_len_maybe(oshape));
+ if(len > ULAB_MAX_DIMS) {
+ mp_raise_TypeError(translate("too many dimensions"));
+ }
+ size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
+ memset(shape, 0, ULAB_MAX_DIMS * sizeof(size_t));
+ size_t i = 0;
+ mp_obj_iter_buf_t iter_buf;
+ mp_obj_t item, iterable = mp_getiter(oshape, &iter_buf);
+ while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION){
+ shape[ULAB_MAX_DIMS - len + i] = (size_t)mp_obj_get_int(item);
+ i++;
+ }
+ ndarray = ndarray_new_dense_ndarray(len, shape, dtype);
+ }
+ if(value != mp_const_none) {
+ if(dtype == NDARRAY_BOOL) {
+ dtype = NDARRAY_UINT8;
+ if(mp_obj_is_true(value)) {
+ value = mp_obj_new_int(1);
+ } else {
+ value = mp_obj_new_int(0);
+ }
+ }
+ for(size_t i=0; i < ndarray->len; i++) {
+ #if ULAB_SUPPORTS_COMPLEX
+ if(dtype == NDARRAY_COMPLEX) {
+ ndarray_set_complex_value(ndarray->array, i, value);
+ } else {
+ ndarray_set_value(dtype, ndarray->array, i, value);
+ }
+ #else
+ ndarray_set_value(dtype, ndarray->array, i, value);
+ #endif
+ }
+ }
+ // if zeros calls the function, we don't have to do anything
+ return MP_OBJ_FROM_PTR(ndarray);
+}
+#endif
+
+#if ULAB_NUMPY_HAS_ARANGE | ULAB_NUMPY_HAS_LINSPACE
+static ndarray_obj_t *create_linspace_arange(mp_float_t start, mp_float_t step, mp_float_t stop, size_t len, uint8_t dtype) {
+ mp_float_t value = start;
+
+ ndarray_obj_t *ndarray = ndarray_new_linear_array(len, dtype);
+ if(ndarray->boolean == NDARRAY_BOOLEAN) {
+ uint8_t *array = (uint8_t *)ndarray->array;
+ for(size_t i=0; i < len; i++, value += step) {
+ *array++ = value == MICROPY_FLOAT_CONST(0.0) ? 0 : 1;
+ }
+ } else if(dtype == NDARRAY_UINT8) {
+ ARANGE_LOOP(uint8_t, ndarray, len, step, stop);
+ } else if(dtype == NDARRAY_INT8) {
+ ARANGE_LOOP(int8_t, ndarray, len, step, stop);
+ } else if(dtype == NDARRAY_UINT16) {
+ ARANGE_LOOP(uint16_t, ndarray, len, step, stop);
+ } else if(dtype == NDARRAY_INT16) {
+ ARANGE_LOOP(int16_t, ndarray, len, step, stop);
+ } else {
+ ARANGE_LOOP(mp_float_t, ndarray, len, step, stop);
+ }
+ return ndarray;
+}
+#endif
+
+#if ULAB_NUMPY_HAS_ARANGE
+//| @overload
+//| def arange(stop: _float, step: _float = 1, *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray: ...
+//| @overload
+//| def arange(start: _float, stop: _float, step: _float = 1, *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
+//| """
+//| .. param: start
+//| First value in the array, optional, defaults to 0
+//| .. param: stop
+//| Final value in the array
+//| .. param: step
+//| Difference between consecutive elements, optional, defaults to 1.0
+//| .. param: dtype
+//| Type of values in the array
+//|
+//| Return a new 1-D array with elements ranging from ``start`` to ``stop``, with step size ``step``."""
+//| ...
