/* * Copyright (c) 2014-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define QUSB2PHY_PWR_CTRL1 0x210 #define PWR_CTRL1_POWR_DOWN BIT(0) #define QUSB2PHY_PLL_COMMON_STATUS_ONE 0x1A0 #define CORE_READY_STATUS BIT(0) /* Get TUNE value from efuse bit-mask */ #define TUNE_VAL_MASK(val, pos, mask) ((val >> pos) & mask) #define QUSB2PHY_INTR_CTRL 0x22C #define DMSE_INTR_HIGH_SEL BIT(4) #define DPSE_INTR_HIGH_SEL BIT(3) #define CHG_DET_INTR_EN BIT(2) #define DMSE_INTR_EN BIT(1) #define DPSE_INTR_EN BIT(0) #define QUSB2PHY_INTR_STAT 0x230 #define DMSE_INTERRUPT BIT(1) #define DPSE_INTERRUPT BIT(0) #define QUSB2PHY_PORT_TUNE1 0x23c #define QUSB2PHY_TEST1 0x24C #define QUSB2PHY_1P2_VOL_MIN 1200000 /* uV */ #define QUSB2PHY_1P2_VOL_MAX 1200000 /* uV */ #define QUSB2PHY_1P2_HPM_LOAD 23000 #define QUSB2PHY_1P8_VOL_MIN 1800000 /* uV */ #define QUSB2PHY_1P8_VOL_MAX 1800000 /* uV */ #define QUSB2PHY_1P8_HPM_LOAD 30000 /* uA */ #define QUSB2PHY_3P3_VOL_MIN 3075000 /* uV */ #define QUSB2PHY_3P3_VOL_MAX 3200000 /* uV */ #define QUSB2PHY_3P3_HPM_LOAD 30000 /* uA */ #define LINESTATE_DP BIT(0) #define LINESTATE_DM BIT(1) #define QUSB2PHY_PLL_ANALOG_CONTROLS_ONE 0x0 #define QUSB2PHY_PLL_ANALOG_CONTROLS_TWO 0x4 unsigned int phy_tune1; module_param(phy_tune1, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(phy_tune1, "QUSB PHY v2 TUNE1"); struct qusb_phy { struct usb_phy phy; struct mutex lock; void __iomem *base; void __iomem *efuse_reg; void __iomem *tcsr_clamp_dig_n; struct clk *ref_clk_src; struct clk *ref_clk; struct clk *cfg_ahb_clk; struct reset_control *phy_reset; struct regulator *vdd; struct regulator *vdda33; struct regulator *vdda18; struct regulator *vdda12; int vdd_levels[3]; /* none, low, high */ int vdda33_levels[3]; int init_seq_len; int *qusb_phy_init_seq; int host_init_seq_len; int *qusb_phy_host_init_seq; u32 tune_val; int efuse_bit_pos; int efuse_num_of_bits; int power_enabled_ref; bool clocks_enabled; bool cable_connected; bool suspended; bool rm_pulldown; struct regulator_desc dpdm_rdesc; struct regulator_dev *dpdm_rdev; /* emulation targets specific */ void __iomem *emu_phy_base; bool emulation; int *emu_init_seq; int emu_init_seq_len; int *phy_pll_reset_seq; int phy_pll_reset_seq_len; int *emu_dcm_reset_seq; int emu_dcm_reset_seq_len; }; static void qusb_phy_enable_clocks(struct qusb_phy *qphy, bool on) { dev_dbg(qphy->phy.dev, "%s(): clocks_enabled:%d on:%d\n", __func__, qphy->clocks_enabled, on); if (!qphy->clocks_enabled && on) { clk_prepare_enable(qphy->ref_clk_src); clk_prepare_enable(qphy->ref_clk); clk_prepare_enable(qphy->cfg_ahb_clk); qphy->clocks_enabled = true; } if (qphy->clocks_enabled && !on) { clk_disable_unprepare(qphy->ref_clk); clk_disable_unprepare(qphy->ref_clk_src); clk_disable_unprepare(qphy->cfg_ahb_clk); qphy->clocks_enabled = false; } dev_dbg(qphy->phy.dev, "%s(): clocks_enabled:%d\n", __func__, qphy->clocks_enabled); } static int qusb_phy_config_vdd(struct qusb_phy *qphy, int high) { int min, ret; min = high ? 