/* Copyright (c) 2011-2015, 2018-2019, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_DESC "USB host diag bridge driver" #define DRIVER_VERSION "1.0" enum { DIAG_BRIDGE, IPC_BRIDGE, MAX_BRIDGE_DEVS, }; #define AUTOSUSP_DELAY_WITH_USB 1000 #define IPC_BRIDGE_MAX_READ_SZ (8 * 1024) #define IPC_BRIDGE_MAX_WRITE_SZ (8 * 1024) struct diag_bridge { struct usb_device *udev; struct usb_interface *ifc; struct usb_anchor submitted; __u8 in_epAddr; __u8 out_epAddr; int err; struct kref kref; struct mutex ifc_mutex; struct mutex read_mutex; struct mutex write_mutex; bool opened; struct completion read_done; struct completion write_done; int read_result; int write_result; struct diag_bridge_ops *ops; struct platform_device *pdev; unsigned default_autosusp_delay; int id; /* Support INT IN instead of BULK IN */ bool use_int_in_pipe; unsigned int period; /* debugging counters */ unsigned long bytes_to_host; unsigned long bytes_to_mdm; unsigned pending_reads; unsigned pending_writes; unsigned drop_count; }; struct diag_bridge *__dev[MAX_BRIDGE_DEVS]; int diag_bridge_open(int id, struct diag_bridge_ops *ops) { struct diag_bridge *dev; if (id < 0 || id >= MAX_BRIDGE_DEVS) { pr_err("%s: Invalid device ID\n", __func__); return -ENODEV; } dev = __dev[id]; if (!dev) { pr_err("%s: dev is null\n", __func__); return -ENODEV; } if (dev->ops) { pr_err("%s: bridge already opened\n", __func__); return -EALREADY; } mutex_lock(&dev->ifc_mutex); if (dev->opened) { mutex_unlock(&dev->ifc_mutex); pr_err("%s: Bridge already opened\n", __func__); return -EBUSY; } dev->opened = true; mutex_unlock(&dev->ifc_mutex); dev_dbg(&dev->ifc->dev, "%s\n", __func__); dev->ops = ops; dev->err = 0; #ifdef CONFIG_PM dev->default_autosusp_delay = dev->udev->dev.power.autosuspend_delay; #endif pm_runtime_set_autosuspend_delay(&dev->udev->dev, AUTOSUSP_DELAY_WITH_USB); kref_get(&dev->kref); return 0; } EXPORT_SYMBOL(diag_bridge_open); static int ipc_bridge_open(struct platform_device *pdev) { if (__dev[IPC_BRIDGE]->pdev != pdev) return -EINVAL; return diag_bridge_open(IPC_BRIDGE, NULL); } static void diag_bridge_delete(struct kref *kref) { struct diag_bridge *dev = container_of(kref, struct diag_bridge, kref); struct usb_interface *ifc = dev->ifc; int id = dev->id; dev_dbg(&dev->ifc->dev, "%s\n", __func__); usb_set_intfdata(ifc, NULL); usb_put_intf(ifc); usb_put_dev(dev->udev); __dev[id] = 0; kfree(dev); } void diag_bridge_close(int id) { struct diag_bridge *dev; if (id < 0 || id >= MAX_BRIDGE_DEVS) { pr_err("%s: Invalid device ID\n", __func__); return; } dev = __dev[id]; if (!dev) { pr_err("%s: dev is null\n", __func__); return; } if (id == DIAG_BRIDGE && !dev->ops) { pr_err("%s: can't close bridge that was not open\n", __func__); return; } mutex_lock(&dev->ifc_mutex); if (!dev->opened) { mutex_unlock(&dev->ifc_mutex); pr_err("%s: Bridge not opened\n", __func__); return; } dev->opened = false; mutex_unlock(&dev->ifc_mutex); dev_dbg(&dev->ifc->dev, "%s\n", __func__); usb_kill_anchored_urbs(&dev->submitted); dev->ops = 0; pm_runtime_set_autosuspend_delay(&dev->udev->dev, dev->default_autosusp_delay); kref_put(&dev->kref, diag_bridge_delete); } EXPORT_SYMBOL(diag_bridge_close); static void ipc_bridge_close(struct platform_device *pdev) { WARN_ON(__dev[IPC_BRIDGE]->pdev != pdev); WARN_ON(__dev[IPC_BRIDGE]->udev->state != USB_STATE_NOTATTACHED); diag_bridge_close(IPC_BRIDGE); } static void diag_bridge_read_cb(struct urb *urb) { struct diag_bridge *dev = urb->context; struct diag_bridge_ops *cbs = dev->ops; dev_dbg(&dev->ifc->dev, "%s: status:%d actual:%d\n", __func__, urb->status, urb->actual_length); /* save error so that subsequent read/write returns ENODEV */ if (urb->status == -EPROTO) dev->err = urb->status; if (cbs && cbs->read_complete_cb) { cbs->read_complete_cb(cbs->ctxt, urb->transfer_buffer, urb->transfer_buffer_length, urb->status < 0 ? urb->status : urb->actual_length); } else { if (urb->dev->state == USB_STATE_NOTATTACHED) dev->read_result = -ENODEV; else if (urb->status < 0) dev->read_result = urb->status; else dev->read_result = urb->actual_length; complete(&dev->read_done); } dev->bytes_to_host += urb->actual_length; dev->pending_reads--; kref_put(&dev->kref, diag_bridge_delete); } int diag_bridge_read(int id, char *data, int size) { struct urb *urb = NULL; unsigned int pipe; struct diag_bridge *dev; int ret; if (id < 0 || id >= MAX_BRIDGE_DEVS) { pr_err("%s: Invalid device ID\n", __func__); return -ENODEV; } pr_debug("%s: reading %d bytes\n", __func__, size); dev = __dev[id]; if (!dev) { pr_err("%s: device is disconnected\n", __func__); return -ENODEV; } mutex_lock(&dev->read_mutex); if (!dev->ifc) { pr_err("%s: device is disconnected\n", __func__); ret = -ENODEV; goto error; } if (id == DIAG_BRIDGE && !dev->ops) { pr_err("%s: bridge is not open\n", __func__); ret = -ENODEV; goto error; } if (!size) { dev_err(&dev->ifc->dev, "invalid size:%d\n", size); dev->drop_count++; ret = -EINVAL; goto error; } /* if there was a previous unrecoverable error, just quit */ if (id == DIAG_BRIDGE && dev->err) { pr_err("%s: EPROTO error occurred, or device disconnected\n", __func__); ret = -ENODEV; goto error; } kref_get(&dev->kref); urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { dev_err(&dev->ifc->dev, "unable to allocate urb\n"); ret = -ENOMEM; goto put_error; } ret = usb_autopm_get_interface(dev->ifc); if (ret < 0 && ret != -EAGAIN && ret != -EACCES) { pr_err_ratelimited("%s: read: autopm_get failed:%d\n", __func__, ret); goto free_error; } if (dev->use_int_in_pipe) { pipe = usb_rcvintpipe(dev->udev, dev->in_epAddr); usb_fill_int_urb(urb, dev->udev, pipe, data, size, diag_bridge_read_cb, dev, dev->period); } else { pipe = usb_rcvbulkpipe(dev->udev, dev->in_epAddr); usb_fill_bulk_urb(urb, dev->udev, pipe, data, size, diag_bridge_read_cb, dev); } usb_anchor_urb(urb, &dev->submitted); dev->pending_reads++; ret = usb_submit_urb(urb, GFP_KERNEL); if (ret) { pr_err_ratelimited("%s: submitting urb failed err:%d\n", __func__, ret); dev->pending_reads--; usb_unanchor_urb(urb); usb_autopm_put_interface(dev->ifc); goto free_error; } usb_autopm_put_interface(dev->ifc); if (id == IPC_BRIDGE) { wait_for_completion(&dev->read_done); ret = dev->read_result; } usb_free_urb(urb); mutex_unlock(&dev->read_mutex); return ret; free_error: usb_free_urb(urb); put_error: /* If URB submit successful, this is done in the completion handler */ kref_put(&dev->kref, diag_bridge_delete); error: mutex_unlock(&dev->read_mutex); return ret; } EXPORT_SYMBOL(diag_bridge_read); static int ipc_bridge_read(struct platform_device *pdev, char *buf, unsigned int count) { if (__dev[IPC_BRIDGE]->pdev != pdev) return -EINVAL; if (!