+//|
+
+mp_obj_t create_arange(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
+ static const mp_arg_t allowed_args[] = {
+ { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
+ { MP_QSTR_, MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
+ { MP_QSTR_, MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
+ { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
+ };
+
+ mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
+ mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
+ uint8_t dtype = NDARRAY_FLOAT;
+ mp_float_t start, stop, step;
+ if(n_args == 1) {
+ start = MICROPY_FLOAT_CONST(0.0);
+ stop = mp_obj_get_float(args[0].u_obj);
+ step = MICROPY_FLOAT_CONST(1.0);
+ if(mp_obj_is_int(args[0].u_obj)) dtype = NDARRAY_INT16;
+ } else if(n_args == 2) {
+ start = mp_obj_get_float(args[0].u_obj);
+ stop = mp_obj_get_float(args[1].u_obj);
+ step = MICROPY_FLOAT_CONST(1.0);
+ if(mp_obj_is_int(args[0].u_obj) && mp_obj_is_int(args[1].u_obj)) dtype = NDARRAY_INT16;
+ } else if(n_args == 3) {
+ start = mp_obj_get_float(args[0].u_obj);
+ stop = mp_obj_get_float(args[1].u_obj);
+ step = mp_obj_get_float(args[2].u_obj);
+ if(mp_obj_is_int(args[0].u_obj) && mp_obj_is_int(args[1].u_obj) && mp_obj_is_int(args[2].u_obj)) dtype = NDARRAY_INT16;
+ } else {
+ mp_raise_TypeError(translate("wrong number of arguments"));
+ }
+ if((MICROPY_FLOAT_C_FUN(fabs)(stop) > 32768) || (MICROPY_FLOAT_C_FUN(fabs)(start) > 32768) || (MICROPY_FLOAT_C_FUN(fabs)(step) > 32768)) {
+ dtype = NDARRAY_FLOAT;
+ }
+ if(args[3].u_obj != mp_const_none) {
+ dtype = (uint8_t)mp_obj_get_int(args[3].u_obj);
+ }
+ ndarray_obj_t *ndarray;
+ if((stop - start)/step < 0) {
+ ndarray = ndarray_new_linear_array(0, dtype);
+ } else {
+ size_t len = (size_t)(MICROPY_FLOAT_C_FUN(ceil)((stop - start) / step));
+ stop = start + (len - 1) * step;
+ ndarray = create_linspace_arange(start, step, stop, len, dtype);
+ }
+ return MP_OBJ_FROM_PTR(ndarray);
+}
+
+MP_DEFINE_CONST_FUN_OBJ_KW(create_arange_obj, 1, create_arange);
+#endif
+
+#if ULAB_NUMPY_HAS_CONCATENATE
+//| def concatenate(arrays: Tuple[ulab.numpy.ndarray], *, axis: int = 0) -> ulab.numpy.ndarray:
+//| """
+//| .. param: arrays
+//| tuple of ndarrays
+//| .. param: axis
+//| axis along which the arrays will be joined
+//|
+//| Join a sequence of arrays along an existing axis."""
+//| ...
+//|
+
+mp_obj_t create_concatenate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
+ static const mp_arg_t allowed_args[] = {
+ { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
+ { MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
+ };
+
+ mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
+ mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
+
+ if(!mp_obj_is_type(args[0].u_obj, &mp_type_tuple)) {
+ mp_raise_TypeError(translate("first argument must be a tuple of ndarrays"));
+ }
+ int8_t axis = (int8_t)args[1].u_int;
+ size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
+ memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
+ mp_obj_tuple_t *ndarrays = MP_OBJ_TO_PTR(args[0].u_obj);
+
+ // first check, whether the arrays are compatible
+ ndarray_obj_t *_ndarray = MP_OBJ_TO_PTR(ndarrays->items[0]);
+ uint8_t dtype = _ndarray->dtype;
+ uint8_t ndim = _ndarray->ndim;
+ if(axis < 0) {
+ axis += ndim;
+ }
+ if((axis < 0) || (axis >= ndim)) {
+ mp_raise_ValueError(translate("wrong axis specified"));
+ }
+ // shift axis
+ axis = ULAB_MAX_DIMS - ndim + axis;
+ for(uint8_t j=0; j < ULAB_MAX_DIMS; j++) {
+ shape[j] = _ndarray->shape[j];
+ }
+
+ for(uint8_t i=1; i < ndarrays->len; i++) {
+ _ndarray = MP_OBJ_TO_PTR(ndarrays->items[i]);
+ // check, whether the arrays are compatible
+ if((dtype != _ndarray->dtype) || (ndim != _ndarray->ndim)) {
