/* Copyright (c) 2012, 2015-2017, 2018 The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* * Scheduler hook for average runqueue determination */ #include #include #include #include #include #include "sched.h" #include static DEFINE_PER_CPU(u64, nr_prod_sum); static DEFINE_PER_CPU(u64, last_time); static DEFINE_PER_CPU(u64, nr_big_prod_sum); static DEFINE_PER_CPU(u64, nr); static DEFINE_PER_CPU(u64, nr_max); static DEFINE_PER_CPU(unsigned long, iowait_prod_sum); static DEFINE_PER_CPU(spinlock_t, nr_lock) = __SPIN_LOCK_UNLOCKED(nr_lock); static s64 last_get_time; #define DIV64_U64_ROUNDUP(X, Y) div64_u64((X) + (Y - 1), Y) /** * sched_get_nr_running_avg * @return: Average nr_running, iowait and nr_big_tasks value since last poll. * Returns the avg * 100 to return up to two decimal points * of accuracy. * * Obtains the average nr_running value since the last poll. * This function may not be called concurrently with itself */ void sched_get_nr_running_avg(int *avg, int *iowait_avg, int *big_avg, unsigned int *max_nr, unsigned int *big_max_nr) { int cpu; u64 curr_time = sched_clock(); u64 diff = curr_time - last_get_time; u64 tmp_avg = 0, tmp_iowait = 0, tmp_big_avg = 0; *avg = 0; *iowait_avg = 0; *big_avg = 0; *max_nr = 0; *big_max_nr = 0; if (!diff) return; /* read and reset nr_running counts */ for_each_possible_cpu(cpu) { unsigned long flags; spin_lock_irqsave(&per_cpu(nr_lock, cpu), flags); curr_time = sched_clock(); diff = curr_time - per_cpu(last_time, cpu); BUG_ON((s64)diff < 0); tmp_avg += per_cpu(nr_prod_sum, cpu); tmp_avg += per_cpu(nr, cpu) * diff; tmp_big_avg += per_cpu(nr_big_prod_sum, cpu); tmp_big_avg += nr_eligible_big_tasks(cpu) * diff; tmp_iowait += per_cpu(iowait_prod_sum, cpu); tmp_iowait += nr_iowait_cpu(cpu) * diff; per_cpu(last_time, cpu) = curr_time; per_cpu(nr_prod_sum, cpu) = 0; per_cpu(nr_big_prod_sum, cpu) = 0; per_cpu(iowait_prod_sum, cpu) = 0; if (*max_nr < per_cpu(nr_max, cpu)) *max_nr = per_cpu(nr_max, cpu); if (is_max_capacity_cpu(cpu)) { if (*big_max_nr < per_cpu(nr_max, cpu)) *big_max_nr = per_cpu(nr_max, cpu); } per_cpu(nr_max, cpu) = per_cpu(nr, cpu); spin_unlock_irqrestore(&per_cpu(nr_lock, cpu), flags); } diff = curr_time - last_get_time; last_get_time = curr_time; /* * Any task running on BIG cluster and BIG tasks running on little * cluster contributes to big_avg. Small or medium tasks can also * run on BIG cluster when co-location and scheduler boost features * are activated. We don't want these tasks to downmigrate to little * cluster when BIG CPUs are available but isolated. Round up the * average values so that core_ctl aggressively unisolate BIG CPUs. */ *avg = (int)DIV64_U64_ROUNDUP(tmp_avg, diff); *big_avg = (int)DIV64_U64_ROUNDUP(tmp_big_avg, diff); *iowait_avg = (int)DIV64_U64_ROUNDUP(tmp_iowait, diff); trace_sched_get_nr_running_avg(*avg, *big_avg, *iowait_avg, *max_nr, *big_max_nr); BUG_ON(*avg < 0 || *big_avg < 0 || *iowait_avg < 0); pr_debug("%s - avg:%d big_avg:%d iowait_avg:%d\n", __func__, *avg, *big_avg, *iowait_avg); } EXPORT_SYMBOL(sched_get_nr_running_avg); static DEFINE_PER_CPU(atomic64_t, last_busy_time) = ATOMIC64_INIT(0); #define BUSY_NR_RUN 3 #define BUSY_LOAD_FACTOR 10 #ifdef CONFIG_SCHED_HMP static inline void update_last_busy_time(int cpu, bool dequeue, unsigned long prev_nr_run, u64 curr_time) { bool nr_run_trigger = false, load_trigger = false; if (!hmp_capable() || is_min_capacity_cpu(cpu)) return; if (prev_nr_run >= BUSY_NR_RUN && per_cpu(nr, cpu) < BUSY_NR_RUN) nr_run_trigger = true; if (dequeue) { u64 load; load = cpu_rq(cpu)->hmp_stats.cumulative_runnable_avg; load = scale_load_to_cpu(load, cpu); if (load * BUSY_LOAD_FACTOR > sched_ravg_window) load_trigger = true; } if (nr_run_trigger || load_trigger) atomic64_set(&per_cpu(last_busy_time, cpu), curr_time); } #else static inline void update_last_busy_time(int cpu, bool dequeue, unsigned long prev_nr_run, u64 curr_time) { } #endif /** * sched_update_nr_prod * @cpu: The core id of the nr running driver. * @delta: Adjust nr by 'delta' amount * @inc: Whether we are increasing or decreasing the count * @return: N/A * * Update average with latest nr_running value for CPU */ void sched_update_nr_prod(int cpu, long delta, bool inc) { u64 diff; u64 curr_time; unsigned long flags, nr_running; spin_lock_irqsave(&per_cpu(nr_lock, cpu), flags); nr_running = per_cpu(nr, cpu); curr_time = sched_clock(); diff = curr_time - per_cpu(last_time, cpu); BUG_ON((s64)diff < 0); per_cpu(last_time, cpu) = curr_time; per_cpu(nr, cpu) = nr_running + (inc ? delta : -delta); BUG_ON((s64)per_cpu(nr, cpu) < 0); if (per_cpu(nr, cpu) > per_cpu(nr_max, cpu)) per_cpu(nr_max, cpu) = per_cpu(nr, cpu); update_last_busy_time(cpu, !inc, nr_running, curr_time); per_cpu(nr_prod_sum, cpu) += nr_running * diff; per_cpu(nr_big_prod_sum, cpu) += nr_eligible_big_tasks(cpu) * diff; per_cpu(iowait_prod_sum, cpu) += nr_iowait_cpu(cpu) * diff; spin_unlock_irqrestore(&per_cpu(nr_lock, cpu), flags); } EXPORT_SYMBOL(sched_update_nr_prod); u64 sched_get_cpu_last_busy_time(int cpu) { return atomic64_read(&per_cpu(last_busy_time, cpu)); }