__dev[IPC_BRIDGE]->opened) return -EPERM; if (count > IPC_BRIDGE_MAX_READ_SZ) return -ENOSPC; if (__dev[IPC_BRIDGE]->udev->state == USB_STATE_NOTATTACHED) return -ENODEV; return diag_bridge_read(IPC_BRIDGE, buf, count); } static void diag_bridge_write_cb(struct urb *urb) { struct diag_bridge *dev = urb->context; struct diag_bridge_ops *cbs = dev->ops; dev_dbg(&dev->ifc->dev, "%s\n", __func__); usb_autopm_put_interface_async(dev->ifc); /* save error so that subsequent read/write returns ENODEV */ if (urb->status == -EPROTO) dev->err = urb->status; if (cbs && cbs->write_complete_cb) { cbs->write_complete_cb(cbs->ctxt, urb->transfer_buffer, urb->transfer_buffer_length, urb->status < 0 ? urb->status : urb->actual_length); } else { if (urb->dev->state == USB_STATE_NOTATTACHED) dev->write_result = -ENODEV; else if (urb->status < 0) dev->write_result = urb->status; else dev->write_result = urb->actual_length; complete(&dev->write_done); } dev->bytes_to_mdm += urb->actual_length; dev->pending_writes--; kref_put(&dev->kref, diag_bridge_delete); } int diag_bridge_write(int id, char *data, int size) { struct urb *urb = NULL; unsigned int pipe; struct diag_bridge *dev; int ret; if (id < 0 || id >= MAX_BRIDGE_DEVS) { pr_err("%s: Invalid device ID\n", __func__); return -ENODEV; } pr_debug("%s: writing %d bytes\n", __func__, size); dev = __dev[id]; if (!dev) { pr_err("%s: device is disconnected\n", __func__); return -ENODEV; } mutex_lock(&dev->write_mutex); if (!dev->ifc) { pr_err("%s: device is disconnected\n", __func__); ret = -ENODEV; goto error; } if (id == DIAG_BRIDGE && !dev->ops) { pr_err("%s: bridge is not open\n", __func__); ret = -ENODEV; goto error; } if (!size) { dev_err(&dev->ifc->dev, "invalid size:%d\n", size); ret = -EINVAL; goto error; } /* if there was a previous unrecoverable error, just quit */ if (id == DIAG_BRIDGE && dev->err) { pr_err("%s: EPROTO error occurred, or device disconnected\n", __func__); ret = -ENODEV; goto error; } kref_get(&dev->kref); urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { dev_err(&dev->ifc->dev, "unable to allocate urb\n"); ret = -ENOMEM; goto put_error; } ret = usb_autopm_get_interface(dev->ifc); if (ret < 0 && ret != -EAGAIN && ret != -EACCES) { pr_err_ratelimited("%s: write: autopm_get failed:%d\n", __func__, ret); goto free_error; } pipe = usb_sndbulkpipe(dev->udev, dev->out_epAddr); usb_fill_bulk_urb(urb, dev->udev, pipe, data, size, diag_bridge_write_cb, dev); urb->transfer_flags |= URB_ZERO_PACKET; usb_anchor_urb(urb, &dev->submitted); dev->pending_writes++; ret = usb_submit_urb(urb, GFP_KERNEL); if (ret) { pr_err_ratelimited("%s: submitting urb failed err:%d\n", __func__, ret); dev->pending_writes--; usb_unanchor_urb(urb); usb_autopm_put_interface(dev->ifc); goto free_error; } if (id == IPC_BRIDGE) { wait_for_completion(&dev->write_done); ret = dev->write_result; } usb_free_urb(urb); mutex_unlock(&dev->write_mutex); return ret; free_error: usb_free_urb(urb); put_error: /* If URB submit successful, this is done in the completion handler */ kref_put(&dev->kref, diag_bridge_delete); error: mutex_unlock(&dev->write_mutex); return ret; } EXPORT_SYMBOL(diag_bridge_write); static int ipc_bridge_write(struct platform_device *pdev, char *buf, unsigned int count) { if (__dev[IPC_BRIDGE]->pdev != pdev) return -EINVAL; if (!