+ mp_raise_ValueError(translate("input arrays are not compatible"));
+ }
+ for(uint8_t j=0; j < ULAB_MAX_DIMS; j++) {
+ if(j == axis) {
+ shape[j] += _ndarray->shape[j];
+ } else {
+ if(shape[j] != _ndarray->shape[j]) {
+ mp_raise_ValueError(translate("input arrays are not compatible"));
+ }
+ }
+ }
+ }
+
+ ndarray_obj_t *target = ndarray_new_dense_ndarray(ndim, shape, dtype);
+ uint8_t *tpos = (uint8_t *)target->array;
+ uint8_t *tarray;
+
+ for(uint8_t p=0; p < ndarrays->len; p++) {
+ // reset the pointer along the axis
+ ndarray_obj_t *source = MP_OBJ_TO_PTR(ndarrays->items[p]);
+ uint8_t *sarray = (uint8_t *)source->array;
+ tarray = tpos;
+
+ #if ULAB_MAX_DIMS > 3
+ size_t i = 0;
+ do {
+ #endif
+ #if ULAB_MAX_DIMS > 2
+ size_t j = 0;
+ do {
+ #endif
+ #if ULAB_MAX_DIMS > 1
+ size_t k = 0;
+ do {
+ #endif
+ size_t l = 0;
+ do {
+ memcpy(tarray, sarray, source->itemsize);
+ tarray += target->strides[ULAB_MAX_DIMS - 1];
+ sarray += source->strides[ULAB_MAX_DIMS - 1];
+ l++;
+ } while(l < source->shape[ULAB_MAX_DIMS - 1]);
+ #if ULAB_MAX_DIMS > 1
+ tarray -= target->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
+ tarray += target->strides[ULAB_MAX_DIMS - 2];
+ sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
+ sarray += source->strides[ULAB_MAX_DIMS - 2];
+ k++;
+ } while(k < source->shape[ULAB_MAX_DIMS - 2]);
+ #endif
+ #if ULAB_MAX_DIMS > 2
+ tarray -= target->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
+ tarray += target->strides[ULAB_MAX_DIMS - 3];
+ sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
+ sarray += source->strides[ULAB_MAX_DIMS - 3];
+ j++;
+ } while(j < source->shape[ULAB_MAX_DIMS - 3]);
+ #endif
+ #if ULAB_MAX_DIMS > 3
+ tarray -= target->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
+ tarray += target->strides[ULAB_MAX_DIMS - 4];
+ sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
+ sarray += source->strides[ULAB_MAX_DIMS - 4];
+ i++;
+ } while(i < source->shape[ULAB_MAX_DIMS - 4]);
+ #endif
+ if(p < ndarrays->len - 1) {
+ tpos += target->strides[axis] * source->shape[axis];
+ }
+ }
+ return MP_OBJ_FROM_PTR(target);
+}
+
+MP_DEFINE_CONST_FUN_OBJ_KW(create_concatenate_obj, 1, create_concatenate);
+#endif
+
+#if ULAB_MAX_DIMS > 1
+#if ULAB_NUMPY_HAS_DIAG
+//| def diag(a: ulab.numpy.ndarray, *, k: int = 0) -> ulab.numpy.ndarray:
+//| """
+//| .. param: a
+//| an ndarray
+//| .. param: k
+//| Offset of the diagonal from the main diagonal. Can be positive or negative.
+//|
+//| Return specified diagonals."""
+//| ...
+//|
+
+mp_obj_t create_diag(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
+ static const mp_arg_t allowed_args[] = {
+ { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
+ { MP_QSTR_k, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
+ };
+
+ mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
+ mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
+
+ if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
+ mp_raise_TypeError(translate("input must be an ndarray"));
+ }
+ ndarray_obj_t *source = MP_OBJ_TO_PTR(args[0].u_obj);
+ if(source->ndim == 1) { // return a rank-2 tensor with the prescribed diagonal
+ ndarray_obj_t *target = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, source->len, source->len), source->dtype);
+ uint8_t *sarray = (uint8_t *)source->array;
+ uint8_t *tarray = (uint8_t *)target->array;
+ for(size_t i=0; i < source->len; i++) {
+ memcpy(tarray, sarray, source->itemsize);
+ sarray += source->strides[ULAB_MAX_DIMS - 1];
+ tarray += (source->len + 1) * target->itemsize;
+ }
+ return MP_OBJ_FROM_PTR(target);
+ }
+ if(source->ndim > 2) {
+ mp_raise_TypeError(translate("input must be a tensor of rank 2"));
+ }
+ int32_t k = args[1].u_int;
+ size_t len = 0;
+ uint8_t *sarray = (uint8_t *)source->array;