1 : 0; /* low or none? */ ret = regulator_set_voltage(qphy->vdd, qphy->vdd_levels[min], qphy->vdd_levels[2]); if (ret) { dev_err(qphy->phy.dev, "unable to set voltage for qusb vdd\n"); return ret; } dev_dbg(qphy->phy.dev, "min_vol:%d max_vol:%d\n", qphy->vdd_levels[min], qphy->vdd_levels[2]); return ret; } static int qusb_phy_enable_power(struct qusb_phy *qphy, bool on) { int ret = 0; mutex_lock(&qphy->lock); dev_dbg(qphy->phy.dev, "%s:req to turn %s regulators. power_enabled_ref:%d\n", __func__, on ? "on" : "off", qphy->power_enabled_ref); if (on && ++qphy->power_enabled_ref > 1) { dev_dbg(qphy->phy.dev, "PHYs' regulators are already on\n"); goto done; } if (!on) { if (on == qphy->power_enabled_ref) { dev_dbg(qphy->phy.dev, "PHYs' regulators are already off\n"); goto done; } qphy->power_enabled_ref--; if (!qphy->power_enabled_ref) goto disable_vdda33; dev_dbg(qphy->phy.dev, "Skip turning off PHYs' regulators\n"); goto done; } ret = qusb_phy_config_vdd(qphy, true); if (ret) { dev_err(qphy->phy.dev, "Unable to config VDD:%d\n", ret); goto err_vdd; } ret = regulator_enable(qphy->vdd); if (ret) { dev_err(qphy->phy.dev, "Unable to enable VDD\n"); goto unconfig_vdd; } ret = regulator_set_load(qphy->vdda12, QUSB2PHY_1P2_HPM_LOAD); if (ret < 0) { dev_err(qphy->phy.dev, "Unable to set HPM of vdda12:%d\n", ret); goto disable_vdd; } ret = regulator_set_voltage(qphy->vdda12, QUSB2PHY_1P2_VOL_MIN, QUSB2PHY_1P2_VOL_MAX); if (ret) { dev_err(qphy->phy.dev, "Unable to set voltage for vdda12:%d\n", ret); goto put_vdda12_lpm; } ret = regulator_enable(qphy->vdda12); if (ret) { dev_err(qphy->phy.dev, "Unable to enable vdda12:%d\n", ret); goto unset_vdda12; } ret = regulator_set_load(qphy->vdda18, QUSB2PHY_1P8_HPM_LOAD); if (ret < 0) { dev_err(qphy->phy.dev, "Unable to set HPM of vdda18:%d\n", ret); goto disable_vdda12; } ret = regulator_set_voltage(qphy->vdda18, QUSB2PHY_1P8_VOL_MIN, QUSB2PHY_1P8_VOL_MAX); if (ret) { dev_err(qphy->phy.dev, "Unable to set voltage for vdda18:%d\n", ret); goto put_vdda18_lpm; } ret = regulator_enable(qphy->vdda18); if (ret) { dev_err(qphy->phy.dev, "Unable to enable vdda18:%d\n", ret); goto unset_vdda18; } ret = regulator_set_load(qphy->vdda33, QUSB2PHY_3P3_HPM_LOAD); if (ret < 0) { dev_err(qphy->phy.dev, "Unable to set HPM of vdda33:%d\n", ret); goto disable_vdda18; } ret = regulator_set_voltage(qphy->vdda33, qphy->vdda33_levels[0], qphy->vdda33_levels[2]); if (ret) { dev_err(qphy->phy.dev, "Unable to set voltage for vdda33:%d\n", ret); goto put_vdda33_lpm; } ret = regulator_enable(qphy->vdda33); if (ret) { dev_err(qphy->phy.dev, "Unable to enable vdda33:%d\n", ret); goto unset_vdd33; } pr_debug("%s(): QUSB PHY's regulators are turned ON.\n", __func__); mutex_unlock(&qphy->lock); return ret; disable_vdda33: ret = regulator_disable(qphy->vdda33); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdda33:%d\n", ret); unset_vdd33: ret = regulator_set_voltage(qphy->vdda33, 0, qphy->vdda33_levels[2]); if (ret) dev_err(qphy->phy.dev, "Unable to set (0) voltage for vdda33:%d\n", ret); put_vdda33_lpm: ret = regulator_set_load(qphy->vdda33, 0); if (ret < 0) dev_err(qphy->phy.dev, "Unable to set (0) HPM of vdda33\n"); disable_vdda18: ret = regulator_disable(qphy->vdda18); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdda18:%d\n", ret); unset_vdda18: ret = regulator_set_voltage(qphy->vdda18, 0, QUSB2PHY_1P8_VOL_MAX); if (ret) dev_err(qphy->phy.dev, "Unable to set (0) voltage for vdda18:%d\n", ret); put_vdda18_lpm: ret = regulator_set_load(qphy->vdda18, 0); if (ret < 0) dev_err(qphy->phy.dev, "Unable to set LPM of vdda18\n"); disable_vdda12: ret = regulator_disable(qphy->vdda12); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdda12:%d\n", ret); unset_vdda12: ret = regulator_set_voltage(qphy->vdda12, 0, QUSB2PHY_1P2_VOL_MAX); if (ret) dev_err(qphy->phy.dev, "Unable to set (0) voltage for vdda12:%d\n", ret); put_vdda12_lpm: ret = regulator_set_load(qphy->vdda12, 0); if (ret < 0) dev_err(qphy->phy.dev, "Unable to set LPM of vdda12\n"); disable_vdd: ret = regulator_disable(qphy->vdd); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdd:%d\n", ret); unconfig_vdd: ret = qusb_phy_config_vdd(qphy, false); if (ret) dev_err(qphy->phy.dev, "Unable unconfig VDD:%d\n", ret); err_vdd: dev_dbg(qphy->phy.dev, "QUSB PHY's regulators are turned OFF.\n"); /* in case of error in turning on regulators */ if (qphy->power_enabled_ref) qphy->power_enabled_ref--; done: mutex_unlock(&qphy->lock); return ret; } static int qusb_phy_update_dpdm(struct usb_phy *phy, int value) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); int ret = 0; dev_dbg(phy->dev, "%s value:%d rm_pulldown:%d\n", __func__, value, qphy->rm_pulldown); switch (value) { case POWER_SUPPLY_DP_DM_DPF_DMF: dev_dbg(phy->dev, "POWER_SUPPLY_DP_DM_DPF_DMF\n"); if (!qphy->rm_pulldown) { ret = qusb_phy_enable_power(qphy, true); if (ret >= 0) { qphy->rm_pulldown = true; dev_dbg(phy->dev, "DP_DM_F: rm_pulldown:%d\n", qphy->rm_pulldown); } } break; case POWER_SUPPLY_DP_DM_DPR_DMR: dev_dbg(phy->dev, "POWER_SUPPLY_DP_DM_DPR_DMR\n"); if (qphy->rm_pulldown) { ret = qusb_phy_enable_power(qphy, false); if (ret >= 0) { qphy->rm_pulldown = false; dev_dbg(phy->dev, "DP_DM_R: rm_pulldown:%d\n", qphy->rm_pulldown); } } break; default: ret = -EINVAL; dev_err(phy->dev, "Invalid power supply property(%d)\n", value); break; } return ret; } static void qusb_phy_get_tune1_param(struct qusb_phy *qphy) { u8 reg; u32 bit_mask = 1; pr_debug("%s(): num_of_bits:%d bit_pos:%d\n", __func__, qphy->efuse_num_of_bits, qphy->efuse_bit_pos); /* get bit mask based on number of bits to use with efuse reg */ bit_mask = (bit_mask << qphy->efuse_num_of_bits) - 1; /* * if efuse reg is updated (i.e non-zero) then use it to program * tune parameters */ qphy->tune_val = readl_relaxed(qphy->efuse_reg); pr_debug("%s(): bit_mask:%d efuse based tune1 value:%d\n", __func__, bit_mask, qphy->tune_val); qphy->tune_val = TUNE_VAL_MASK(qphy->tune_val, qphy->efuse_bit_pos, bit_mask); reg = readb_relaxed(qphy->base + QUSB2PHY_PORT_TUNE1); if (qphy->tune_val) { reg = reg & 0x0f; reg |= (qphy->tune_val << 4); } qphy->tune_val = reg; } static void qusb_phy_write_seq(void __iomem *base, u32 *seq, int cnt, unsigned long delay) { int i; pr_debug("Seq count:%d\n", cnt); for (i = 0; i < cnt; i = i+2) { pr_debug("write 0x%02x to 0x%02x\n", seq[i], seq[i+1]); writel_relaxed(seq[i], base + seq[i+1]); if (delay) usleep_range(delay, (delay + 2000)); } } static void qusb_phy_host_init(struct usb_phy *phy) { u8 reg; int ret; struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); dev_dbg(phy->dev, "%s\n", __func__); /* Perform phy reset */ ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(phy->dev, "%s: phy_reset assert failed\n", __func__); usleep_range(100, 150); ret = reset_control_deassert(qphy->phy_reset); if (ret) dev_err(phy->dev, "%s: phy_reset deassert failed\n", __func__); qusb_phy_write_seq(qphy->base, qphy->qusb_phy_host_init_seq, qphy->host_init_seq_len, 0); /* Ensure above write is completed before turning ON ref clk */ wmb(); /* Require to get phy pll lock successfully */ usleep_range(150, 160); reg = readb_relaxed(qphy->base + QUSB2PHY_PLL_COMMON_STATUS_ONE); dev_dbg(phy->dev, "QUSB2PHY_PLL_COMMON_STATUS_ONE:%x\n", reg); if (!