__dev[IPC_BRIDGE]->opened) return -EPERM; if (count > IPC_BRIDGE_MAX_WRITE_SZ) return -EINVAL; return diag_bridge_write(IPC_BRIDGE, buf, count); } #if defined(CONFIG_DEBUG_FS) #define DEBUG_BUF_SIZE 512 static ssize_t diag_read_stats(struct file *file, char __user *ubuf, size_t count, loff_t *ppos) { char *buf; int i, ret = 0; buf = kzalloc(sizeof(char) * DEBUG_BUF_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; for (i = 0; i < MAX_BRIDGE_DEVS; i++) { struct diag_bridge *dev = __dev[i]; if (!dev) continue; ret += scnprintf(buf, DEBUG_BUF_SIZE, "epin:%d, epout:%d\n" "bytes to host: %lu\n" "bytes to mdm: %lu\n" "pending reads: %u\n" "pending writes: %u\n" "drop count:%u\n" "last error: %d\n", dev->in_epAddr, dev->out_epAddr, dev->bytes_to_host, dev->bytes_to_mdm, dev->pending_reads, dev->pending_writes, dev->drop_count, dev->err); } ret = simple_read_from_buffer(ubuf, count, ppos, buf, ret); kfree(buf); return ret; } static ssize_t diag_reset_stats(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { int i; for (i = 0; i < MAX_BRIDGE_DEVS; i++) { struct diag_bridge *dev = __dev[i]; if (dev) { dev->bytes_to_host = dev->bytes_to_mdm = 0; dev->pending_reads = dev->pending_writes = 0; dev->drop_count = 0; } } return count; } const struct file_operations diag_stats_ops = { .read = diag_read_stats, .write = diag_reset_stats, }; static struct dentry *dent; static void diag_bridge_debugfs_init(void) { struct dentry *dfile; dent = debugfs_create_dir("diag_bridge", 0); if (IS_ERR(dent)) return; dfile = debugfs_create_file("status", 0444, dent, 0, &diag_stats_ops); if (!dfile || IS_ERR(dfile)) debugfs_remove(dent); } static void diag_bridge_debugfs_cleanup(void) { debugfs_remove_recursive(dent); dent = NULL; } #else static inline void diag_bridge_debugfs_init(void) { } static inline void diag_bridge_debugfs_cleanup(void) { } #endif static const struct ipc_bridge_platform_data ipc_bridge_pdata = { .max_read_size = IPC_BRIDGE_MAX_READ_SZ, .max_write_size = IPC_BRIDGE_MAX_WRITE_SZ, .open = ipc_bridge_open, .read = ipc_bridge_read, .write = ipc_bridge_write, .close = ipc_bridge_close, }; static int diag_bridge_probe(struct usb_interface *ifc, const struct usb_device_id *id) { struct diag_bridge *dev; struct usb_host_interface *ifc_desc; struct usb_endpoint_descriptor *ep_desc; int i, devid, ret = -ENOMEM; pr_debug("%s: id:%lu\n", __func__, id->driver_info); devid = id->driver_info & 0xFF; if (devid < 0 || devid >= MAX_BRIDGE_DEVS) { pr_err("%s: Invalid device ID\n", __func__); return -ENODEV; } /* already probed? */ if (__dev[devid]) { pr_err("%s: Diag device already probed\n", __func__); return -ENODEV; } dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; __dev[devid] = dev; dev->id = devid; dev->udev = usb_get_dev(interface_to_usbdev(ifc)); dev->ifc = usb_get_intf(ifc); kref_init(&dev->kref); mutex_init(&dev->ifc_mutex); mutex_init(&dev->read_mutex); mutex_init(&dev->write_mutex); init_completion(&dev->read_done); init_completion(&dev->write_done); init_usb_anchor(&dev->submitted); ifc_desc = ifc->cur_altsetting; for (i = 0; i < ifc_desc->desc.bNumEndpoints; i++) { ep_desc = &ifc_desc->endpoint[i].desc; if (!dev->in_epAddr && (usb_endpoint_is_bulk_in(ep_desc) || usb_endpoint_is_int_in(ep_desc))) { dev->in_epAddr = ep_desc->bEndpointAddress; if (usb_endpoint_is_int_in(ep_desc)) { dev->use_int_in_pipe = 1; dev->period = ep_desc->bInterval; } } if (!dev->out_epAddr && usb_endpoint_is_bulk_out(ep_desc)) dev->out_epAddr = ep_desc->bEndpointAddress; } if (!