+ if(k < 0) { // move the pointer "vertically"
+ if(-k < (int32_t)source->shape[ULAB_MAX_DIMS - 2]) {
+ sarray -= k * source->strides[ULAB_MAX_DIMS - 2];
+ len = MIN(source->shape[ULAB_MAX_DIMS - 2] + k, source->shape[ULAB_MAX_DIMS - 1]);
+ }
+ } else { // move the pointer "horizontally"
+ if(k < (int32_t)source->shape[ULAB_MAX_DIMS - 1]) {
+ sarray += k * source->strides[ULAB_MAX_DIMS - 1];
+ len = MIN(source->shape[ULAB_MAX_DIMS - 1] - k, source->shape[ULAB_MAX_DIMS - 2]);
+ }
+ }
+
+ if(len == 0) {
+ mp_raise_ValueError(translate("offset is too large"));
+ }
+
+ ndarray_obj_t *target = ndarray_new_linear_array(len, source->dtype);
+ uint8_t *tarray = (uint8_t *)target->array;
+
+ for(size_t i=0; i < len; i++) {
+ memcpy(tarray, sarray, source->itemsize);
+ sarray += source->strides[ULAB_MAX_DIMS - 2];
+ sarray += source->strides[ULAB_MAX_DIMS - 1];
+ tarray += source->itemsize;
+ }
+ return MP_OBJ_FROM_PTR(target);
+}
+
+MP_DEFINE_CONST_FUN_OBJ_KW(create_diag_obj, 1, create_diag);
+#endif /* ULAB_NUMPY_HAS_DIAG */
+
+#if ULAB_NUMPY_HAS_EMPTY
+// This function is bound in numpy.c to numpy.zeros(), and is simply an alias for that
+
+//| def empty(shape: Union[int, Tuple[int, ...]], *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
+//| """
+//| .. param: shape
+//| Shape of the array, either an integer (for a 1-D array) or a tuple of 2 integers (for a 2-D array)
+//| .. param: dtype
+//| Type of values in the array
+//|
+//| Return a new array of the given shape with all elements set to 0. An alias for numpy.zeros."""
+//| ...
+//|
+#endif
+
+#if ULAB_NUMPY_HAS_EYE
+//| def eye(size: int, *, M: Optional[int] = None, k: int = 0, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
+//| """Return a new square array of size, with the diagonal elements set to 1
+//| and the other elements set to 0. If k is given, the diagonal is shifted by the specified amount."""
+//| ...
+//|
+
+mp_obj_t create_eye(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
+ static const mp_arg_t allowed_args[] = {
+ { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_INT, { .u_int = 0 } },
+ { MP_QSTR_M, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
+ { MP_QSTR_k, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
+ { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
+ };
+
+ mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
+ mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
+
+ size_t n = args[0].u_int, m;
+ size_t k = args[2].u_int > 0 ? (size_t)args[2].u_int : (size_t)(-args[2].u_int);
+ uint8_t dtype = args[3].u_int;
+ if(args[1].u_rom_obj == mp_const_none) {
+ m = n;
+ } else {
+ m = mp_obj_get_int(args[1].u_rom_obj);
+ }
+ ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, n, m), dtype);
+ if(dtype == NDARRAY_BOOL) {
+ dtype = NDARRAY_UINT8;
+ }
+ mp_obj_t one = mp_obj_new_int(1);
+ size_t i = 0;
+ if((args[2].u_int >= 0)) {
+ while(k < m) {
+ ndarray_set_value(dtype, ndarray->array, i*m+k, one);
+ k++;
+ i++;
+ }
+ } else {
+ while(k < n) {
+ ndarray_set_value(dtype, ndarray->array, k*m+i, one);
+ k++;
+ i++;
+ }
+ }
+ return MP_OBJ_FROM_PTR(ndarray);
+}
+
+MP_DEFINE_CONST_FUN_OBJ_KW(create_eye_obj, 1, create_eye);
+#endif /* ULAB_NUMPY_HAS_EYE */
+#endif /* ULAB_MAX_DIMS > 1 */
+
+#if ULAB_NUMPY_HAS_FULL
+//| def full(shape: Union[int, Tuple[int, ...]], fill_value: Union[_float, _bool], *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
+//| """
+//| .. param: shape
+//| Shape of the array, either an integer (for a 1-D array) or a tuple of integers (for tensors of higher rank)
+//| .. param: fill_value
+//| scalar, the value with which the array is filled
+//| .. param: dtype
+//| Type of values in the array
+//|
+//| Return a new array of the given shape with all elements set to 0."""