(reg & CORE_READY_STATUS)) { dev_err(phy->dev, "QUSB PHY PLL LOCK fails:%x\n", reg); WARN_ON(1); } } static int qusb_phy_init(struct usb_phy *phy) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); int ret; u8 reg; dev_dbg(phy->dev, "%s\n", __func__); /* bump up vdda33 voltage to operating level*/ ret = regulator_set_voltage(qphy->vdda33, qphy->vdda33_levels[1], qphy->vdda33_levels[2]); if (ret) { dev_err(qphy->phy.dev, "Unable to set voltage for vdda33:%d\n", ret); return ret; } qusb_phy_enable_clocks(qphy, true); /* Perform phy reset */ ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(phy->dev, "%s: phy_reset assert failed\n", __func__); usleep_range(100, 150); ret = reset_control_deassert(qphy->phy_reset); if (ret) dev_err(phy->dev, "%s: phy_reset deassert failed\n", __func__); if (qphy->emulation) { if (qphy->emu_init_seq) qusb_phy_write_seq(qphy->emu_phy_base, qphy->emu_init_seq, qphy->emu_init_seq_len, 0); if (qphy->qusb_phy_init_seq) qusb_phy_write_seq(qphy->base, qphy->qusb_phy_init_seq, qphy->init_seq_len, 0); /* Wait for 5ms as per QUSB2 RUMI sequence */ usleep_range(5000, 7000); if (qphy->phy_pll_reset_seq) qusb_phy_write_seq(qphy->base, qphy->phy_pll_reset_seq, qphy->phy_pll_reset_seq_len, 10000); if (qphy->emu_dcm_reset_seq) qusb_phy_write_seq(qphy->emu_phy_base, qphy->emu_dcm_reset_seq, qphy->emu_dcm_reset_seq_len, 10000); return 0; } /* Disable the PHY */ writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) | PWR_CTRL1_POWR_DOWN, qphy->base + QUSB2PHY_PWR_CTRL1); if (qphy->qusb_phy_init_seq) qusb_phy_write_seq(qphy->base, qphy->qusb_phy_init_seq, qphy->init_seq_len, 0); if (qphy->efuse_reg) { if (!qphy->tune_val) qusb_phy_get_tune1_param(qphy); pr_debug("%s(): Programming TUNE1 parameter as:%x\n", __func__, qphy->tune_val); writel_relaxed(qphy->tune_val, qphy->base + QUSB2PHY_PORT_TUNE1); } /* If phy_tune1 modparam set, override tune1 value */ if (phy_tune1) { pr_debug("%s(): (modparam) TUNE1 val:0x%02x\n", __func__, phy_tune1); writel_relaxed(phy_tune1, qphy->base + QUSB2PHY_PORT_TUNE1); } /* ensure above writes are completed before re-enabling PHY */ wmb(); /* Enable the PHY */ writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) & ~PWR_CTRL1_POWR_DOWN, qphy->base + QUSB2PHY_PWR_CTRL1); /* Ensure above write is completed before turning ON ref clk */ wmb(); /* Require to get phy pll lock successfully */ usleep_range(150, 160); reg = readb_relaxed(qphy->base + QUSB2PHY_PLL_COMMON_STATUS_ONE); dev_dbg(phy->dev, "QUSB2PHY_PLL_COMMON_STATUS_ONE:%x\n", reg); if (!(reg & CORE_READY_STATUS)) { dev_err(phy->dev, "QUSB PHY PLL LOCK fails:%x\n", reg); WARN_ON(1); } return 0; } static void qusb_phy_shutdown(struct usb_phy *phy) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); dev_dbg(phy->dev, "%s\n", __func__); qusb_phy_enable_clocks(qphy, true); /* Disable the PHY */ writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) | PWR_CTRL1_POWR_DOWN, qphy->base + QUSB2PHY_PWR_CTRL1); /* Makes sure that above write goes through */ wmb(); qusb_phy_enable_clocks(qphy, false); } static u32 qusb_phy_get_linestate(struct qusb_phy *qphy) { u32 linestate = 0; if (qphy->cable_connected) { if (qphy->phy.flags & PHY_HSFS_MODE) linestate |= LINESTATE_DP; else if (qphy->phy.flags & PHY_LS_MODE) linestate |= LINESTATE_DM; } return linestate; } /** * Performs QUSB2 PHY suspend/resume functionality. * * @uphy - usb phy pointer. * @suspend - to enable suspend or not. 1 - suspend, 0 - resume * */ static int qusb_phy_set_suspend(struct usb_phy *phy, int suspend) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); u32 linestate = 0, intr_mask = 0; static u8 analog_ctrl_two; int ret; if (qphy->suspended && suspend) { dev_dbg(phy->dev, "%s: USB PHY is already suspended\n", __func__); return 0; } if (suspend) { /* Bus suspend case */ if (qphy->cable_connected || (qphy->phy.flags & PHY_HOST_MODE)) { /* store clock settings like cmos/cml */ analog_ctrl_two = readl_relaxed(qphy->base + QUSB2PHY_PLL_ANALOG_CONTROLS_TWO); /* use CSR & switch to SE clk */ writel_relaxed(0xb, qphy->base + QUSB2PHY_PLL_ANALOG_CONTROLS_TWO); /* enable clock bypass */ writel_relaxed(0x90, qphy->base + QUSB2PHY_PLL_ANALOG_CONTROLS_ONE); /* Disable all interrupts */ writel_relaxed(0x00, qphy->base + QUSB2PHY_INTR_CTRL); linestate = qusb_phy_get_linestate(qphy); /* * D+/D- interrupts are level-triggered, but we are * only interested if the line state changes, so enable * the high/low trigger based on current state. In * other words, enable the triggers _opposite_ of what * the current D+/D- levels are. * e.g. if currently D+ high, D- low (HS 'J'/Suspend), * configure the mask to trigger on D+ low OR D- high */ intr_mask = DMSE_INTERRUPT | DPSE_INTERRUPT; if (!(linestate & LINESTATE_DP)) /* D+ low */ intr_mask |= DPSE_INTR_HIGH_SEL; if (!(linestate & LINESTATE_DM)) /* D- low */ intr_mask |= DMSE_INTR_HIGH_SEL; writel_relaxed(intr_mask, qphy->base + QUSB2PHY_INTR_CTRL); if (linestate & (LINESTATE_DP | LINESTATE_DM)) { /* enable phy auto-resume */ writel_relaxed(0x91, qphy->base + QUSB2PHY_TEST1); /* flush the previous write before next write */ wmb(); writel_relaxed(0x90, qphy->base + QUSB2PHY_TEST1); } dev_dbg(phy->dev, "%s: intr_mask = %x\n", __func__, intr_mask); /* Makes sure that above write goes through */ wmb(); qusb_phy_enable_clocks(qphy, false); } else { /* Cable disconnect case */ ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(phy->dev, "%s: phy_reset assert failed\n", __func__); usleep_range(100, 150); ret = reset_control_deassert(qphy->phy_reset); if (ret) dev_err(phy->dev, "%s: phy_reset deassert failed\n", __func__); writel_relaxed(0x1b, qphy->base + QUSB2PHY_PLL_ANALOG_CONTROLS_TWO); /* enable clock bypass */ writel_relaxed(0x90, qphy->base + QUSB2PHY_PLL_ANALOG_CONTROLS_ONE); writel_relaxed(0x0, qphy->tcsr_clamp_dig_n); /* * clamp needs asserted before * power/clocks can be turned off */ wmb(); qusb_phy_enable_clocks(qphy, false); qusb_phy_enable_power(qphy, false); } qphy->suspended = true; } else { /* Bus resume case */ if (qphy->cable_connected || (qphy->phy.flags & PHY_HOST_MODE)) { qusb_phy_enable_clocks(qphy, true); /* restore the default clock settings */ writel_relaxed(analog_ctrl_two, qphy->base + QUSB2PHY_PLL_ANALOG_CONTROLS_TWO); /* disable clock bypass */ writel_relaxed(0x80, qphy->base + QUSB2PHY_PLL_ANALOG_CONTROLS_ONE); /* Clear all interrupts on resume */ writel_relaxed(0x00, qphy->base + QUSB2PHY_INTR_CTRL); /* Makes sure that above write goes through */ wmb(); } else { /* Cable connect case */ writel_relaxed(0x1, qphy->tcsr_clamp_dig_n); /* * clamp needs de-asserted before * power/clocks can be turned on */ wmb(); qusb_phy_enable_power(qphy, true); ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(phy->dev, "%s: phy_reset assert failed\n", __func__); usleep_range(100, 150); ret = reset_control_deassert(qphy->phy_reset); if (ret) dev_err(phy->dev, "%s: phy_reset deassert failed\n", __func__); qusb_phy_enable_clocks(qphy, true); } qphy->suspended = false; } return 0; } static int qusb_phy_notify_connect(struct usb_phy *phy, enum usb_device_speed speed) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); qphy->cable_connected = true; if (qphy->qusb_phy_host_init_seq && qphy->phy.flags & PHY_HOST_MODE) qusb_phy_host_init(phy); dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n", qphy->cable_connected); return 0; } static int qusb_phy_notify_disconnect(struct usb_phy *phy, enum usb_device_speed speed) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); qphy->cable_connected = false; dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n", qphy->cable_connected); return 0; } static int qusb_phy_dpdm_regulator_enable(struct regulator_dev *rdev) { struct qusb_phy *qphy = rdev_get_drvdata(rdev); dev_dbg(qphy->phy.dev, "%s\n", __func__); return qusb_phy_update_dpdm(&qphy->phy, POWER_SUPPLY_DP_DM_DPF_DMF); } static int qusb_phy_dpdm_regulator_disable(struct regulator_dev *rdev) { struct qusb_phy *qphy = rdev_get_drvdata(rdev); dev_dbg(qphy->phy.dev, "%s\n", __func__); return qusb_phy_update_dpdm(&qphy->phy, POWER_SUPPLY_DP_DM_DPR_DMR); } static int qusb_phy_dpdm_regulator_is_enabled(struct regulator_dev *rdev) { struct qusb_phy *qphy = rdev_get_drvdata(rdev); dev_dbg(qphy->phy.dev, "%s qphy->rm_pulldown = %d\n", __func__, qphy->rm_pulldown); return qphy->rm_pulldown; } static struct regulator_ops qusb_phy_dpdm_regulator_ops = { .enable = qusb_phy_dpdm_regulator_enable, .disable = qusb_phy_dpdm_regulator_disable, .is_enabled = qusb_phy_dpdm_regulator_is_enabled, }; static int qusb_phy_regulator_init(struct qusb_phy *qphy) { struct device *dev = qphy->phy.dev; struct regulator_config cfg = {}; struct regulator_init_data *init_data; init_data = devm_kzalloc(dev, sizeof(*init_data), GFP_KERNEL); if (!init_data) return -ENOMEM; init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS; qphy->dpdm_rdesc.owner = THIS_MODULE; qphy->dpdm_rdesc.type = REGULATOR_VOLTAGE; qphy->dpdm_rdesc.ops = &qusb_phy_dpdm_regulator_ops; qphy->dpdm_rdesc.name = kbasename(dev->of_node->full_name); cfg.dev = dev; cfg.init_data = init_data; cfg.driver_data = qphy; cfg.of_node = dev->of_node; qphy->dpdm_rdev = devm_regulator_register(dev, &qphy->dpdm_rdesc, &cfg); if (IS_ERR(qphy->dpdm_rdev)) return PTR_ERR(qphy->dpdm_rdev); return 0; } static int qusb_phy_probe(struct platform_device *pdev) { struct qusb_phy *qphy; struct device *dev = &pdev->dev; struct resource *res; int ret = 0, size = 0; qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL); if (!qphy) return -ENOMEM; qphy->phy.dev = dev; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qusb_phy_base"); qphy->base = devm_ioremap_resource(dev, res); if (IS_ERR(qphy->base)) return PTR_ERR(qphy->base); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "emu_phy_base"); if (res) { qphy->emu_phy_base = devm_ioremap_resource(dev, res); if (IS_ERR(qphy->emu_phy_base)) { dev_dbg(dev, "couldn't ioremap emu_phy_base\n"); qphy->emu_phy_base = NULL; } } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tcsr_clamp_dig_n_1p8"); if (res) { qphy->tcsr_clamp_dig_n = devm_ioremap_resource(dev, res); if (IS_ERR(qphy->tcsr_clamp_dig_n)) { dev_dbg(dev, "couldn't ioremap tcsr_clamp_dig_n\n"); return PTR_ERR(qphy->tcsr_clamp_dig_n); } } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse_addr"); if (res) { qphy->efuse_reg = devm_ioremap_nocache(dev, res->start, resource_size(res)); if (!IS_ERR_OR_NULL(qphy->efuse_reg)) { ret = of_property_read_u32(dev->of_node, "qcom,efuse-bit-pos", &qphy->efuse_bit_pos); if (!ret) { ret = of_property_read_u32(dev->of_node, "qcom,efuse-num-bits", &qphy->efuse_num_of_bits); } if (ret) { dev_err(dev, "DT Value for efuse is invalid.\n"); return -EINVAL; } } } qphy->ref_clk_src = devm_clk_get(dev, "ref_clk_src"); if (IS_ERR(qphy->ref_clk_src)) dev_dbg(dev, "clk get failed for ref_clk_src\n"); qphy->ref_clk = devm_clk_get(dev, "ref_clk"); if (IS_ERR(qphy->ref_clk)) dev_dbg(dev, "clk get failed for ref_clk\n"); else clk_set_rate(qphy->ref_clk, 19200000); if (of_property_match_string(pdev->dev.of_node, "clock-names", "cfg_ahb_clk") >= 0) { qphy->cfg_ahb_clk = devm_clk_get(dev, "cfg_ahb_clk"); if (IS_ERR(qphy->cfg_ahb_clk)) { ret = PTR_ERR(qphy->cfg_ahb_clk); if (ret != -EPROBE_DEFER) dev_err(dev, "clk get failed for cfg_ahb_clk ret %d\n", ret); return ret; } } qphy->phy_reset = devm_reset_control_get(dev, "phy_reset"); if (IS_ERR(qphy->phy_reset)) return PTR_ERR(qphy->phy_reset); qphy->emulation = of_property_read_bool(dev->of_node, "qcom,emulation"); of_get_property(dev->of_node, "qcom,emu-init-seq", &size); if (size) { qphy->emu_init_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->emu_init_seq) { qphy->emu_init_seq_len = (size / sizeof(*qphy->emu_init_seq)); if (qphy->emu_init_seq_len % 2) { dev_err(dev, "invalid emu_init_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,emu-init-seq", qphy->emu_init_seq, qphy->emu_init_seq_len); } else { dev_dbg(dev, "error allocating memory for emu_init_seq\n"); } } size = 0; of_get_property(dev->of_node, "qcom,phy-pll-reset-seq", &size); if (size) { qphy->phy_pll_reset_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->phy_pll_reset_seq) { qphy->phy_pll_reset_seq_len = (size / sizeof(*qphy->phy_pll_reset_seq)); if (qphy->phy_pll_reset_seq_len % 2) { dev_err(dev, "invalid phy_pll_reset_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,phy-pll-reset-seq", qphy->phy_pll_reset_seq, qphy->phy_pll_reset_seq_len); } else { dev_dbg(dev, "error allocating memory for phy_pll_reset_seq\n"); } } size = 0; of_get_property(dev->of_node, "qcom,emu-dcm-reset-seq", &size); if (size) { qphy->emu_dcm_reset_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->emu_dcm_reset_seq) { qphy->emu_dcm_reset_seq_len = (size / sizeof(*qphy->emu_dcm_reset_seq)); if (qphy->emu_dcm_reset_seq_len % 2) { dev_err(dev, "invalid emu_dcm_reset_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,emu-dcm-reset-seq", qphy->emu_dcm_reset_seq, qphy->emu_dcm_reset_seq_len); } else { dev_dbg(dev, "error allocating memory for emu_dcm_reset_seq\n"); } } size = 0; of_get_property(dev->of_node, "qcom,qusb-phy-init-seq", &size); if (size) { qphy->qusb_phy_init_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->qusb_phy_init_seq) { qphy->init_seq_len = (size / sizeof(*qphy->qusb_phy_init_seq)); if (qphy->init_seq_len % 2) { dev_err(dev, "invalid