(dev->in_epAddr && dev->out_epAddr)) { pr_err("%s: could not find bulk in and bulk out endpoints\n", __func__); ret = -ENODEV; goto error; } usb_set_intfdata(ifc, dev); diag_bridge_debugfs_init(); if (devid == DIAG_BRIDGE) { dev->pdev = platform_device_register_simple("diag_bridge", devid, NULL, 0); if (IS_ERR(dev->pdev)) { pr_err("%s: unable to allocate platform device\n", __func__); ret = PTR_ERR(dev->pdev); goto error; } } else { dev->pdev = platform_device_alloc("ipc_bridge", -1); if (!dev->pdev) { pr_err("%s: unable to allocate platform device\n", __func__); ret = -ENOMEM; goto error; } ret = platform_device_add_data(dev->pdev, &ipc_bridge_pdata, sizeof(struct ipc_bridge_platform_data)); if (ret) { pr_err("%s: fail to add pdata\n", __func__); goto put_pdev; } ret = platform_device_add(dev->pdev); if (ret) { pr_err("%s: fail to add pdev\n", __func__); goto put_pdev; } } dev_dbg(&dev->ifc->dev, "%s: complete\n", __func__); return 0; put_pdev: platform_device_put(dev->pdev); error: diag_bridge_debugfs_cleanup(); mutex_destroy(&dev->write_mutex); mutex_destroy(&dev->read_mutex); mutex_destroy(&dev->ifc_mutex); if (dev) kref_put(&dev->kref, diag_bridge_delete); return ret; } static void diag_bridge_disconnect(struct usb_interface *ifc) { struct diag_bridge *dev = usb_get_intfdata(ifc); dev_dbg(&dev->ifc->dev, "%s\n", __func__); platform_device_unregister(dev->pdev); diag_bridge_debugfs_cleanup(); dev->err = -ENODEV; kref_put(&dev->kref, diag_bridge_delete); } static int diag_bridge_suspend(struct usb_interface *ifc, pm_message_t message) { struct diag_bridge *dev = usb_get_intfdata(ifc); struct diag_bridge_ops *cbs = dev->ops; int ret = 0; if (cbs && cbs->suspend) { ret = cbs->suspend(cbs->ctxt); if (ret) { dev_dbg(&dev->ifc->dev, "%s: diag veto'd suspend\n", __func__); return ret; } } usb_kill_anchored_urbs(&dev->submitted); return ret; } static int diag_bridge_resume(struct usb_interface *ifc) { struct diag_bridge *dev = usb_get_intfdata(ifc); struct diag_bridge_ops *cbs = dev->ops; if (cbs && cbs->resume) cbs->resume(cbs->ctxt); return 0; } #define DEV_ID(n) (n) static const struct usb_device_id diag_bridge_ids[] = { { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x9001, 0), .driver_info = DEV_ID(0), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x901D, 0), .driver_info = DEV_ID(0), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x901F, 0), .driver_info = DEV_ID(0), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x9034, 0), .driver_info = DEV_ID(0), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x9048, 0), .driver_info = DEV_ID(0), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x904C, 0), .driver_info = DEV_ID(0), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x9075, 0), .driver_info = DEV_ID(0), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x9079, 