+//| ...
+//|
+
+mp_obj_t create_full(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
+ static const mp_arg_t allowed_args[] = {
+ { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
+ { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
+ { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
+ };
+
+ mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
+ mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
+
+ uint8_t dtype = args[2].u_int;
+
+ return create_zeros_ones_full(args[0].u_obj, dtype, args[1].u_obj);
+}
+
+MP_DEFINE_CONST_FUN_OBJ_KW(create_full_obj, 0, create_full);
+#endif
+
+
+#if ULAB_NUMPY_HAS_LINSPACE
+//| def linspace(
+//| start: _float,
+//| stop: _float,
+//| *,
+//| dtype: _DType = ulab.numpy.float,
+//| num: int = 50,
+//| endpoint: _bool = True,
+//| retstep: _bool = False
+//| ) -> ulab.numpy.ndarray:
+//| """
+//| .. param: start
+//| First value in the array
+//| .. param: stop
+//| Final value in the array
+//| .. param int: num
+//| Count of values in the array.
+//| .. param: dtype
+//| Type of values in the array
+//| .. param bool: endpoint
+//| Whether the ``stop`` value is included. Note that even when
+//| endpoint=True, the exact ``stop`` value may not be included due to the
+//| inaccuracy of floating point arithmetic.
+//| .. param bool: retstep,
+//| If True, return (`samples`, `step`), where `step` is the spacing between samples.
+//|
+//| Return a new 1-D array with ``num`` elements ranging from ``start`` to ``stop`` linearly."""
+//| ...
+//|
+
+mp_obj_t create_linspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
+ static const mp_arg_t allowed_args[] = {
+ { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
+ { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
+ { MP_QSTR_num, MP_ARG_INT, { .u_int = 50 } },
+ { MP_QSTR_endpoint, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_true } },
+ { MP_QSTR_retstep, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_false } },
+ { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
+ };
+
+ mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
+ mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
+
+ if(args[2].u_int < 2) {
+ mp_raise_ValueError(translate("number of points must be at least 2"));
+ }
+ size_t len = (size_t)args[2].u_int;
+ mp_float_t start, step, stop;
+
+ ndarray_obj_t *ndarray = NULL;
+
+ #if ULAB_SUPPORTS_COMPLEX
+ mp_float_t step_real, step_imag;
+ bool complex_out = false;
+
+ if(mp_obj_is_type(args[0].u_obj, &mp_type_complex) || mp_obj_is_type(args[1].u_obj, &mp_type_complex)) {
+ complex_out = true;
+ ndarray = ndarray_new_linear_array(len, NDARRAY_COMPLEX);
+ mp_float_t *array = (mp_float_t *)ndarray->array;
+ mp_float_t start_real, start_imag;
+ mp_float_t stop_real, stop_imag;
+
+ mp_obj_get_complex(args[0].u_obj, &start_real, &start_imag);
+ mp_obj_get_complex(args[1].u_obj, &stop_real, &stop_imag);
+ if(args[3].u_obj == mp_const_true) {
+ step_real = (stop_real - start_real) / (len - 1);
+ step_imag = (stop_imag - start_imag) / (len - 1);
+ } else {
+ step_real = (stop_real - start_real) / len;
+ step_imag = (stop_imag - start_imag) / len;
+ }
+
+ for(size_t i = 0; i < len; i++) {
+ *array++ = start_real;
+ *array++ = start_imag;
+ start_real += step_real;
+ start_imag += step_imag;
+ }
+ } else {
+ #endif
+ start = mp_obj_get_float(args[0].u_obj);
+ stop = mp_obj_get_float(args[1].u_obj);
+
+ uint8_t typecode = args[5].u_int;
+
+ if(args[3].u_obj == mp_const_true) {
+ step = (stop - start) / (len - 1);
+ } else {
+ step = (stop - start) / len;
+ stop = start + step * (len - 1);
+ }
+
+ ndarray = create_linspace_arange(start, step, stop, len, typecode);
+ #if ULAB_SUPPORTS_COMPLEX
+ }
+ #endif
+
+ if(args[4].u_obj == mp_const_false) {
+ return MP_OBJ_FROM_PTR(ndarray);
+ } else {
+ mp_obj_t tuple[2];
+ tuple[0] = ndarray;
+ #if ULAB_SUPPORTS_COMPLEX
+ if(complex_out) {
+ tuple[1] = mp_obj_new_complex(step_real, step_imag);
+ } else {
+ tuple[1] = mp_obj_new_float(step);
+ }
+ #else /* ULAB_SUPPORTS_COMPLEX */
+ tuple[1] = mp_obj_new_float(step);
+ #endif
+
+ return mp_obj_new_tuple(2, tuple);
+ }
+}
+
+MP_DEFINE_CONST_FUN_OBJ_KW(create_linspace_obj, 2, create_linspace);
+#endif
+
+#if ULAB_NUMPY_HAS_LOGSPACE
+//| def logspace(
+//| start: _float,
+//| stop: _float,
+//| *,
+//| dtype: _DType = ulab.numpy.float,
+//| num: int = 50,
+//| endpoint: _bool = True,
+//| base: _float = 10.0
+//| ) -> ulab.numpy.ndarray:
+//| """
+//| .. param: start
+//| First value in the array
+//| .. param: stop
+//| Final value in the array
+//| .. param int: num
+//| Count of values in the array. Defaults to 50.