init_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,qusb-phy-init-seq", qphy->qusb_phy_init_seq, qphy->init_seq_len); } else { dev_err(dev, "error allocating memory for phy_init_seq\n"); } } qphy->host_init_seq_len = of_property_count_elems_of_size(dev->of_node, "qcom,qusb-phy-host-init-seq", sizeof(*qphy->qusb_phy_host_init_seq)); if (qphy->host_init_seq_len > 0) { qphy->qusb_phy_host_init_seq = devm_kcalloc(dev, qphy->host_init_seq_len, sizeof(*qphy->qusb_phy_host_init_seq), GFP_KERNEL); if (qphy->qusb_phy_host_init_seq) of_property_read_u32_array(dev->of_node, "qcom,qusb-phy-host-init-seq", qphy->qusb_phy_host_init_seq, qphy->host_init_seq_len); else return -ENOMEM; } ret = of_property_read_u32_array(dev->of_node, "qcom,vdd-voltage-level", (u32 *) qphy->vdd_levels, ARRAY_SIZE(qphy->vdd_levels)); if (ret) { dev_err(dev, "error reading qcom,vdd-voltage-level property\n"); return ret; } ret = of_property_read_u32_array(dev->of_node, "qcom,vdda33-voltage-level", (u32 *) qphy->vdda33_levels, ARRAY_SIZE(qphy->vdda33_levels)); if (ret == -EINVAL) { qphy->vdda33_levels[0] = QUSB2PHY_3P3_VOL_MIN; qphy->vdda33_levels[1] = QUSB2PHY_3P3_VOL_MIN; qphy->vdda33_levels[2] = QUSB2PHY_3P3_VOL_MAX; } else if (ret) { dev_err(dev, "error reading qcom,vdda33-voltage-level property\n"); return ret; } qphy->vdd = devm_regulator_get(dev, "vdd"); if (IS_ERR(qphy->vdd)) { dev_err(dev, "unable to get vdd supply\n"); return PTR_ERR(qphy->vdd); } qphy->vdda33 = devm_regulator_get(dev, "vdda33"); if (IS_ERR(qphy->vdda33)) { dev_err(dev, "unable to get vdda33 supply\n"); return PTR_ERR(qphy->vdda33); } qphy->vdda18 = devm_regulator_get(dev, "vdda18"); if (IS_ERR(qphy->vdda18)) { dev_err(dev, "unable to get vdda18 supply\n"); return PTR_ERR(qphy->vdda18); } qphy->vdda12 = devm_regulator_get(dev, "vdda12"); if (IS_ERR(qphy->vdda12)) { dev_err(dev, "unable to get vdda12 supply\n"); return PTR_ERR(qphy->vdda12); } mutex_init(&qphy->lock); platform_set_drvdata(pdev, qphy); qphy->phy.label = "msm-qusb-phy-v2"; qphy->phy.init = qusb_phy_init; qphy->phy.set_suspend = qusb_phy_set_suspend; qphy->phy.shutdown = qusb_phy_shutdown; qphy->phy.type = USB_PHY_TYPE_USB2; qphy->phy.notify_connect = qusb_phy_notify_connect; qphy->phy.notify_disconnect = qusb_phy_notify_disconnect; ret = usb_add_phy_dev(&qphy->phy); if (ret) return ret; ret = qusb_phy_regulator_init(qphy); if (ret) usb_remove_phy(&qphy->phy); /* de-asseert clamp dig n to reduce leakage on 1p8 upon boot up */ writel_relaxed(0x0, qphy->tcsr_clamp_dig_n); return ret; } static int qusb_phy_remove(struct platform_device *pdev) { struct qusb_phy *qphy = platform_get_drvdata(pdev); usb_remove_phy(&qphy->phy); if (qphy->clocks_enabled) { clk_disable_unprepare(qphy->cfg_ahb_clk); clk_disable_unprepare(qphy->ref_clk); clk_disable_unprepare(qphy->ref_clk_src); qphy->clocks_enabled = false; } qusb_phy_enable_power(qphy, false); return 0; } static const struct of_device_id qusb_phy_id_table[] = { { .compatible = "qcom,qusb2phy-v2", }, { }, }; MODULE_DEVICE_TABLE(of, qusb_phy_id_table); static struct platform_driver qusb_phy_driver = { .probe = qusb_phy_probe, .remove = qusb_phy_remove, .driver = { .name = "msm-qusb-phy-v2", .of_match_table = of_match_ptr(qusb_phy_id_table), }, }; module_platform_driver(qusb_phy_driver); MODULE_DESCRIPTION("MSM QUSB2 PHY v2 driver"); MODULE_LICENSE("GPL v2");