0), .driver_info = DEV_ID(1), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x908A, 0), .driver_info = DEV_ID(0), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x908E, 0), .driver_info = DEV_ID(0), }, /* 908E, ifc#1 refers to diag client interface */ { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x908E, 1), .driver_info = DEV_ID(1), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x909C, 0), .driver_info = DEV_ID(0), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x909D, 0), .driver_info = DEV_ID(0), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x909E, 0), .driver_info = DEV_ID(0), }, /* 909E, ifc#1 refers to diag client interface */ { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x909E, 1), .driver_info = DEV_ID(1), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x909F, 0), .driver_info = DEV_ID(0), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x90A0, 0), .driver_info = DEV_ID(0), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x90A4, 0), .driver_info = DEV_ID(0), }, /* 909E, ifc#1 refers to diag client interface */ { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x90A4, 1), .driver_info = DEV_ID(1), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x90EF, 4), .driver_info = DEV_ID(0), }, { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x90F0, 4), .driver_info = DEV_ID(0), }, /* 9900, ifc#2 refers to diag client interface */ { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x9900, 2), .driver_info = DEV_ID(0), }, /* 9900, ifc#1 refers to IPC client interface */ { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x9900, 1), .driver_info = DEV_ID(1), }, /* 9901, ifc#4 refers to diag client interface */ { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x9901, 4), .driver_info = DEV_ID(0), }, /* 9901, ifc#3 refers to IPC client interface */ { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x9901, 3), .driver_info = DEV_ID(1), }, /* 9902, ifc#2 refers to diag client interface */ { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x9902, 2), .driver_info = DEV_ID(0), }, /* 9902, ifc#1 refers to IPC client interface */ { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x9902, 1), .driver_info = DEV_ID(1), }, /* 9903, ifc#4 refers to diag client interface */ { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x9903, 4), .driver_info = DEV_ID(0), }, /* 9903, ifc#3 refers to IPC client interface */ { USB_DEVICE_INTERFACE_NUMBER(0x5c6, 0x9903, 3), .driver_info = DEV_ID(1), }, {} /* terminating entry */ }; MODULE_DEVICE_TABLE(usb, diag_bridge_ids); static struct usb_driver diag_bridge_driver = { .name = "diag_bridge", .probe = diag_bridge_probe, .disconnect = diag_bridge_disconnect, .suspend = diag_bridge_suspend, .resume = diag_bridge_resume, .reset_resume = diag_bridge_resume, .id_table = diag_bridge_ids, .supports_autosuspend = 1, }; static int __init diag_bridge_init(void) { int ret; ret = usb_register(&diag_bridge_driver); if (ret) { pr_err("%s: unable to register diag driver\n", __func__); return ret; } return 0; } static void __exit diag_bridge_exit(void) { usb_deregister(&diag_bridge_driver); } module_init(diag_bridge_init); module_exit(diag_bridge_exit); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL v2");