+//| .. param: base
+//| The base of the log space. The step size between the elements in
+//| ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform. Defaults to 10.0.
+//| .. param: dtype
+//| Type of values in the array
+//| .. param bool: endpoint
+//| Whether the ``stop`` value is included. Note that even when
+//| endpoint=True, the exact ``stop`` value may not be included due to the
+//| inaccuracy of floating point arithmetic. Defaults to True.
+//|
+//| Return a new 1-D array with ``num`` evenly spaced elements on a log scale.
+//| The sequence starts at ``base ** start``, and ends with ``base ** stop``."""
+//| ...
+//|
+
+const mp_obj_float_t create_float_const_ten = {{&mp_type_float}, MICROPY_FLOAT_CONST(10.0)};
+
+mp_obj_t create_logspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
+ static const mp_arg_t allowed_args[] = {
+ { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
+ { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
+ { MP_QSTR_num, MP_ARG_INT, { .u_int = 50 } },
+ { MP_QSTR_base, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_PTR(&create_float_const_ten) } },
+ { MP_QSTR_endpoint, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_true } },
+ { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
+ };
+
+ mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
+ mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
+
+ if(args[2].u_int < 2) {
+ mp_raise_ValueError(translate("number of points must be at least 2"));
+ }
+ size_t len = (size_t)args[2].u_int;
+ mp_float_t start, step, quotient;
+ start = mp_obj_get_float(args[0].u_obj);
+ uint8_t dtype = args[5].u_int;
+ mp_float_t base = mp_obj_get_float(args[3].u_obj);
+ if(args[4].u_obj == mp_const_true) step = (mp_obj_get_float(args[1].u_obj) - start)/(len - 1);
+ else step = (mp_obj_get_float(args[1].u_obj) - start) / len;
+ quotient = MICROPY_FLOAT_C_FUN(pow)(base, step);
+ ndarray_obj_t *ndarray = ndarray_new_linear_array(len, dtype);
+
+ mp_float_t value = MICROPY_FLOAT_C_FUN(pow)(base, start);
+ if(ndarray->dtype == NDARRAY_UINT8) {
+ uint8_t *array = (uint8_t *)ndarray->array;
+ if(ndarray->boolean) {
+ memset(array, 1, len);
+ } else {
+ for(size_t i=0; i < len; i++, value *= quotient) *array++ = (uint8_t)value;
+ }
+ } else if(ndarray->dtype == NDARRAY_INT8) {
+ int8_t *array = (int8_t *)ndarray->array;
+ for(size_t i=0; i < len; i++, value *= quotient) *array++ = (int8_t)value;
+ } else if(ndarray->dtype == NDARRAY_UINT16) {
+ uint16_t *array = (uint16_t *)ndarray->array;
+ for(size_t i=0; i < len; i++, value *= quotient) *array++ = (uint16_t)value;
+ } else if(ndarray->dtype == NDARRAY_INT16) {
+ int16_t *array = (int16_t *)ndarray->array;
+ for(size_t i=0; i < len; i++, value *= quotient) *array++ = (int16_t)value;
+ } else {
+ mp_float_t *array = (mp_float_t *)ndarray->array;
+ for(size_t i=0; i < len; i++, value *= quotient) *array++ = value;
+ }
+ return MP_OBJ_FROM_PTR(ndarray);
+}
+
+MP_DEFINE_CONST_FUN_OBJ_KW(create_logspace_obj, 2, create_logspace);
+#endif
+
+#if ULAB_NUMPY_HAS_ONES
+//| def ones(shape: Union[int, Tuple[int, ...]], *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
+//| """
+//| .. param: shape
+//| Shape of the array, either an integer (for a 1-D array) or a tuple of 2 integers (for a 2-D array)
+//| .. param: dtype
+//| Type of values in the array
+//|
+//| Return a new array of the given shape with all elements set to 1."""
+//| ...
+//|
+
+mp_obj_t create_ones(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
+ static const mp_arg_t allowed_args[] = {
+ { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
+ { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
+ };
+
+ mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
+ mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
+
+ uint8_t dtype = args[1].u_int;
+ mp_obj_t one = mp_obj_new_int(1);
+ return create_zeros_ones_full(args[0].u_obj, dtype, one);
+}
+
+MP_DEFINE_CONST_FUN_OBJ_KW(create_ones_obj, 0, create_ones);
+#endif
+
+#if ULAB_NUMPY_HAS_ZEROS
+//| def zeros(shape: Union[int, Tuple[int, ...]], *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
+//| """
+//| .. param: shape
+//| Shape of the array, either an integer (for a 1-D array) or a tuple of 2 integers (for a 2-D array)
+//| .. param: dtype
+//| Type of values in the array
+//|
+//| Return a new array of the given shape with all elements set to 0."""
+//| ...
+//|
+
+mp_obj_t create_zeros(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
+ static const mp_arg_t allowed_args[] = {
+ { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
+ { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
+ };
+
+ mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
+ mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
+
+ uint8_t dtype = args[1].u_int;
+ return create_zeros_ones_full(args[0].u_obj, dtype, mp_const_none);
+}
+
+MP_DEFINE_CONST_FUN_OBJ_KW(create_zeros_obj, 0, create_zeros);
+#endif
+
+#if ULAB_NUMPY_HAS_FROMBUFFER
+mp_obj_t create_frombuffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
+ static const mp_arg_t allowed_args[] = {
+ { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
+ { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(NDARRAY_FLOAT) } },
+ { MP_QSTR_count, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(-1) } },
+ { MP_QSTR_offset, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(0) } },
+ };
+
+ mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
+ mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
+
+ uint8_t dtype = mp_obj_get_int(args[1].u_obj);
+ size_t offset = mp_obj_get_int(args[3].u_obj);
+
+ mp_buffer_info_t bufinfo;
+ if(mp_get_buffer(args[0].u_obj, &bufinfo, MP_BUFFER_READ)) {
+ size_t sz = ulab_binary_get_size(dtype);
+
+ if(bufinfo.len < offset) {
+ mp_raise_ValueError(translate("offset must be non-negative and no greater than buffer length"));
+ }
+ size_t len = (bufinfo.len - offset) / sz;
+ if((len * sz) != (bufinfo.len - offset)) {
+ mp_raise_ValueError(translate("buffer size must be a multiple of element size"));
+ }
+ if(mp_obj_get_int(args[2].u_obj) > 0) {
+ size_t count = mp_obj_get_int(args[2].u_obj);
+ if(len < count) {
+ mp_raise_ValueError(translate("buffer is smaller than requested size"));
+ } else {
+ len = count;
+ }
+ }
+ ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
+ ndarray->base.type = &ulab_ndarray_type;
+ ndarray->dtype = dtype == NDARRAY_BOOL ? NDARRAY_UINT8 : dtype;
+ ndarray->boolean = dtype == NDARRAY_BOOL ? NDARRAY_BOOLEAN : NDARRAY_NUMERIC;
+ ndarray->ndim = 1;
+ ndarray->len = len;
+ ndarray->itemsize = sz;
+ ndarray->shape[ULAB_MAX_DIMS - 1] = len;
+ ndarray->strides[ULAB_MAX_DIMS - 1] = sz;
+
+ uint8_t *buffer = bufinfo.buf;
+ ndarray->array = buffer + offset;
+ return MP_OBJ_FROM_PTR(ndarray);
+ }
+ return mp_const_none;
+}
+
+MP_DEFINE_CONST_FUN_OBJ_KW(create_frombuffer_obj, 1, create_frombuffer);
+#endif